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Abstract— CleanJava is a formal annotation language for the 

Java programming language to support a Cleanroom-style 

functional program verification technique that views programs 

as mathematical functions. It needs a suite of support tools 

including a checker that can parse annotations and check them 

for syntactic and static semantic correctness. The two key 

requirements of the checker are flexibility and extensibility. 

Since the language is still under development and refinement, it 

should be flexible to facilitate language experimentation and 

accommodate language changes. It should be also extensible to 

provide base code for developing more advanced support tools 

like an automated theorem prover. In addition, it should 

recognize Java syntax, as CleanJava is a superset of Java. In this 

paper we describe our experience of developing a CleanJava 

checker called CJC and explain how we met the above 

requirements by using an open-source Java compiler. We expect 

our techniques and the lessons that we learned be useful to others 

implementing Java-like languages. 

Keywords—formal annotation language; parser; static checker; 

CleanJava; JastAddJ 

I. INTRODUCTION 

Formal program verification is a complementary technique 
to program testing. One such a technique is functional program 
verification originated from the Cleanroom Software 
Engineering [1] that emphasizes defect prevention rather than 
defect removal. In functional program verification, a program 
is viewed as a mathematical function from one program state to 
another, and the program is verified by comparing two 
functions, the implemented and the expected behaviors. 
CleanJava is a formal notation for Java to support a functional 
program verification technique. It allows one to annotate Java 
code with specifications written using mathematical functions 
[2]. The specifications called intended functions are written in 
an extended form of Java expression syntax (see II.A). 
CleanJava complements informal program comments like 
Javadoc comments and promotes the use of more formal 
comments for rigorous and formal correctness reasoning of 
Java programs. 

Just like a programming language, a formal specification 
language such as CleanJava also needs a set of support tools. A 
wide spectrum of support tools is possiblecfrom simple parsers 
and static checkers to fully automated theorem provers. At 
minimum, one needs a tool that can parse specifications and 
perform static checking like syntax and type checking on the 
parsed specifications. However, developing such a tool for 

CleanJava poses several interesting challenges. Since the 
CleanJava language is still under development and refinement, 
the tool should be sufficiently flexible and extensible to 
facilitate experiments of new language features and to easily 
support future language extensions. Since we also envision the 
tool as a base platform for developing more advanced tools like 
proof assistants, extensibility is another important requirement. 
Another challenge is that, besides processing CleanJava-
specific annotations, the tool also has to understand and 
process Java code because CleanJava is a superset of Java. This 
introduces issues and problems such as name spaces and 
context switching, as well as an interesting opportunity—the 
tool could be a drop-in replacement for a Java compiler and it 
will definitely help the adoption and use of CleanJava. 

In this paper we describe how we addressed these 
challenges in developing the CJC tool, an extensible parser and 
static checker for CleanJava. One key to our approach is 
adapting an existing Java compiler that was built with an 
extension in mind. In particular, we used JastAddJ as our base 
code both to support extensibility and to avoid building yet 
another Java compiler. JastAddJ is an extensible Java compiler 
allowing one to create an extension to the Java language in a 
modular composition fashion [3]. JastAddJ itself was built 
using JastAdd, a meta-compilation system that provides 
support for creating modular and extensible compilers [4]. 
Another key to our approach is that we identified CleanJava 
language features that are likely to be changed or extended in 
the future and then provided a built-in extension mechanism 
for them. The current implementation of the CJC tool supports 
most of the CleanJava core language constructs and can be 
easily extended to support other CleanJava features or to be a 
drop-in replacement for a Java compiler such as javac. 

The rest of this paper is structured as follows. Section II 
provides a quick overview of the CleanJava language and the 
JastAddJ Java compiler. Section III describes the problems and 
challenges of developing a CleanJava checker. Section IV 
explains our approach for developing a modular and extensible 
CleanJava checker called CJC. Section V provides a quick 
evaluation of the CJC tool. Section VI  mentions related work, 
and Section VII concludes this paper.  

II. BACKGROUND 

A. CleanJava 

CleanJava is a formal annotation language for the Java 
programming language to support Cleanroom-style functional 
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program verification [2]. In functional program verification, a 
program execution is modeled as a mathematical function from 
one program state to another. Each program state is a mapping 
from state variables to their values. These functions are 
described using a notation called a concurrent assignment. A 
concurrent assignment states changes in a program state and 
can express both the actual function implemented by a section 
of code called a code function and the intention of the code 
called an intended function [5]. In CleanJava an intended 
function is written using an extended form of Java expressions. 
However, the expressions should be side-effect free, and thus 
operators like ++ and += are not allowed. The following shows 
a Java code snippet annotated in CleanJava. 

 
As shown a CleanJava annotation is written as a special 

kind of comments either preceded by //@ or enclosed in /*@ 
and @*/, and every section of code including the whole 
method is annotated with its intended function that precedes 
the code. Most intended functions have the form [x1, x2, …, 
xn := e1, e2, .. en] stating that the new values of xi’s are ei’s 
concurrently evaluated in the initial state—the state just before 
executing the code.  A partial function can also be specified by 
writing a condition followed by the -> symbol. For example, 
the first intended function specifies a partial function and states 
that the numOfOccurrence method is defined only when the 
argument str is not null. The method calculates how many 
times the given character ch appears in the given string str. The 
pseudo variable result denotes the return value of a method. An 
intended function is written in the Java expression syntax with 
a few CleanJava-specific extensions. The above example 
shows a few such extensions. For example, the first intended 
function uses two collection operations, select and size. The 
select operation is an iterator that selects all the elements of a 
collection—including an array and a string—that satisfies a 
specified condition, and the size operation returns the size of a 
collection (see Section IV.C.3). The expression, thus, denotes 
the number of times that the character ch appears in the string 
str. Another CleanJava-specific extension is the keyword 
anything appearing in the third annotation. It specifies that the 
final value of the corresponding state variable is not 
constrained; it states that we don’t care about the final value of 
the loop variable i. Besides these two extensions, CleanJava 
also supports several other extensions such as informal 
descriptions, user-defined functions, model variables, and 

model methods, some of which will be introduced in later 
sections. 

B. JastAdd and JastAddJ 

JastAdd is a meta-compilation system for generating 
extensible language support tools such as compilers and source 
code analyzers [4]. In JastAdd the data structures that support a 
compiler such as symbol tables and flow graphs are embedded 
in the abstract syntax tree (AST) in the form of attributes. An 
attribute is an AST node property to introduce functionalities 
and behavior to the AST [6]. AST nodes are implemented 
using Java classes, and their attributes provides APIs to the 
AST node classes. One of the features of JastAdd is its ability 
to define AST attributes declaratively. Attributes can be 
defined in any order using so-called aspects and can have 
different types of values, e.g., simple values like integers, 
composite value like sets, and references to other nodes in the 
AST. A reference-valued attribute allows one to explicitly 
define graph properties of a program; e.g., one can link an 
identifier like a variable name to its declaration node.  Attribute 
values are defined by writing equations that may refer to other 
attributes. Attributes and equations are defined in an intertype 
declaration, a declaration that appears in an aspect file or a 
behavior specification, and are automatically added to their 
corresponding AST classes by JastAdd. It is also allowed to 
have regular Java member declarations like fields and methods 
in an intertype declaration. Object-orientation and intertype 
declarations are two key mechanisms of JastAdd to facilitate 
the construction of extensible language support tools. 

A JastAdd application is typically consists of several 
extensible components (see Fig. 1). A component is composed 
of specification files, a frontend or application program, and a 
build file. A specification file can be a lexer specification, a 
context-free grammar or an abstract grammar. The lexer and 
context grammar files are inputs to a scanner and parser 
generators like JFlex [7] and Beaver [8], and the abstract 
grammar file defines AST nodes and behavior specifications. A 
build file is for specifying the elements of a component and 
compilation options.  

 

Fig. 1. Typical elements of a JastAdd component. 

Rules in a specification file can be organized into modules. 
Modules are useful to organize specification rules based on 
their properties or classifications, e.g., similar compilation 
problems like as name and type analysis and grouping of 
language features. As mentioned before, specification files are 
transformed into Java classes, thus producing APIs that can be 
used by a frontend tool or main application such as a compiler. 
The CJC frontend component uses modules from several 
JastAddJ frontend components (see Fig. 2). 

/*@ [str != null -> 

  @  result := str->select(char c; c == ch)->size()] @*/ 

public static int numOfOccurrence(String str, char ch) { 

 //@ [r, i := 0, 0] 

 int r = 0; 

 int i = 0; 

 

 /*@ [str != null -> r, i :=  

   @  r + str.substring(i)->select(char c; c == ch)->size(), 

   @  anything] *@/ 

 while (i < str.length()) { 

  //@ [r, i := r + (s.charAt(i) == ch ? 1 : 0), i + 1] 

   if (s.charAt(i) == ch) { 

    //@ [r:= r + 1] 

    r++; 

   } 
 

   //@ [i := i + 1] 

   i++; 

 } 

 

 //@ [result := r] 

 return r; 
} 
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Fig. 2. JastAddJ and CJC Components. 

A good example of a JastAdd application is JastAddJ, an 
extensible Java compiler [3]. JastAddJ facilitates the 
construction of static analysis tools for Java and the extension 
of the Java language with new language constructs. JastAddJ 
itself is a language extension in that the base implementation of 
JastAddJ supports Java 1.4 and two independent extension 
components add the features of Java 5 and 7. Every JastAddJ 
version consists of two components, a frontend and a backend. 
The frontend contains tools to parse Java source code, print 
compile-time error messages, and print the normalized version 
of a program (pretty printing) and its generated AST. The 
backend contains tools to generate Java class files. The 
backend tools are extensions of frontends. An extension of 
JastAddJ can act either as a pure checker by extending a 
frontend or as an extended Java compiler by extending a 
backend. 

III. THE CHALENGES 

CleanJava is a formal specification language to support 
functional program verification. Its goal is to facilitate formal 
correctness verification and reasoning of Java programs by 
providing a Java-like notation for writing intended functions. 
Performing formal correctness proofs manually often times 
requires a considerable amount of time and effort and thus 
makes it less attractive to programmers. However, there is no 
support tool available for the CleanJava language. Basic 
support tools like a static semantic checker are important for 
several reasons. They can promote the adoption and use of 
CleanJava, facilitate the refinement and further development of 
CleanJava itself, and serve as a platform for constructing more 
advanced support tools like a correctness proof tool. 

The first milestone toward the construction of CleanJava 
support tools is a checker that can parse Java code annotated in 
CleanJava and perform static checks including syntax and type 
checks. Ideally, the checker should be able to be used as an 
alternative to Java compilers such as javac. However, there are 
several challenges in developing a CleanJava checker. Since 
the CleanJava language is continuously being refined, new 
language features are likely to be introduced and some of 
current ones are likely to evolve as well. Thus, the checker 
should be sufficiently flexible to facilitate the experimentation 
of various language features and the accommodation of new 
language extensions. Another key requirement is extensibility. 
We envision a standard set of CleanJava tools to promote the 
use of CleanJava, especially in academia, where such a toolset 
will serve as a platform for teaching formal program 
verification. For this, we would like to use the checker as the 
base platform for constructing more advanced support tools 
like a specification analyzer and a proof assistant. Another 
challenge is that the checker should also understand the Java 
syntax and semantics because CleanJava annotations are 
embedded in Java source code as special kinds of comments 
and are written by referring to various Java elements such as 

variables, fields, and methods. It is simply out of question for 
us to build a new Java compiler, and it is also a daunting task 
to keep up with the Java language changes. 

IV. CLEANJAVA CHECKER 

As stated in the previous section, the construction of a 
CleanJava checker is the first milestone toward the creation of 
a standard set of CleanJava tools including an automatic or 
semi-automatic proof tool. A key requirement for the checker 
is flexibility and extensibility to facilitate the addition of new 
language features. We decided to develop our CleanJava 
checker, called CJC, by extending an existing open-source Java 
compiler to avoid the trouble of writing a new Java compiler 
and to accelerate its development as well. We considered 
several open-source Java compilers including OpenJDK [21], 
ECJ (Eclipse Compiler for Java), and GCJ (GNU Compiler for 
Java) [20], and our decision was to extend JastAddJ. Two 
particularly interesting features of JastAddJ is its support for 
extension by using object-orientation and declarative attributes. 

 

Fig. 3. CJC as an extension of JastAddJ. 

A. Architecture 

CJC was built as an extension of the JastAddJ 7 frontend 
component inheriting all its features such as language 
constructs and static checks (see Fig. 3). CJC component is 
composed of a set of specification files, JUnit tests, and a build 
file. The lexical and abstract grammar rules of CleanJava are 
defined in the main specification files CleanJavaScanner.flex 
and CleanJava.ast. Various behavior specifications are grouped 
into modules based on CleanJava language features like 
expressions and statements, thus modularizing behavior 
specifications. An example of a CleanJava language feature is 
an intended function, which is a type of CleanJava statements. 
Its behavior rules are defined in a CleanJava statement module 
in a specification file CleanJavaStatement.jrag. Although the 
current implementation of CJC only modularizes behavior 
specifications, new features can be implemented using modules 
that contain different specification types such as parser and 
grammar specifications. 

The build file is an important element of the CJC 
component. It specifies the specification files that are imported 
from other components, the order of compiling specification 
files, the names of output files to be generated, and their target 
locations. Although there is no standard way for defining the 
structure of a JastAdd component or the contents of the build 
file, it is important to use some conventions. Our structure and 
conventions can facilitate the creation of new CJC extensions 
by providing a better understanding of the architecture and 
allowing tools such as JASG framework [9] to perform certain 
operations automatically on an extension component. Future 
extensions of CJC can be made by importing CJC specification 
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files into a new JastAdd component or by creating new 
modules in the current CJC component. 

B. Implementation Process 

One neat feature of JastAddJ is its support for an 
incremental development, e.g., one language feature at a time. 
For an incremental development we first grouped CleanJava 
language features into feature groups and then implemented 
one feature group at a time by following the same basic 
development steps: (a) define parse nodes, (b) define lexical 
and parsing rules, (c) add attributes to the AST, and (d) create 
JUnit test cases. Below we illustrate this development process 
in detail by implementing a sample feature of CleanJava. 
However, before starting the implementation of the CleanJava 
features, we first need to create a new extension component for 
CleanJava. A working boilerplate component can be created 
from JastAddJ and can serve as the starting point for our 
extension. It will have all the necessary files like specification 
files and a build file to compile and build a Java 7 checker. The 
build file also defines new standard properties to facilitate a 
document creation in JASG [9]. 

The sample CleanJava feature to be implemented is the 
keyword anything denoting an arbitrary value. It is commonly 
used to indicate that one doesn’t care about the final value of a 
temporary variable such as a loop variable, as shown below. 

 //@ [x, y, temp := y, x, anything] 

 temp = x; 

 x = y; 

 y = temp; 
 

The first step for implementing the anything keyword is to 
declare a new parse node for it. Technically, anything is a 
literal because it denotes an arbitrary value. Therefore, we 
introduce a new parse node named AnythingLiteral as a 
subclass of Literal, a JastAddJ parse node class representing a 
Java literal. A new rule is added to the CJC abstract grammar 
defined in the specification file CleanJava.ast. 

 AnythingLiteral: Literal; 

 

AnythingLiteral inherits all the behavior of Literal, 
including a type attribute that specifies the type of the 
expression represented by a node. AnythingLiteral can be used 
as a regular Java literal expression in a CleanJava annotation. 

We then define a new lexical rule and a new parsing rule. 
Since anything is a keyword, we define a new terminal 
“anything” by introducing a new JFlex rule in the specification 
CleanJavaScanner.flex:  

 "anything" { return sym(Terminals.ANYTHING_Literal); } 
 

The associated action routine states that the scanner will 
return a token named ANYTHING_LITERAL; this new token 
is used to define a parsing rule. We also define a new parsing 
rule in the CleanJavaExpression parser specification as follows. 

 Expr literal = ANYTHING_LITERAL 
  {: return new AnythingLiteral(ANYTHING_LITERAL); :} 

 

This statement introduces a new definition for an existing 
JastAddJ non-terminal literal of type Expr. Expr is an abstract 
AST node class defined by JavaAddJ to represent a Java 
expression. The definition states that a literal now can be an 

anything. The associated action states that when an anything 
literal is parsed a new object of type AnythingLiteral is created 
and returned. However, there is one complication here. We 
extended the definition of the literal non-terminal inherited 
from JastAddJ. This means that the newly introduced keyword 
anything can be also used in a Java expression; it’s a Java 
literal too. We fix this problem by conditionally activating the 
newly introduced lexical rule using a JFlex feature called a 
lexical state [7]. A lexical state acts like a start condition in that 
if the scanner is in a specific lexical state, only expressions that 
are preceded by the same named start condition can be 
matched. We defined two lexical states for CleanJava, one for 
parsing single line annotations (//@) and the other for parsing 
multi-line annotations (/*@ … @*/). All CleanJava-specific 
lexical rules including that of anything have CleanJava lexical 
states as start conditions. 

Once we define a parse node for the anything literal, we are 
ready to add behavior to the node by writing new behavior 
specification definitions. This can be done either declaratively 
(attributes, equations, and rewrites) or imperatively (ordinary 
Java field and method declarations). A behavior can be an AST 
attributes like a type attribute or an ordinary method 
declaration like the toString() method that define the parse 
node API. A subclass inherits the behavior of all its 
superclasses, and a superclass often forces its subclasses to 
implement a certain behavior, e.g., defining attribute values. 
For example, class AnythingLiteral extends class Literal, an 
indirect subclass of class Expr defined in JastAddJ 4. JastAddJ 
4 specifies a type attribute for Expr that has to be implemented 
by all of its subclasses. Thus, to complete the implementation 
of the AnythingLiteral node we need to define the value of its 
inherited type attribute. We also need to implement a toString() 
method that is used by the JavaPrettyPrinter frontend program 
to print a normalized version of the literal. This behavior can 
be implemented by adding a new set of intertype declarations 
to a behavior specification file CleanJavaExpression.jrag that 
contains intertype declarations related to CleanJava 
expressions. 

 eq AnythingLiteral.type() = unknownType(); 

public void AnythingLiteral.toString(StringBuffer s){ 

   s.append(" anything "); 

 } 
 

The above statements show two different types of intertype 
definitions. The first one is a declarative definition containing 
an equation for the type attribute of the AnythingLiteral class. 
The second is an imperative definition that overrides the 
toString() method inherited from the class ASTNode, the 
ultimate superclass of all AST node classes; this method is for 
pretty printing the parsed source code. 

The type checking behavior for Java expressions is defined 
by JastAddJ. The only necessary step is to specify the type of 
the anything literal expression by assigning a value to the type 
attribute. Since the anything literal can be of any type, we use a 
special JastAddJ declaration type unknownType; this type acts 
as a wildcard type during type checking, making the anything 
literal assignment-compatible to any expression. 

The last step is to add test cases. We add a new set of JUnit 
test cases for AnythingLiteral to two different test suites. One 
test suite includes test cases for checking syntax errors and the 
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other for checking static semantic errors like type errors. This 
completes the implementation of the anything literal. 

C. Implementation of CleanJava Features 

The current version of CJC supports all the core features of 
CleanJava language; core features are the basic features that 
provide the foundation of CleanJava, and advanced features 
like specification-only methods are built on top of the core 
features. In this section we describe the implementation of 
some of the supported features along with challenges that we 
encountered. 

1) CleanJava Annotations 
As shown in Section II.A, there are two kinds of CleanJava 

annotations: member-level annotations and statement-level 
annotations. The first annotation is for annotating class 
members like methods, and an example is an intended function 
for a method. The second is for annotating a single statement 
or a block of statements, and an example is an intended 
function for a while statement appearing in a method body. 
One interesting question is how to represent these two types of 
annotations in an AST. The goal is to reuse the provided 
framework code of JastAddJ as much as possible to reduce the 
development time and effort and to have a more reusable and 
maintainable implementation as well. Specifically we would 
like to delegate most of static semantic checks like type checks 
along with associated functions such as a symbol lookup to the 
framework code that performs these for Java code.  In JastAddJ, 
an AST also plays the role of a symbol table, and we definitely 
don’t want to duplicate it in our extension. Our solution is 
intuitive and straightforward and is to define a CleanJava-
specific parse node as a subclass of the corresponding Java 
parse node (see Fig. 4). 

 

Fig. 4. AST nodes for representing  member-level annotations. 

We define a CleanJava-specific AST node CJMethodDecl 
as a subclass of a framework node MethodDecl representing a 
Java method declaration. The CJMethodDecl class represents a 
Java method declaration with a CleanJava annotation, i.e., an 
intended function for the method. Thanks to this subclassing, a 
Java class declaration (ClassDecl) can now have method 
declarations with (CJMethodDecl) or without a method 
intended function (MethodDecl). Similarly, we introduce a new 
AST node class, AnnotatedStmt, to represent a Java statement 
with an annotation (see Fig. 5). It is a subclass of Stmt 
representing a Java statement. Thus, a method body may 
consist of Java statements with or without CleanJava 
annotations.  

 

Fig. 5. AST nodes for representing statement-level annotations. 

A CleanJava AST node class such as CJMethodDecl 
inherits features like name resolution and type checks from the 
corresponding Java AST node class, thus it only needs to 

implement CleanJava-specific features, e.g., type checking the 
intended function. Our approach is also extensible in that if 
CleanJava introduces a class-level annotation, e.g., a class 
invariant [16], it can be easily accommodated in a similar 
fashion by defining a CleanJava-specific new subclass of 
ClassDecl. 

 

 

 

 

 

Fig. 6. CleanJava expression. 

2) CleanJava Expressions 
CleanJava expressions consist of side-effect free Java 

expressions and CleanJava-specific extensions (see Fig. 6). 
Java expressions that have side-effects are not allowed in 
CleanJava annotations. Examples of Java expressions that may 
have side-effects are those expressions written using operators 
with side-effects, e.g., the increment operator (++) and the 
decrement operator (--), and those that invoke methods that 
may have side-effects; only query methods are allowed in 
CleanJava expressions. Examples of CleanJava extensions are 
the anything literal, informal descriptions, and collection 
operations and iterators (see below). 

An interesting question is how to disallow Java expressions 
with side-effects in CleanJava annotations. Our approach is to 
recognize them during the lexical analysis phase of the 
compilation. Specifically, we introduce a new scanning context 
to exclude Java operators that are not allowed in CleanJava. 
When the scanner sees one of the CleanJava annotation start 
markers (//@ and /*@), it changes its scanning context to this 
new context. Upon completion of scanning an annotation—i.e., 
when the scanner sees the corresponding annotation end 
marker (end-of-line or *@/)—it switches its scanning context 
to that of Java. We used JFlex’s lexical state mechanism to 
implement our approach (see Section IV.B for lexical states).  
We use the same approach to support various CleanJava-
specific keywords, operators, and symbols; they are recognized 
as tokens only within a CleanJava lexical context, i.e., only 
when parsing CleanJava annotations. One shortcoming of our 
approach, however, is that it cannot detect side-effects caused 
by invocations of mutation methods. This check may be done 
during the static semantic analysis phase assuming that the 
compiler can determine whether a method has a side-effect or 
not at compile time (see Section V).  

One interesting feature of CleanJava is that it allows one to 
tune the level of formality in writing annotations. It is possible 
to mix formal and informal texts in annotations by using a 
facility called an informal description. An informal description 
is any text enclosed in a pair of “(*” and “*)”. It can be used to 
escape from formality in writing an intended function, as 
shown below. 

 

/*@ [cnt := cnt +  

  @  (* occurrences of c in str starting at index i *)] 
  @*/ 

 

 

 

 

  

 

  

Side-effect 

free Java 

expressions 

Java 

expression 

e 

CleanJava 

expression 
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One interesting fact about the informal description is that it 
is treated as an expression of any type. To be precise, its 
context determines its type. For example, the type of the above 
informal description is int, as it appears in a place where an int 
value is expected. How to check type correctness of an 
expression written using an informal description? If the type of 
an informal description can be determined or inferred based on 
its context of use, the expression is type correct; otherwise, it is 
not. To implement this, we assign a special type unknown to an 
informal description. It is a special type from JastAdd and acts 
as a wildcard when performing a type check of an expression 
involving values of unknown types. 

3) Iteration Operators 
In CleanJava, one can manipulate a collection of values by 

using iteration operators, also called iterators for short. An 
iterator can access or iterate over the elements of a collection to 
manipulate them. Iterators are defined for collections stored as 
Iterable objects, arrays, and strings, and some example iterators 
are forAll, exists, select, and iterate. The following intended 
function shows a typical use of an iterator: 

 

The forAll iterator returns true if each element of the collection 
satisfies the specified condition. Thus, the new value of ok is 
true if every account contained in accounts has a positive 
balance; otherwise, it is false. As shown, an iterator introduces 
a local variable (acc) to denote the element being iterated over. 
The scope of such an iterator variable is the body of the iterator 
(e.g., a.balance() < 0). Also note that an arrow notation (e.g., 
account->forAll(…)) is used to invoke an iterator. 

Among the various iterators the iterate operation is the 
most powerful and general in that other iterators can be 
expressed in terms of it. It has the form iterate(T1 x1, T2 x2 = E2; 
B; E1), where T1 is the element type of the collection being 
iterated over, T2 is the result type of this iterate operation, B is 
an optional Boolean expression typically written in terms of x1, 
and E1 is an expression of type T2 typically written in terms of 
x1 and x2; local variables x1 and x2 are called an iterator and an 
accumulator respectively. If B is omitted, it defaults to true. 
Informally the meaning of this operation is as follows. Each 
value of the collection is assigned to the iterator variable x1, 
and if the condition B is true, the expression E1 is evaluated 
and the result is stored in the accumulator x2. When all the 
elements are iterated over, the value stored in x2 is returned as 
the result. For example, the previous intended function can be 
rewritten using the iterate operation as follow. 

 

 An iterator poses several challenges in the implementation 
of the CJC tool. One challenge is that it is an expression but 
can have locally-scoped variables, i.e., an iterator and an 
accumulator. One complication is that the local variables have 
to be maintained in the symbol table during the parsing and 
checking of the iterator body. There is no such a language 
construct in Java, and thus the JastAddJ framework provides 
no support for an iterator-like language construct. Semantically 
an iterator behaves like a query method invocation in that it 
returns a value. However, structurally it is different from a 

method invocation, meaning that we can’t represent it using the 
AST node class for a method invocation. Another challenge is 
the extensibility requirement of the CJC tool. Iterators are one 
particularly feature of the CleanJava language that is likely to 
be changed in the future as the language is being refined. More 
iterators are likely to be added, and the structure of the iterators 
may be changed. Ideally, the iterator design and 
implementation should accommodate such future changes 
easily. 

 

Fig. 7. AST node classes for iterators 

Our solution to these challenges is to provide an extensible 
framework of AST node classes for iterator-like constructs by 
reusing JastAddJ framework classes as much as possible. Fig. 7 
shows our design of iterator node classes. The common 
features of all iterators are factored out and implemented in the 
abstract class AbstractIterateOperator that extends the JastAddJ 
framework class Access. The Access class is an abstract node 
class representing a variable reference or a method invocation. 
Defining the AbstractIterateOperation as a subclass of Access 
allows us to treat an iterator invocation in a similar fashion as 
we do a Java method invocation. However, one difference is 
the existence of iterator variable declarations.  

Structurally, an iterate operator is somewhat similar to a for 
loop statement in that it has a set of local variable declarations 
and a body expression. An iterate operator variable declaration 
is similar to the loop variable declaration of a for loop 
statement in that the scope of the variable is the body of the 
iterate operator and the name of the variable should be unique 
within its scope. As in Java, an iterator variable can shadow a 
class field that can be accessed by using the keyword this. The 
best way to handle an iterator variable declaration would be to 
treat it as a Java local variable declaration by representing it 
using the VarDeclaration node class. This would allow us to 
maximize code reuse, as we don’t duplicate code for managing 
the symbol table for iterator variables. However, one problem 
is that the VarDeclaration class extends the node class Stmt 
that represents a Java statement, and thus it cannot be 
contained in an expression context such as an iterator 
invocation. As shown, our approach is to use a 
ParameterDeclaration node class instead. It has similar 
behavior to a variable declaration but is not tied to a particular 
type of AST nodes and thus can be used as part of any 
expression. However, it requires some code duplication from 
the VarDeclaration behavior specification, e.g., code for 
checking variable initialization and duplicate declarations. 

[ok := accounts->iterate(Account acc, boolean r = true; 
         true; r && acc.balance() > 0)] 

[ok := accounts->forAll(Account acc; acc.balance() > 0)] 
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The abstract class AbstractIterateOperator also implements 
the default behavior for type checking. For example, the 
receiver of an iterate operator must be of type Iterable or an 
array. The type of the iterator variable must be assignment-
compatible to the element type of the receiver. If there is an 
accumulator, its type must be compatible with the type of the 
body expression.  

A concrete iterator is implemented by creating a new AST 
node class as a subclass of the abstract AbstractIterateOperator 
class, adding parser and scanning rules, and creating specific 
behavior for the iterator in the iterate operator module. As an 
example, let us consider the exists iterator that tests if a 
collection contains at least one element for which a given 
condition is true. The exists iterator has the general form 
exists(T x; B; E), where B is an optional Boolean expression, 
and E is a Boolean-typed body expression. If there is any 
element that makes both B and E true, the iterator returns true; 
otherwise, it returns false. Its implementation requires 
definitions of only two new equations or behaviors: one for 
constraining the return type and the other for the type of the 
body expression (E).  

 

As shown in this behavior segment of code, the exists iterator 
inherits the type checking logic of its superclass; e.g., the 
checking of the optional Boolean expression (B) is performed 
by the superclass. 

4) Concurrent Assignments 
In CleanJava, a concurrent assignment is used to write an 

intended function. Structurally it is similar to a Java assignment 
statement; however, semantically it denotes a mapping from 
one program state to another. There are several variations of 
concurrent assignments, e.g., simple concurrent assignments, 
conditional concurrent assignments, splitting definitions, and 
sequential composition. CJC supports all these different 
concurrent assignment statements by organizing their AST 
node classes into a class hierarchy (see Fig. 8 and Fig. 9). As 
shown in Fig. 8, the common superclass of all these variations 
is the AbstractConcurrentAssignment that extends the CJStmt 
class. Below we describe our design of simple concurrent 
assignments. 

 

Fig. 8. Simple and conditional concurrent assignments. 

A simple concurrent assignment is a concurrent assignment 
statement that doesn’t have a condition. Semantically it denotes 
a total function; there’s no constraint on the input state. To 
specify a partial function, one uses a conditional concurrent 
assignment that has conditions. The most commonly used 
simple concurrent assignment has the form [L1, L2, …, Ln := E1, 

E2, …, En], where Li and Ei  are expressions. For the statement 
to be well-formed, it has to satisfy the following conditions 
which are checked by the CJC tool. 

• Li’s and Ei’s are well formed. 

• The number of Li’s is equal to the number of Ei’s. 

• Each Li denotes a location, and the locations denoted 

by Li’s must be different. This check is done by 

looking up each Li location in the AST and keeping 

track of the set of visited variable nodes. 

• The type of Ei is assignment compatible to that of the 

corresponding Li. 

 

 

Fig. 9. Variations of simple concurrent assignments. 

 

There are several variations allowed for the simple 
concurrent assignment (see Fig. 9). For example, there are two 
different semantic interpretations possible, value semantics and 
reference semantics. The value semantics means that the new 
value of Li is equivalent to Ei, and the reference semantics 
means the Li now refers to, or is the same as, Ei. The values 
semantics models the equals relation in Java and the reference 
semantics models the object equality (==). In CleanJava, the 
reference semantics is concretely denoted by the use of the 
symbol @= instead of := in the assignment statement. In AST, 
it is represented by the SimpleConcurrentAssignmentByRef 
class that does additional checking for reference types. Another 
variation is splitting the definition of a simple concurrent 
assignment. For example, instead of writing [x, y, z := 1, 2, 3], 
one can write [x := 1, y := 2, z := 3]. This is useful when 
writing an intended function with a long definition that spans 
multiple lines. The CJC tool combines the definitions and 
performs type and static checks on the combined definition. 
Yet another variation is a special statement called identity that 
denotes no change in the state of a program. This function is 
mainly used in the specification of a partial function using the 
conditional concurrent assignment. 

D. CJC Tools 

The current CJC toolset contains several programs for the 
CleanJava users and developers. The programs includes in the 
toolset are a CleanJava checker, a pretty printer, and an AST 
tree viewer. 

• CleanJava checker. This is the main program of the 

CJC toolset and performs static checks on a Java 

program annotated in CleanJava. It runs on a 

command prompt and behaves like a Java compiler 

except that it doesn’t produce bytecode files. 

Internally, it extends the JastAddJ framework class 

FrontEnd that processes compilation arguments and 

options such as input files and classpath. It invokes 

the CleanJava parser that builds an AST from the 

eq ExistsOperator.type() = typeBoolean(); 

 

public void ExistsOperator.typeCheck() { 

  super.typeCheck(); 

  if (!getBody().getArg().type().isBoolean()) 

      error("Body must be a boolean expression"); 
} 
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input files and performs several static checks such as 

type checking.  

• Pretty printer. This program prints parsed source code 

in the CleanJava presentation syntax and is mainly for 

the developers. The presentation syntax is mainly for 

human readers and the ASCII syntax is for the tools. In 

the ASCII syntax, for example, CleanJava-specific 

keywords like anything are preceded by the character 

‘\’, e.g., \anything, as they can be valid Java identifiers; 

note that in this paper we use the presentation syntax to 

show CleanJava annotations. The pretty printer is 

implemented by overriding the toString() methods of 

AST node classes.. 

• AST viewer. This is another tool for developers and 

displays or dumps the AST of the parsed source code. 

V. EVALUATION AND DISCUSSION 

We evaluated the checker using two different criteria: 
extensibility and language coverage. 

A. Extensibility 

Extensibility is one of the key requirements of the CJC 
toolset. The checker should accommodate the introduction of 
new language features and also facilitate the creation of new 
support tools like a proof checker. In addition to the 
extensibility obtained by using the JastAddJ framework as the 
base code, the checker also provides a built-in extension 
mechanism for language features that are likely to be changed 
or extended. For example, one can easily add a new collection 
iterator, say the any iterator. The any iterator returns an 
arbitrary element of a collection that satisfies a condition, and 
it has the form any(T x; B1; B2), where B1 is an optional 
Boolean expression and B2 is a Boolean-typed body expression 
typically written in terms of the iterator variable x. Adding a 
new iterator like the any iterator is straightforward. We need to 
follow the JastAdd development cycle as follows.  

• Step 1. Declare a new AST node class as a subclass of 
the AbstractIterateOperator class (see Section IV.C.3). 

AnyOperator: AbstractIterateOperator 

• Step 2. Declare a new token any. 

"any" { return sym(Terminals.ANYOP); } 

• Step 3. Define a grammar rule for the iterator. 

 Access iterate_access = 

   iterate_receiver ANYOP iterate_body; 

 

• Step 4. Define the behavior for the new AST node 
class. Most static checks are already implemented in 
the superclass, and we only need to define the type of 
the new iterator and check the type of its body 
expression as follows. 

 eq AnyOperator.type() =  

    getBody().getIterator().getTypeAccess().type(); 

 

 public void AnyOperator.typeCheck() { 

   super.typeCheck(); 

   if (!getBody().getArg().type().isBoolean()) 

    error("Boolean body expected!"); 

 } 

 

It still needs to be evaluated if the checker provides a 
suitable base code for developing more advanced support tools 
like a proof checker. However, we hope the extensibility 
obtained by employing JastAdd as the underlying framework 
has positive impacts.  

B. Language coverage   

The current version of the CJC tools (version 0.3.5) 
supports most of the core features of the CleanJava language. It 
supports 26 features out of 32 core features, thus giving 81% of 
language coverage.  It should be noted that the main focus of 
the first version of CJC was to support the basic notation for 
writing intended function, while providing mechanisms and 
guidelines for creating future extensions. The unsupported 
language features include statement-level annotations, 
associating annotations with code sections, annotation labels 
(e.g., f1 in f1: [x := x + 1]), and advanced features such as class 
invariants, model methods, and user-defined functions . 

C. Discussion   

One of the challenges in constructing the CJC tools was 
learning about and understanding the JastAddJ framework. The 
initial work was done using JastAddJ 5 that lacked API 
documents and support. For example, it was difficult to figure 
out different aspect declarations needed to inherit behaviors 
from various existing AST node classes. Without proper 
documents, it was also difficult to know the purposes and 
meanings of certain attributes and equations. Fortunately, the 
arrival of JastAddJ 7 along with a new version of JastAdd in 
2012 alleviated some of these difficulties. The newer version 
provides improved APIs and better documents, and the 
JastAdd community has increased and became more active 
providing help to developers. Even with JastAddJ 7, however, 
the learning curve is steep. It is a daunting task especially for a 
beginning developer to figure out all the elements needed for 
the construction of a new feature or extension. The framework 
has 317 AST nodes with behaviors defined in many different 
aspect files, about 230 parser rules, and 600 rule definitions in 
four different components. This problem was partially 
addressed with the inclusion of RagDoll in JastAddJ 7 that 
creates API documents from AST node classes, listing 
attributes and methods along with the locations of their 
definitions. As our own solution to this problem we created the 
JastAdd Specification Generator Framework (JASG) to 
facilitate the creation of new component features and their 
documents [9]. It allows one to create a new feature or 
extension by completing XML templates. An included tool 
parses a JASG XML specification and generates all required 
JastADD specification files such as parser, scanner, AST, and 
AST behavior. We used JASG not only for implementing the 
iterate operators incrementally but also for generating the 
scanner and parser APIs containing all the parser and scanner 
rules from all the four different modules of the CJC extension. 

The development of the CJC tools also made a contribution 
to refining the CleanJava language. The actual construction of 
the checker revealed several ambiguities and weaknesses in the 
language. For example, we were able to identify an ambiguity 
in composing different variations of the conditional concurrent 
assignments. We also learned that there is no simple, modular 
way to check the side-effect-freeness of an expression unless 
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the language provides a notation to state the side-effect-
freeness of a method; there are different approaches proposed 
for checking side-effect-freeness of Java methods [10]. The 
CJC tools development also contributed the design and 
refinement of the ASCII syntax of the language. 

VI. RELATED WORK 

The development of CJC tools was inspired by other 
language processing tools that faced similar challenges. One 
such a tool is JAJML, a JastAddJ-based compiler for the Java 
Modeling Language (JML) [11]. The main objective of JAJML 
was creating an extensible JML compiler. According to case 
studies [12] [13], the use of attribute grammars not only 
facilitated the implementation of language extensions based on 
JastAddJ but also proved to be more extensible than other 
approaches, such as JML 4 [17] developed based on the 
Eclipse Java Development Tools (JDT). However, one 
downside mentioned is the uncertainty of JastAddJ regarding 
its future support, especially new revisions of Java. At the time 
of the case studies, for example, JastAddJ only supported Java 
4 and 5 but not Java 6; the current version of JastAddJ supports 
Java 7. One of the features that JAJML and CJC share is the 
inclusion of program specifications or annotations inside Java 
comments. The CJC tools adopted the approach of JAJML to 
create scanner lexical states and recognize CJC-specific 
terminals inside Java comments. The development of CJC not 
only leveraged the findings of JAJML, e.g., fast and easy 
creation of extensible compilers but also introduced language-
specific mechanisms for creating future extensions, e.g., 
abstract iterate operators and JASG templates [9]. JAJML also 
showed how a JastAddJ compiler extension could be further 
extended. For example, SafeJML is an extension of the JML 
language that supports specification of safety critical Java 
programs, and it was implemented as an extension to JAJML 
by introducing new language constructs [14]  

The AspectBench Compiler (ABC) is an extensible AspectJ 
compiler created initially using Polyglot and Soot for the 
frontend and backend respectively [15]. An alternate frontend 
was later created as an extension of JastAddJ 4. One of the 
main advantages of the JastAddJ frontend was the automatic 
scheduling of attribute computations compared with polyglot’s 
manual scheduling [3]. Other advantages of JastAddJ over 
polyglot were the reduction of source code, increased speed, 
and less compiler errors. 

There are Java programs for supporting Cleanroom-style 
functional program verification [18]. One program can even 
perform a trace on a Java program with intended functions. It 
looks like that a subset of Java expression syntax is used to 
write intended function, but due to lack of documentation, we 
were not able to know the exact notation for writing intended 
functions. It is also unclear if the programs were designed with 
future extensions in mind. 

VII. CONCLUSION 

We developed a CleanJava checker called CJC to help the 
design and refinement of the CleanJava language and to 
promote Cleanroom-style formal program development as well. 
The CJC tool parses a Java program annotated with CleanJava 
specifications and performs static checks such as type and 

syntax checks. It’s our first effort toward constructing a suite of 
support tools for CleanJava and hopefully provides base code 
for more advanced tools like an automated verification tool. 
Developing the CJC tool posed several interesting and 
engineering challenges. The tool has to be sufficiently 
extensible to not only facilitate the experimentation of various 
language features but also support future language extensions. 
It had to understand the Java syntax and process Java source 
code because CleanJava specifications are embedded in Java 
source code and written by referring to Java program elements 
such as variables, fields, and methods; the CleanJava language 
is an add-on to the Java language and its specifications are 
checked and interpreted in the context of a Java program. 

We presented our solution to the above challenges, 
focusing on the design and implementation of the main features 
of the CleanJava language. The keys to our solution are to use 
an extensible Java compiler as a base platform for our 
development and to provide a built-in extension mechanism for 
language constructs and features that are likely to be refined 
and changed in the future. The particular Java compiler 
framework that we chose was JastAddJ and it supported 
extensibility and avoided building a new Java compiler. The 
particular features of JastAddJ that contributed to the 
extensibility include an object-oriented modeling of AST node 
classes and a declarative, aspect-oriented way of defining AST 
behaviors. In addition to the built-in extension mechanism for 
CleanJava constructs like iterators, we also developed an 
XML-based CJC extension framework, called the JastAdd 
Specification Generator Framework (JASG), to facilitate the 
creation of new CJC extensions and their documents. 

The current version (version 0.3.5) of the CJC tools 
supports most of the CleanJava core language features and 
includes a few front-end tools. The next step is to extend the 
checker to a CleanJava compiler that generates Java bytecode. 
This can be done by extending the JastAdd backend 
component. A CJC backend will be useful to perform dynamic 
or runtime verification, e.g., by injecting executable CJC 
specifications into Java class files. Other future work includes 
creating a CJC extension that computes a code function—a 
function computed or implemented by a section of code—to 
assist formal program verification, supporting runtime analysis 
and verification, and integrating CJC with an IDE such as 
Eclipse. 
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