

CJC: An Extensible Checker

for the CleanJava Annotation Language

Cesar Yeep and Yoonsik Cheon

TR #13-29

May 2013

Keywords: Formal annotation language, parser, static checker, CleanJava, JastAddJ.

1998 CR Categories: D.3.2 [Programming Languages] Language classificationsObject-oriented languages;

D.3.4 [Programming Languages] ProcessorsCompiler, parsing; D.2.4 [Software Engineering] Software/Program

Verificationassertion checkers, class invariants, formal methods, programming by contract; F.3.1 [Logics and

Meanings of Programs] Specifying and Verifying and Reasoning about Programsassertions, invariants,

specification techniques.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

1

CJC: An Extensible Checker

for the CleanJava Annotation Language

Cesar Yeep and Yoonsik Cheon

Department of Computer Science

The University of Texas at El Paso

El Paso, Texas, U.S.A.

ceyeep@miners.utep.edu, ycheon@utep.edu

Abstract— CleanJava is a formal annotation language for the

Java programming language to support a Cleanroom-style

functional program verification technique that views programs

as mathematical functions. It needs a suite of support tools

including a checker that can parse annotations and check them

for syntactic and static semantic correctness. The two key

requirements of the checker are flexibility and extensibility.

Since the language is still under development and refinement, it

should be flexible to facilitate language experimentation and

accommodate language changes. It should be also extensible to

provide base code for developing more advanced support tools

like an automated theorem prover. In addition, it should

recognize Java syntax, as CleanJava is a superset of Java. In this

paper we describe our experience of developing a CleanJava

checker called CJC and explain how we met the above

requirements by using an open-source Java compiler. We expect

our techniques and the lessons that we learned be useful to others

implementing Java-like languages.

Keywords—formal annotation language; parser; static checker;

CleanJava; JastAddJ

I. INTRODUCTION

Formal program verification is a complementary technique
to program testing. One such a technique is functional program
verification originated from the Cleanroom Software
Engineering [1] that emphasizes defect prevention rather than
defect removal. In functional program verification, a program
is viewed as a mathematical function from one program state to
another, and the program is verified by comparing two
functions, the implemented and the expected behaviors.
CleanJava is a formal notation for Java to support a functional
program verification technique. It allows one to annotate Java
code with specifications written using mathematical functions
[2]. The specifications called intended functions are written in
an extended form of Java expression syntax (see II.A).
CleanJava complements informal program comments like
Javadoc comments and promotes the use of more formal
comments for rigorous and formal correctness reasoning of
Java programs.

Just like a programming language, a formal specification
language such as CleanJava also needs a set of support tools. A
wide spectrum of support tools is possiblecfrom simple parsers
and static checkers to fully automated theorem provers. At
minimum, one needs a tool that can parse specifications and
perform static checking like syntax and type checking on the
parsed specifications. However, developing such a tool for

CleanJava poses several interesting challenges. Since the
CleanJava language is still under development and refinement,
the tool should be sufficiently flexible and extensible to
facilitate experiments of new language features and to easily
support future language extensions. Since we also envision the
tool as a base platform for developing more advanced tools like
proof assistants, extensibility is another important requirement.
Another challenge is that, besides processing CleanJava-
specific annotations, the tool also has to understand and
process Java code because CleanJava is a superset of Java. This
introduces issues and problems such as name spaces and
context switching, as well as an interesting opportunity—the
tool could be a drop-in replacement for a Java compiler and it
will definitely help the adoption and use of CleanJava.

In this paper we describe how we addressed these
challenges in developing the CJC tool, an extensible parser and
static checker for CleanJava. One key to our approach is
adapting an existing Java compiler that was built with an
extension in mind. In particular, we used JastAddJ as our base
code both to support extensibility and to avoid building yet
another Java compiler. JastAddJ is an extensible Java compiler
allowing one to create an extension to the Java language in a
modular composition fashion [3]. JastAddJ itself was built
using JastAdd, a meta-compilation system that provides
support for creating modular and extensible compilers [4].
Another key to our approach is that we identified CleanJava
language features that are likely to be changed or extended in
the future and then provided a built-in extension mechanism
for them. The current implementation of the CJC tool supports
most of the CleanJava core language constructs and can be
easily extended to support other CleanJava features or to be a
drop-in replacement for a Java compiler such as javac.

The rest of this paper is structured as follows. Section II
provides a quick overview of the CleanJava language and the
JastAddJ Java compiler. Section III describes the problems and
challenges of developing a CleanJava checker. Section IV
explains our approach for developing a modular and extensible
CleanJava checker called CJC. Section V provides a quick
evaluation of the CJC tool. Section VI mentions related work,
and Section VII concludes this paper.

II. BACKGROUND

A. CleanJava

CleanJava is a formal annotation language for the Java
programming language to support Cleanroom-style functional

2

program verification [2]. In functional program verification, a
program execution is modeled as a mathematical function from
one program state to another. Each program state is a mapping
from state variables to their values. These functions are
described using a notation called a concurrent assignment. A
concurrent assignment states changes in a program state and
can express both the actual function implemented by a section
of code called a code function and the intention of the code
called an intended function [5]. In CleanJava an intended
function is written using an extended form of Java expressions.
However, the expressions should be side-effect free, and thus
operators like ++ and += are not allowed. The following shows
a Java code snippet annotated in CleanJava.

As shown a CleanJava annotation is written as a special

kind of comments either preceded by //@ or enclosed in /*@
and @*/, and every section of code including the whole
method is annotated with its intended function that precedes
the code. Most intended functions have the form [x1, x2, …,
xn := e1, e2, .. en] stating that the new values of xi’s are ei’s
concurrently evaluated in the initial state—the state just before
executing the code. A partial function can also be specified by
writing a condition followed by the -> symbol. For example,
the first intended function specifies a partial function and states
that the numOfOccurrence method is defined only when the
argument str is not null. The method calculates how many
times the given character ch appears in the given string str. The
pseudo variable result denotes the return value of a method. An
intended function is written in the Java expression syntax with
a few CleanJava-specific extensions. The above example
shows a few such extensions. For example, the first intended
function uses two collection operations, select and size. The
select operation is an iterator that selects all the elements of a
collection—including an array and a string—that satisfies a
specified condition, and the size operation returns the size of a
collection (see Section IV.C.3). The expression, thus, denotes
the number of times that the character ch appears in the string
str. Another CleanJava-specific extension is the keyword
anything appearing in the third annotation. It specifies that the
final value of the corresponding state variable is not
constrained; it states that we don’t care about the final value of
the loop variable i. Besides these two extensions, CleanJava
also supports several other extensions such as informal
descriptions, user-defined functions, model variables, and

model methods, some of which will be introduced in later
sections.

B. JastAdd and JastAddJ

JastAdd is a meta-compilation system for generating
extensible language support tools such as compilers and source
code analyzers [4]. In JastAdd the data structures that support a
compiler such as symbol tables and flow graphs are embedded
in the abstract syntax tree (AST) in the form of attributes. An
attribute is an AST node property to introduce functionalities
and behavior to the AST [6]. AST nodes are implemented
using Java classes, and their attributes provides APIs to the
AST node classes. One of the features of JastAdd is its ability
to define AST attributes declaratively. Attributes can be
defined in any order using so-called aspects and can have
different types of values, e.g., simple values like integers,
composite value like sets, and references to other nodes in the
AST. A reference-valued attribute allows one to explicitly
define graph properties of a program; e.g., one can link an
identifier like a variable name to its declaration node. Attribute
values are defined by writing equations that may refer to other
attributes. Attributes and equations are defined in an intertype
declaration, a declaration that appears in an aspect file or a
behavior specification, and are automatically added to their
corresponding AST classes by JastAdd. It is also allowed to
have regular Java member declarations like fields and methods
in an intertype declaration. Object-orientation and intertype
declarations are two key mechanisms of JastAdd to facilitate
the construction of extensible language support tools.

A JastAdd application is typically consists of several
extensible components (see Fig. 1). A component is composed
of specification files, a frontend or application program, and a
build file. A specification file can be a lexer specification, a
context-free grammar or an abstract grammar. The lexer and
context grammar files are inputs to a scanner and parser
generators like JFlex [7] and Beaver [8], and the abstract
grammar file defines AST nodes and behavior specifications. A
build file is for specifying the elements of a component and
compilation options.

Fig. 1. Typical elements of a JastAdd component.

Rules in a specification file can be organized into modules.
Modules are useful to organize specification rules based on
their properties or classifications, e.g., similar compilation
problems like as name and type analysis and grouping of
language features. As mentioned before, specification files are
transformed into Java classes, thus producing APIs that can be
used by a frontend tool or main application such as a compiler.
The CJC frontend component uses modules from several
JastAddJ frontend components (see Fig. 2).

/*@ [str != null ->

 @ result := str->select(char c; c == ch)->size()] @*/

public static int numOfOccurrence(String str, char ch) {

 //@ [r, i := 0, 0]

 int r = 0;

 int i = 0;

 /*@ [str != null -> r, i :=

 @ r + str.substring(i)->select(char c; c == ch)->size(),

 @ anything] *@/

 while (i < str.length()) {

 //@ [r, i := r + (s.charAt(i) == ch ? 1 : 0), i + 1]

 if (s.charAt(i) == ch) {

 //@ [r:= r + 1]

 r++;

 }

 //@ [i := i + 1]

 i++;

 }

 //@ [result := r]

 return r;
}

3

Fig. 2. JastAddJ and CJC Components.

A good example of a JastAdd application is JastAddJ, an
extensible Java compiler [3]. JastAddJ facilitates the
construction of static analysis tools for Java and the extension
of the Java language with new language constructs. JastAddJ
itself is a language extension in that the base implementation of
JastAddJ supports Java 1.4 and two independent extension
components add the features of Java 5 and 7. Every JastAddJ
version consists of two components, a frontend and a backend.
The frontend contains tools to parse Java source code, print
compile-time error messages, and print the normalized version
of a program (pretty printing) and its generated AST. The
backend contains tools to generate Java class files. The
backend tools are extensions of frontends. An extension of
JastAddJ can act either as a pure checker by extending a
frontend or as an extended Java compiler by extending a
backend.

III. THE CHALENGES

CleanJava is a formal specification language to support
functional program verification. Its goal is to facilitate formal
correctness verification and reasoning of Java programs by
providing a Java-like notation for writing intended functions.
Performing formal correctness proofs manually often times
requires a considerable amount of time and effort and thus
makes it less attractive to programmers. However, there is no
support tool available for the CleanJava language. Basic
support tools like a static semantic checker are important for
several reasons. They can promote the adoption and use of
CleanJava, facilitate the refinement and further development of
CleanJava itself, and serve as a platform for constructing more
advanced support tools like a correctness proof tool.

The first milestone toward the construction of CleanJava
support tools is a checker that can parse Java code annotated in
CleanJava and perform static checks including syntax and type
checks. Ideally, the checker should be able to be used as an
alternative to Java compilers such as javac. However, there are
several challenges in developing a CleanJava checker. Since
the CleanJava language is continuously being refined, new
language features are likely to be introduced and some of
current ones are likely to evolve as well. Thus, the checker
should be sufficiently flexible to facilitate the experimentation
of various language features and the accommodation of new
language extensions. Another key requirement is extensibility.
We envision a standard set of CleanJava tools to promote the
use of CleanJava, especially in academia, where such a toolset
will serve as a platform for teaching formal program
verification. For this, we would like to use the checker as the
base platform for constructing more advanced support tools
like a specification analyzer and a proof assistant. Another
challenge is that the checker should also understand the Java
syntax and semantics because CleanJava annotations are
embedded in Java source code as special kinds of comments
and are written by referring to various Java elements such as

variables, fields, and methods. It is simply out of question for
us to build a new Java compiler, and it is also a daunting task
to keep up with the Java language changes.

IV. CLEANJAVA CHECKER

As stated in the previous section, the construction of a
CleanJava checker is the first milestone toward the creation of
a standard set of CleanJava tools including an automatic or
semi-automatic proof tool. A key requirement for the checker
is flexibility and extensibility to facilitate the addition of new
language features. We decided to develop our CleanJava
checker, called CJC, by extending an existing open-source Java
compiler to avoid the trouble of writing a new Java compiler
and to accelerate its development as well. We considered
several open-source Java compilers including OpenJDK [21],
ECJ (Eclipse Compiler for Java), and GCJ (GNU Compiler for
Java) [20], and our decision was to extend JastAddJ. Two
particularly interesting features of JastAddJ is its support for
extension by using object-orientation and declarative attributes.

Fig. 3. CJC as an extension of JastAddJ.

A. Architecture

CJC was built as an extension of the JastAddJ 7 frontend
component inheriting all its features such as language
constructs and static checks (see Fig. 3). CJC component is
composed of a set of specification files, JUnit tests, and a build
file. The lexical and abstract grammar rules of CleanJava are
defined in the main specification files CleanJavaScanner.flex
and CleanJava.ast. Various behavior specifications are grouped
into modules based on CleanJava language features like
expressions and statements, thus modularizing behavior
specifications. An example of a CleanJava language feature is
an intended function, which is a type of CleanJava statements.
Its behavior rules are defined in a CleanJava statement module
in a specification file CleanJavaStatement.jrag. Although the
current implementation of CJC only modularizes behavior
specifications, new features can be implemented using modules
that contain different specification types such as parser and
grammar specifications.

The build file is an important element of the CJC
component. It specifies the specification files that are imported
from other components, the order of compiling specification
files, the names of output files to be generated, and their target
locations. Although there is no standard way for defining the
structure of a JastAdd component or the contents of the build
file, it is important to use some conventions. Our structure and
conventions can facilitate the creation of new CJC extensions
by providing a better understanding of the architecture and
allowing tools such as JASG framework [9] to perform certain
operations automatically on an extension component. Future
extensions of CJC can be made by importing CJC specification

4

files into a new JastAdd component or by creating new
modules in the current CJC component.

B. Implementation Process

One neat feature of JastAddJ is its support for an
incremental development, e.g., one language feature at a time.
For an incremental development we first grouped CleanJava
language features into feature groups and then implemented
one feature group at a time by following the same basic
development steps: (a) define parse nodes, (b) define lexical
and parsing rules, (c) add attributes to the AST, and (d) create
JUnit test cases. Below we illustrate this development process
in detail by implementing a sample feature of CleanJava.
However, before starting the implementation of the CleanJava
features, we first need to create a new extension component for
CleanJava. A working boilerplate component can be created
from JastAddJ and can serve as the starting point for our
extension. It will have all the necessary files like specification
files and a build file to compile and build a Java 7 checker. The
build file also defines new standard properties to facilitate a
document creation in JASG [9].

The sample CleanJava feature to be implemented is the
keyword anything denoting an arbitrary value. It is commonly
used to indicate that one doesn’t care about the final value of a
temporary variable such as a loop variable, as shown below.

 //@ [x, y, temp := y, x, anything]

 temp = x;

 x = y;

 y = temp;

The first step for implementing the anything keyword is to
declare a new parse node for it. Technically, anything is a
literal because it denotes an arbitrary value. Therefore, we
introduce a new parse node named AnythingLiteral as a
subclass of Literal, a JastAddJ parse node class representing a
Java literal. A new rule is added to the CJC abstract grammar
defined in the specification file CleanJava.ast.

 AnythingLiteral: Literal;

AnythingLiteral inherits all the behavior of Literal,
including a type attribute that specifies the type of the
expression represented by a node. AnythingLiteral can be used
as a regular Java literal expression in a CleanJava annotation.

We then define a new lexical rule and a new parsing rule.
Since anything is a keyword, we define a new terminal
“anything” by introducing a new JFlex rule in the specification
CleanJavaScanner.flex:

 "anything" { return sym(Terminals.ANYTHING_Literal); }

The associated action routine states that the scanner will
return a token named ANYTHING_LITERAL; this new token
is used to define a parsing rule. We also define a new parsing
rule in the CleanJavaExpression parser specification as follows.

 Expr literal = ANYTHING_LITERAL
 {: return new AnythingLiteral(ANYTHING_LITERAL); :}

This statement introduces a new definition for an existing
JastAddJ non-terminal literal of type Expr. Expr is an abstract
AST node class defined by JavaAddJ to represent a Java
expression. The definition states that a literal now can be an

anything. The associated action states that when an anything
literal is parsed a new object of type AnythingLiteral is created
and returned. However, there is one complication here. We
extended the definition of the literal non-terminal inherited
from JastAddJ. This means that the newly introduced keyword
anything can be also used in a Java expression; it’s a Java
literal too. We fix this problem by conditionally activating the
newly introduced lexical rule using a JFlex feature called a
lexical state [7]. A lexical state acts like a start condition in that
if the scanner is in a specific lexical state, only expressions that
are preceded by the same named start condition can be
matched. We defined two lexical states for CleanJava, one for
parsing single line annotations (//@) and the other for parsing
multi-line annotations (/*@ … @*/). All CleanJava-specific
lexical rules including that of anything have CleanJava lexical
states as start conditions.

Once we define a parse node for the anything literal, we are
ready to add behavior to the node by writing new behavior
specification definitions. This can be done either declaratively
(attributes, equations, and rewrites) or imperatively (ordinary
Java field and method declarations). A behavior can be an AST
attributes like a type attribute or an ordinary method
declaration like the toString() method that define the parse
node API. A subclass inherits the behavior of all its
superclasses, and a superclass often forces its subclasses to
implement a certain behavior, e.g., defining attribute values.
For example, class AnythingLiteral extends class Literal, an
indirect subclass of class Expr defined in JastAddJ 4. JastAddJ
4 specifies a type attribute for Expr that has to be implemented
by all of its subclasses. Thus, to complete the implementation
of the AnythingLiteral node we need to define the value of its
inherited type attribute. We also need to implement a toString()
method that is used by the JavaPrettyPrinter frontend program
to print a normalized version of the literal. This behavior can
be implemented by adding a new set of intertype declarations
to a behavior specification file CleanJavaExpression.jrag that
contains intertype declarations related to CleanJava
expressions.

 eq AnythingLiteral.type() = unknownType();

public void AnythingLiteral.toString(StringBuffer s){

 s.append(" anything ");

 }

The above statements show two different types of intertype
definitions. The first one is a declarative definition containing
an equation for the type attribute of the AnythingLiteral class.
The second is an imperative definition that overrides the
toString() method inherited from the class ASTNode, the
ultimate superclass of all AST node classes; this method is for
pretty printing the parsed source code.

The type checking behavior for Java expressions is defined
by JastAddJ. The only necessary step is to specify the type of
the anything literal expression by assigning a value to the type
attribute. Since the anything literal can be of any type, we use a
special JastAddJ declaration type unknownType; this type acts
as a wildcard type during type checking, making the anything
literal assignment-compatible to any expression.

The last step is to add test cases. We add a new set of JUnit
test cases for AnythingLiteral to two different test suites. One
test suite includes test cases for checking syntax errors and the

5

other for checking static semantic errors like type errors. This
completes the implementation of the anything literal.

C. Implementation of CleanJava Features

The current version of CJC supports all the core features of
CleanJava language; core features are the basic features that
provide the foundation of CleanJava, and advanced features
like specification-only methods are built on top of the core
features. In this section we describe the implementation of
some of the supported features along with challenges that we
encountered.

1) CleanJava Annotations
As shown in Section II.A, there are two kinds of CleanJava

annotations: member-level annotations and statement-level
annotations. The first annotation is for annotating class
members like methods, and an example is an intended function
for a method. The second is for annotating a single statement
or a block of statements, and an example is an intended
function for a while statement appearing in a method body.
One interesting question is how to represent these two types of
annotations in an AST. The goal is to reuse the provided
framework code of JastAddJ as much as possible to reduce the
development time and effort and to have a more reusable and
maintainable implementation as well. Specifically we would
like to delegate most of static semantic checks like type checks
along with associated functions such as a symbol lookup to the
framework code that performs these for Java code. In JastAddJ,
an AST also plays the role of a symbol table, and we definitely
don’t want to duplicate it in our extension. Our solution is
intuitive and straightforward and is to define a CleanJava-
specific parse node as a subclass of the corresponding Java
parse node (see Fig. 4).

Fig. 4. AST nodes for representing member-level annotations.

We define a CleanJava-specific AST node CJMethodDecl
as a subclass of a framework node MethodDecl representing a
Java method declaration. The CJMethodDecl class represents a
Java method declaration with a CleanJava annotation, i.e., an
intended function for the method. Thanks to this subclassing, a
Java class declaration (ClassDecl) can now have method
declarations with (CJMethodDecl) or without a method
intended function (MethodDecl). Similarly, we introduce a new
AST node class, AnnotatedStmt, to represent a Java statement
with an annotation (see Fig. 5). It is a subclass of Stmt
representing a Java statement. Thus, a method body may
consist of Java statements with or without CleanJava
annotations.

Fig. 5. AST nodes for representing statement-level annotations.

A CleanJava AST node class such as CJMethodDecl
inherits features like name resolution and type checks from the
corresponding Java AST node class, thus it only needs to

implement CleanJava-specific features, e.g., type checking the
intended function. Our approach is also extensible in that if
CleanJava introduces a class-level annotation, e.g., a class
invariant [16], it can be easily accommodated in a similar
fashion by defining a CleanJava-specific new subclass of
ClassDecl.

Fig. 6. CleanJava expression.

2) CleanJava Expressions
CleanJava expressions consist of side-effect free Java

expressions and CleanJava-specific extensions (see Fig. 6).
Java expressions that have side-effects are not allowed in
CleanJava annotations. Examples of Java expressions that may
have side-effects are those expressions written using operators
with side-effects, e.g., the increment operator (++) and the
decrement operator (--), and those that invoke methods that
may have side-effects; only query methods are allowed in
CleanJava expressions. Examples of CleanJava extensions are
the anything literal, informal descriptions, and collection
operations and iterators (see below).

An interesting question is how to disallow Java expressions
with side-effects in CleanJava annotations. Our approach is to
recognize them during the lexical analysis phase of the
compilation. Specifically, we introduce a new scanning context
to exclude Java operators that are not allowed in CleanJava.
When the scanner sees one of the CleanJava annotation start
markers (//@ and /*@), it changes its scanning context to this
new context. Upon completion of scanning an annotation—i.e.,
when the scanner sees the corresponding annotation end
marker (end-of-line or *@/)—it switches its scanning context
to that of Java. We used JFlex’s lexical state mechanism to
implement our approach (see Section IV.B for lexical states).
We use the same approach to support various CleanJava-
specific keywords, operators, and symbols; they are recognized
as tokens only within a CleanJava lexical context, i.e., only
when parsing CleanJava annotations. One shortcoming of our
approach, however, is that it cannot detect side-effects caused
by invocations of mutation methods. This check may be done
during the static semantic analysis phase assuming that the
compiler can determine whether a method has a side-effect or
not at compile time (see Section V).

One interesting feature of CleanJava is that it allows one to
tune the level of formality in writing annotations. It is possible
to mix formal and informal texts in annotations by using a
facility called an informal description. An informal description
is any text enclosed in a pair of “(*” and “*)”. It can be used to
escape from formality in writing an intended function, as
shown below.

/*@ [cnt := cnt +

 @ (* occurrences of c in str starting at index i *)]
 @*/

Side-effect

free Java

expressions

Java

expression

e

CleanJava

expression

6

One interesting fact about the informal description is that it
is treated as an expression of any type. To be precise, its
context determines its type. For example, the type of the above
informal description is int, as it appears in a place where an int
value is expected. How to check type correctness of an
expression written using an informal description? If the type of
an informal description can be determined or inferred based on
its context of use, the expression is type correct; otherwise, it is
not. To implement this, we assign a special type unknown to an
informal description. It is a special type from JastAdd and acts
as a wildcard when performing a type check of an expression
involving values of unknown types.

3) Iteration Operators
In CleanJava, one can manipulate a collection of values by

using iteration operators, also called iterators for short. An
iterator can access or iterate over the elements of a collection to
manipulate them. Iterators are defined for collections stored as
Iterable objects, arrays, and strings, and some example iterators
are forAll, exists, select, and iterate. The following intended
function shows a typical use of an iterator:

The forAll iterator returns true if each element of the collection
satisfies the specified condition. Thus, the new value of ok is
true if every account contained in accounts has a positive
balance; otherwise, it is false. As shown, an iterator introduces
a local variable (acc) to denote the element being iterated over.
The scope of such an iterator variable is the body of the iterator
(e.g., a.balance() < 0). Also note that an arrow notation (e.g.,
account->forAll(…)) is used to invoke an iterator.

Among the various iterators the iterate operation is the
most powerful and general in that other iterators can be
expressed in terms of it. It has the form iterate(T1 x1, T2 x2 = E2;
B; E1), where T1 is the element type of the collection being
iterated over, T2 is the result type of this iterate operation, B is
an optional Boolean expression typically written in terms of x1,
and E1 is an expression of type T2 typically written in terms of
x1 and x2; local variables x1 and x2 are called an iterator and an
accumulator respectively. If B is omitted, it defaults to true.
Informally the meaning of this operation is as follows. Each
value of the collection is assigned to the iterator variable x1,
and if the condition B is true, the expression E1 is evaluated
and the result is stored in the accumulator x2. When all the
elements are iterated over, the value stored in x2 is returned as
the result. For example, the previous intended function can be
rewritten using the iterate operation as follow.

 An iterator poses several challenges in the implementation
of the CJC tool. One challenge is that it is an expression but
can have locally-scoped variables, i.e., an iterator and an
accumulator. One complication is that the local variables have
to be maintained in the symbol table during the parsing and
checking of the iterator body. There is no such a language
construct in Java, and thus the JastAddJ framework provides
no support for an iterator-like language construct. Semantically
an iterator behaves like a query method invocation in that it
returns a value. However, structurally it is different from a

method invocation, meaning that we can’t represent it using the
AST node class for a method invocation. Another challenge is
the extensibility requirement of the CJC tool. Iterators are one
particularly feature of the CleanJava language that is likely to
be changed in the future as the language is being refined. More
iterators are likely to be added, and the structure of the iterators
may be changed. Ideally, the iterator design and
implementation should accommodate such future changes
easily.

Fig. 7. AST node classes for iterators

Our solution to these challenges is to provide an extensible
framework of AST node classes for iterator-like constructs by
reusing JastAddJ framework classes as much as possible. Fig. 7
shows our design of iterator node classes. The common
features of all iterators are factored out and implemented in the
abstract class AbstractIterateOperator that extends the JastAddJ
framework class Access. The Access class is an abstract node
class representing a variable reference or a method invocation.
Defining the AbstractIterateOperation as a subclass of Access
allows us to treat an iterator invocation in a similar fashion as
we do a Java method invocation. However, one difference is
the existence of iterator variable declarations.

Structurally, an iterate operator is somewhat similar to a for
loop statement in that it has a set of local variable declarations
and a body expression. An iterate operator variable declaration
is similar to the loop variable declaration of a for loop
statement in that the scope of the variable is the body of the
iterate operator and the name of the variable should be unique
within its scope. As in Java, an iterator variable can shadow a
class field that can be accessed by using the keyword this. The
best way to handle an iterator variable declaration would be to
treat it as a Java local variable declaration by representing it
using the VarDeclaration node class. This would allow us to
maximize code reuse, as we don’t duplicate code for managing
the symbol table for iterator variables. However, one problem
is that the VarDeclaration class extends the node class Stmt
that represents a Java statement, and thus it cannot be
contained in an expression context such as an iterator
invocation. As shown, our approach is to use a
ParameterDeclaration node class instead. It has similar
behavior to a variable declaration but is not tied to a particular
type of AST nodes and thus can be used as part of any
expression. However, it requires some code duplication from
the VarDeclaration behavior specification, e.g., code for
checking variable initialization and duplicate declarations.

[ok := accounts->iterate(Account acc, boolean r = true;
 true; r && acc.balance() > 0)]

[ok := accounts->forAll(Account acc; acc.balance() > 0)]

7

The abstract class AbstractIterateOperator also implements
the default behavior for type checking. For example, the
receiver of an iterate operator must be of type Iterable or an
array. The type of the iterator variable must be assignment-
compatible to the element type of the receiver. If there is an
accumulator, its type must be compatible with the type of the
body expression.

A concrete iterator is implemented by creating a new AST
node class as a subclass of the abstract AbstractIterateOperator
class, adding parser and scanning rules, and creating specific
behavior for the iterator in the iterate operator module. As an
example, let us consider the exists iterator that tests if a
collection contains at least one element for which a given
condition is true. The exists iterator has the general form
exists(T x; B; E), where B is an optional Boolean expression,
and E is a Boolean-typed body expression. If there is any
element that makes both B and E true, the iterator returns true;
otherwise, it returns false. Its implementation requires
definitions of only two new equations or behaviors: one for
constraining the return type and the other for the type of the
body expression (E).

As shown in this behavior segment of code, the exists iterator
inherits the type checking logic of its superclass; e.g., the
checking of the optional Boolean expression (B) is performed
by the superclass.

4) Concurrent Assignments
In CleanJava, a concurrent assignment is used to write an

intended function. Structurally it is similar to a Java assignment
statement; however, semantically it denotes a mapping from
one program state to another. There are several variations of
concurrent assignments, e.g., simple concurrent assignments,
conditional concurrent assignments, splitting definitions, and
sequential composition. CJC supports all these different
concurrent assignment statements by organizing their AST
node classes into a class hierarchy (see Fig. 8 and Fig. 9). As
shown in Fig. 8, the common superclass of all these variations
is the AbstractConcurrentAssignment that extends the CJStmt
class. Below we describe our design of simple concurrent
assignments.

Fig. 8. Simple and conditional concurrent assignments.

A simple concurrent assignment is a concurrent assignment
statement that doesn’t have a condition. Semantically it denotes
a total function; there’s no constraint on the input state. To
specify a partial function, one uses a conditional concurrent
assignment that has conditions. The most commonly used
simple concurrent assignment has the form [L1, L2, …, Ln := E1,

E2, …, En], where Li and Ei are expressions. For the statement
to be well-formed, it has to satisfy the following conditions
which are checked by the CJC tool.

• Li’s and Ei’s are well formed.

• The number of Li’s is equal to the number of Ei’s.

• Each Li denotes a location, and the locations denoted

by Li’s must be different. This check is done by

looking up each Li location in the AST and keeping

track of the set of visited variable nodes.

• The type of Ei is assignment compatible to that of the

corresponding Li.

Fig. 9. Variations of simple concurrent assignments.

There are several variations allowed for the simple
concurrent assignment (see Fig. 9). For example, there are two
different semantic interpretations possible, value semantics and
reference semantics. The value semantics means that the new
value of Li is equivalent to Ei, and the reference semantics
means the Li now refers to, or is the same as, Ei. The values
semantics models the equals relation in Java and the reference
semantics models the object equality (==). In CleanJava, the
reference semantics is concretely denoted by the use of the
symbol @= instead of := in the assignment statement. In AST,
it is represented by the SimpleConcurrentAssignmentByRef
class that does additional checking for reference types. Another
variation is splitting the definition of a simple concurrent
assignment. For example, instead of writing [x, y, z := 1, 2, 3],
one can write [x := 1, y := 2, z := 3]. This is useful when
writing an intended function with a long definition that spans
multiple lines. The CJC tool combines the definitions and
performs type and static checks on the combined definition.
Yet another variation is a special statement called identity that
denotes no change in the state of a program. This function is
mainly used in the specification of a partial function using the
conditional concurrent assignment.

D. CJC Tools

The current CJC toolset contains several programs for the
CleanJava users and developers. The programs includes in the
toolset are a CleanJava checker, a pretty printer, and an AST
tree viewer.

• CleanJava checker. This is the main program of the

CJC toolset and performs static checks on a Java

program annotated in CleanJava. It runs on a

command prompt and behaves like a Java compiler

except that it doesn’t produce bytecode files.

Internally, it extends the JastAddJ framework class

FrontEnd that processes compilation arguments and

options such as input files and classpath. It invokes

the CleanJava parser that builds an AST from the

eq ExistsOperator.type() = typeBoolean();

public void ExistsOperator.typeCheck() {

 super.typeCheck();

 if (!getBody().getArg().type().isBoolean())

 error("Body must be a boolean expression");
}

8

input files and performs several static checks such as

type checking.

• Pretty printer. This program prints parsed source code

in the CleanJava presentation syntax and is mainly for

the developers. The presentation syntax is mainly for

human readers and the ASCII syntax is for the tools. In

the ASCII syntax, for example, CleanJava-specific

keywords like anything are preceded by the character

‘\’, e.g., \anything, as they can be valid Java identifiers;

note that in this paper we use the presentation syntax to

show CleanJava annotations. The pretty printer is

implemented by overriding the toString() methods of

AST node classes..

• AST viewer. This is another tool for developers and

displays or dumps the AST of the parsed source code.

V. EVALUATION AND DISCUSSION

We evaluated the checker using two different criteria:
extensibility and language coverage.

A. Extensibility

Extensibility is one of the key requirements of the CJC
toolset. The checker should accommodate the introduction of
new language features and also facilitate the creation of new
support tools like a proof checker. In addition to the
extensibility obtained by using the JastAddJ framework as the
base code, the checker also provides a built-in extension
mechanism for language features that are likely to be changed
or extended. For example, one can easily add a new collection
iterator, say the any iterator. The any iterator returns an
arbitrary element of a collection that satisfies a condition, and
it has the form any(T x; B1; B2), where B1 is an optional
Boolean expression and B2 is a Boolean-typed body expression
typically written in terms of the iterator variable x. Adding a
new iterator like the any iterator is straightforward. We need to
follow the JastAdd development cycle as follows.

• Step 1. Declare a new AST node class as a subclass of
the AbstractIterateOperator class (see Section IV.C.3).

AnyOperator: AbstractIterateOperator

• Step 2. Declare a new token any.

"any" { return sym(Terminals.ANYOP); }

• Step 3. Define a grammar rule for the iterator.

 Access iterate_access =

 iterate_receiver ANYOP iterate_body;

• Step 4. Define the behavior for the new AST node
class. Most static checks are already implemented in
the superclass, and we only need to define the type of
the new iterator and check the type of its body
expression as follows.

 eq AnyOperator.type() =

 getBody().getIterator().getTypeAccess().type();

 public void AnyOperator.typeCheck() {

 super.typeCheck();

 if (!getBody().getArg().type().isBoolean())

 error("Boolean body expected!");

 }

It still needs to be evaluated if the checker provides a
suitable base code for developing more advanced support tools
like a proof checker. However, we hope the extensibility
obtained by employing JastAdd as the underlying framework
has positive impacts.

B. Language coverage

The current version of the CJC tools (version 0.3.5)
supports most of the core features of the CleanJava language. It
supports 26 features out of 32 core features, thus giving 81% of
language coverage. It should be noted that the main focus of
the first version of CJC was to support the basic notation for
writing intended function, while providing mechanisms and
guidelines for creating future extensions. The unsupported
language features include statement-level annotations,
associating annotations with code sections, annotation labels
(e.g., f1 in f1: [x := x + 1]), and advanced features such as class
invariants, model methods, and user-defined functions .

C. Discussion

One of the challenges in constructing the CJC tools was
learning about and understanding the JastAddJ framework. The
initial work was done using JastAddJ 5 that lacked API
documents and support. For example, it was difficult to figure
out different aspect declarations needed to inherit behaviors
from various existing AST node classes. Without proper
documents, it was also difficult to know the purposes and
meanings of certain attributes and equations. Fortunately, the
arrival of JastAddJ 7 along with a new version of JastAdd in
2012 alleviated some of these difficulties. The newer version
provides improved APIs and better documents, and the
JastAdd community has increased and became more active
providing help to developers. Even with JastAddJ 7, however,
the learning curve is steep. It is a daunting task especially for a
beginning developer to figure out all the elements needed for
the construction of a new feature or extension. The framework
has 317 AST nodes with behaviors defined in many different
aspect files, about 230 parser rules, and 600 rule definitions in
four different components. This problem was partially
addressed with the inclusion of RagDoll in JastAddJ 7 that
creates API documents from AST node classes, listing
attributes and methods along with the locations of their
definitions. As our own solution to this problem we created the
JastAdd Specification Generator Framework (JASG) to
facilitate the creation of new component features and their
documents [9]. It allows one to create a new feature or
extension by completing XML templates. An included tool
parses a JASG XML specification and generates all required
JastADD specification files such as parser, scanner, AST, and
AST behavior. We used JASG not only for implementing the
iterate operators incrementally but also for generating the
scanner and parser APIs containing all the parser and scanner
rules from all the four different modules of the CJC extension.

The development of the CJC tools also made a contribution
to refining the CleanJava language. The actual construction of
the checker revealed several ambiguities and weaknesses in the
language. For example, we were able to identify an ambiguity
in composing different variations of the conditional concurrent
assignments. We also learned that there is no simple, modular
way to check the side-effect-freeness of an expression unless

9

the language provides a notation to state the side-effect-
freeness of a method; there are different approaches proposed
for checking side-effect-freeness of Java methods [10]. The
CJC tools development also contributed the design and
refinement of the ASCII syntax of the language.

VI. RELATED WORK

The development of CJC tools was inspired by other
language processing tools that faced similar challenges. One
such a tool is JAJML, a JastAddJ-based compiler for the Java
Modeling Language (JML) [11]. The main objective of JAJML
was creating an extensible JML compiler. According to case
studies [12] [13], the use of attribute grammars not only
facilitated the implementation of language extensions based on
JastAddJ but also proved to be more extensible than other
approaches, such as JML 4 [17] developed based on the
Eclipse Java Development Tools (JDT). However, one
downside mentioned is the uncertainty of JastAddJ regarding
its future support, especially new revisions of Java. At the time
of the case studies, for example, JastAddJ only supported Java
4 and 5 but not Java 6; the current version of JastAddJ supports
Java 7. One of the features that JAJML and CJC share is the
inclusion of program specifications or annotations inside Java
comments. The CJC tools adopted the approach of JAJML to
create scanner lexical states and recognize CJC-specific
terminals inside Java comments. The development of CJC not
only leveraged the findings of JAJML, e.g., fast and easy
creation of extensible compilers but also introduced language-
specific mechanisms for creating future extensions, e.g.,
abstract iterate operators and JASG templates [9]. JAJML also
showed how a JastAddJ compiler extension could be further
extended. For example, SafeJML is an extension of the JML
language that supports specification of safety critical Java
programs, and it was implemented as an extension to JAJML
by introducing new language constructs [14]

The AspectBench Compiler (ABC) is an extensible AspectJ
compiler created initially using Polyglot and Soot for the
frontend and backend respectively [15]. An alternate frontend
was later created as an extension of JastAddJ 4. One of the
main advantages of the JastAddJ frontend was the automatic
scheduling of attribute computations compared with polyglot’s
manual scheduling [3]. Other advantages of JastAddJ over
polyglot were the reduction of source code, increased speed,
and less compiler errors.

There are Java programs for supporting Cleanroom-style
functional program verification [18]. One program can even
perform a trace on a Java program with intended functions. It
looks like that a subset of Java expression syntax is used to
write intended function, but due to lack of documentation, we
were not able to know the exact notation for writing intended
functions. It is also unclear if the programs were designed with
future extensions in mind.

VII. CONCLUSION

We developed a CleanJava checker called CJC to help the
design and refinement of the CleanJava language and to
promote Cleanroom-style formal program development as well.
The CJC tool parses a Java program annotated with CleanJava
specifications and performs static checks such as type and

syntax checks. It’s our first effort toward constructing a suite of
support tools for CleanJava and hopefully provides base code
for more advanced tools like an automated verification tool.
Developing the CJC tool posed several interesting and
engineering challenges. The tool has to be sufficiently
extensible to not only facilitate the experimentation of various
language features but also support future language extensions.
It had to understand the Java syntax and process Java source
code because CleanJava specifications are embedded in Java
source code and written by referring to Java program elements
such as variables, fields, and methods; the CleanJava language
is an add-on to the Java language and its specifications are
checked and interpreted in the context of a Java program.

We presented our solution to the above challenges,
focusing on the design and implementation of the main features
of the CleanJava language. The keys to our solution are to use
an extensible Java compiler as a base platform for our
development and to provide a built-in extension mechanism for
language constructs and features that are likely to be refined
and changed in the future. The particular Java compiler
framework that we chose was JastAddJ and it supported
extensibility and avoided building a new Java compiler. The
particular features of JastAddJ that contributed to the
extensibility include an object-oriented modeling of AST node
classes and a declarative, aspect-oriented way of defining AST
behaviors. In addition to the built-in extension mechanism for
CleanJava constructs like iterators, we also developed an
XML-based CJC extension framework, called the JastAdd
Specification Generator Framework (JASG), to facilitate the
creation of new CJC extensions and their documents.

The current version (version 0.3.5) of the CJC tools
supports most of the CleanJava core language features and
includes a few front-end tools. The next step is to extend the
checker to a CleanJava compiler that generates Java bytecode.
This can be done by extending the JastAdd backend
component. A CJC backend will be useful to perform dynamic
or runtime verification, e.g., by injecting executable CJC
specifications into Java class files. Other future work includes
creating a CJC extension that computes a code function—a
function computed or implemented by a section of code—to
assist formal program verification, supporting runtime analysis
and verification, and integrating CJC with an IDE such as
Eclipse.

ACKNOWLEDGMENT

This work was supported by NSF grant DUE-0837567.

REFERENCES

[1] H. D. Mills, M. Dyer and R. Linger, "Cleanroom

Software Engineering," IEEE Software, vol. 4, pp. 19-25,

Septermber 1987.

[2] Y. Cheon, C. Yeep and M. Vela, "The CleanJava

Language for Functional Program Verification,"

International Journal of Software Engineering, vol. 5, no.

1, pp. 47-68, 2012.

[3] E. Torbjorn and H. Gorel, "The JastAdd Extensible Java

Compiler," ACM SIGPLAN Notices—Proceedings of the

2007 OOPLSA, vol. 42, no. 10, pp. 1-18, October 2007.

10

[4] E. Torbjorn and H. Gorel, "The JastAdd System—

Modular Extensible Compiler Construction," Science of

Computer Programming, vol. 69, no. 1-3, pp. 14-26,

December 2007.

[5] A. Stavely, Toward Zero Defect Programming, Addison-

Wesley, 1999.

[6] H. Gorel, "An Introductory Tutorial on JastAdd Attribute

Grammars," Generative and Transformational Techniques

in Software Engineering III, Lecture Notes in Computer

Science, vol. 6491, pp. 166-200, 2011.

[7] G. Klein, "JFlex: The Fast Scanner Generator for Java."

Available: http://jflex.de.

[8] A. Demenchuk, "Beaver: A LALR Parser Generator."

Available: http://beaver.sourceforge.net.

[9] C. Yeep, "JASG: JastAdd Specification Generator

Framework." Available: https://github.com/ceyeep/JASG.

[10] A. Rountev, "Precise Identification of Side-effect-free

Methods in Java," Proceedings of the 20
th

 IEEE

International Conference on Software Maintenance, pp

82-91, 2004.

[11] G. Haddad , "JAJML." Available:

http://sourceforge.net/apps/trac/jmlspecs/wiki/JAJML.

[12] G. Haddad and G. T. Leavens, "Extensible Dynamic

Analysis for JML: A Case Study with Loop Annotations,"

School of Electrical Engineering and Computer Science,

University of Central Florida, Orlando, FL, 2008.

[13] P. Chalin, P. R. James and G. Karabotsos, "An Integrated

Verification Environment for JML: Architecture and

Early Results," Specification and Verification of

Component-based Systems: 6th Joint Meeting of the

European Conference on Software Engineering and the

ACM SIGSOFT Symposium on the Foundations of

Software Engineering, New York, NY, 2007.

[14] G. Haddad, F. Hussain and G. T. Leavens, "The Design of

SafeJML, a Specification Language for SCJ with Support

for WCET Specification," Proceedings of the 8th

International Workshop on Java Technologies for Real-

Time and Embedded Systems, New York, NY, 2010.

[15] P. Avgustinov, A. Christensen, L. Hendren, et al., "abc:

An Extensible AspectJ Compiler," Transactions on

Aspect-Oriented Software Development, Springer, pp.

293-334, 2006.

[16] C. Avila and Y. Cheon, “Functional Verification of Class

Invariants in CleanJava,” Innovations and Advances in

Computer, Information, and Systems Sciences, and

Engineering, Lecture Notes in Electrical Engineering, vol.

152, Springer-Verlag, pp. 1067-1076, August 2012.

[17] A. Sarcar and Y. Cheon, “A New Eclipse-Based JML

Compiler Built Using AST Merging,” Second World

Congress on Software Engineering, Dec. 19-20, 2010,

Wuhan, China, pp. 287-292, IEEE Computer Society.

[18] G. J. Ferrer, "Tools for Cleanroom Software

Engineering," Available:

http://ozark.hendrix.edu/~ferrer/software/cleanroom.

[19] T. Parr and R. W. Quong, "ANTLR: a Predicated-LL(k)

Parser Generator," Software—Practice and Experience,

vol. 25, no. 7, pp. 789-810, July 1995.

[20] Free Software Foundation, “GCJ: The GNU Compiler for

the Java Programming Language”, November 2012,

Available: http://gcc.gnu.org/java.

[21] Oracle Corporation, “OpenJDK,” 2013, Available:

http://openjdk.java.net.

