Enhancing the Expressiveness of the CleanJava Language
Melisa Vela and Yoonsik Cheon

TR #13-33
June 2013; revised December 2013

Keywords: formal specification; functional programming; functional program verification; intended func-
tion; CleanJava.

1998 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Correctness proofs,
formal methods; D.3.2 [Programming Languages] Language Classifications — Applicative (functional)
languages; D.3.3 [Programming Languages] Language Constructs and Features — Classes and objects,
control structures, inheritance, polymorphism, functions; F.3.1 [Logics and Meanings of Programs]
Specifying and Verifying and Reasoning about Programs — Assertions, logics of programs, specification
techniques.

Department of Computer Science
The University of Texas at El Paso
500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Enhancing the Expressiveness of the CleanJava Language

Melisa Vela and Yoonsik Cheon
Department of Computer Science
The University of Texas at El Paso
El Paso, Texas, U.S.A.
smvelaloya@miners.utep.edu; ycheon@utep.edu

Abstract—The CleanJava language is a formal annotation
language for Java to support Cleanroom-style functional program
verification that views a program as a mathematical function
from one program state to another. The CleanJava notation is
based on the Java expression syntax with a few extensions, and
thus its vocabulary is somewhat limited to that of Java. This often
makes it difficult to specify the rich semantics of a Java program
in a succinct and natural way that is easy to manipulate for
formal correctness reasoning. In this paper we propose to make
the CleanJava language more expressive by supporting user-
defined mathematical functions that are introduced solely for the
purpose of writing annotations. A user-defined function is written
in a notation similar to those of modern functional programming
languages like SML and Haskell and has properties such as
polymorphism and type inference. We also explain how the notion
of functions fits in the object-oriented world of Java with concepts
like inheritance and method overriding. User-defined functions
not only enrich the vocabulary of CleanJava but also allow one
to tune the abstraction level of annotations. One contribution
of our work is bringing the notion of functions as found in
modern functional programming languages to an object-oriented
programming language in the context of writing annotations, thus
blending the benefits of two programming paradigms.

Keywords: formal specification, functional programming,
functional program verification, intended function, CleanJava.

I. INTRODUCTION

In Cleanroom-style functional program verification, a pro-
gram is viewed as a mathematical function that maps one
program state to another, and a correctness proof of a program
is performed by comparing two mathematical functions, the
function implemented by the program, called a code function,
and its specification, called an intended function [1] [2] [3].
The CleanJava language is a formal notation for annotating
a Java program with intended functions and proving its cor-
rectness [4] [5]. It is an add-on notation to the Java language
in that annotations like intended functions are written using
Java program elements such as variables, fields, and methods.
The CleanJava notation is based on the Java expression syntax
with a few CleanJava-specific extensions such as mathematical
structures (e.g., sets and sequences) and specification-only
methods (see Section II-A). CleanJava promotes the use of
more formal program comments for rigorous or formal cor-
rectness reasoning of Java programs.

Functional programming languages such as SML [6] and
Haskell [7] are based on and mimic mathematical functions
to the greatest extent possible. A functional program is simply
an expression written in terms of functions, and executing the
program means evaluating the expression. They not only have

a solid theoretical basis but also are closer to the user by
providing a higher level of abstractions. One key feature of
functional programming languages is referential transparency,
meaning that the evaluation of a function always produces
the same result given the same parameters. This is due to
the side-effect-freeness of functions and greatly facilitates the
correctness reasoning of a program. Functional languages also
support other interesting features like a lambda notation and
higher order functions.

Since a functional program verification technique views a
program as a mathematical function, it is quite natural to
consider adopting functional programming language notations
for specifying the behavior of a program. In this paper we
propose to enhance the CleanJava notation by extending it
with concepts and notations available from modern functional
programming languages. In particular, we propose notations
for defining mathematical functions and manipulating math-
ematical structures like sets and sequences for the purpose
of writing CleanJava annotations. The semantics of the new
notations are defined semi-formally by translating them to
the CleanJava standard notation. At the semantic level, for
example, a function is interpreted as a query method available
only for writing annotations. The proposed notations allow one
to formulate problem or domain concepts in a more natural
and abstract fashion, and the resulting annotations are not only
more concise and understandable but also better manipulatable
for formal correctness reasoning.

The remainder of this paper is structured as follows. In
Section II below we provide a quick overview of CleanJava
and functional programming by focusing on the features that
will be used in this paper. In Sections III and IV we first
state the problem of the CleanJava language in supporting
a user-defined vocabulary for writing annotations and then
describe main challenges in introducing a functional notation
to CleanJava. In the next two sections, we propose and
illustrate new notations for writing mathematical functions
(Sections V) and manipulating mathematical structures like
sets and sequences (Section VI). In Section VII we apply
our proposed notation to an example, and in Section VIII we
conclude this paper along with discussions of some aspects of
our notations.

II. BACKGROUND
A. The CleanJava Language

The CleanJava language is a formal annotation language
for Java to support Cleanroom-style functional program ver-

//@ [n > 0 — result := crList(1,n)—select(int x; n % x == 0)]
public List<Integer> factors(int n) {
/l@ [r, i := new ArrayList<Integer>(), 1]
List<Integer> r = new ArrayList<Integer>();
inti=1;

/%@ [r, i := appendAll(r, crList(i,n)—select(int x; n % x == 0)),
@ anything] @x/
while (i <=n) {

10 /@ [n%i==0—r,i:=append(r,), i+ 1|true — i:=i+ 1]
1 /l@ [n % i ==0 — r := append(r,i) | true — I]

12 if(n%i==0){

13 //@ [r := append(r,i)]

14 r.add(); }

15 /1@ [i:=1i+ 1]

16 i++; }

18 //@ [result := 1]
19 returnr; }

21 /+@ public List<Integer> crList(int i, int j) {
2 @ List<Integer> r = new ArrayList();

23 @ for (int k = i; k <= j; k++) { r.add(k); }
2 @ returnr; } @x/

% /+@ public List<Integer> append(List<Integer> I, int i) {
27 @ List<Integer> r = new ArrayList(l);

28 @ r.add(i);

29 @ returnr; } @/

31 /x@ public List<Integer> appendAll(List<Integer> 11,
List<Integer> 12) {

List<Integer> r = new ArrayList(l1);

r.addAll(12);

return r; } @x/

BESEKS)

Fig. 1. Sample Java code annotated in CleanJava

ification [5]. In CleanJava, intended functions are written
using concurrent assignments of the form [z, s, ...
€1,€,...,ey] stating that the new values of state variables
z;’s in the output state are those of the expressions e;’s
simultaneously evaluated in the input state. If a state variable
doesn’t appear in the left hand side, its value is assumed to
remain the same. The expressions e;’s in the right hand side
are written in the Java expression syntax with a few CleanJava-
specific extensions.

Figure 1 shows a Java code snippet annotated in CleanJava.
The code calculates all the factors of a given positive number,
and each section of code is annotated with an intended
function. In CleanJava, an annotation is written as a special
comment, either preceded by //@ or enclosed in /*@ and
@*/, and precedes the section of code that it annotates. For
example, the annotation in line 1 is the intended function for
the whole factors method, and line 3 annotates the code in
lines 4-5; as shown, an indentation is used to associate an
intended function with code that spans more than one line.
The intended function in line 1 uses several CleanJava features.
It specifies a partial function using an extended form of the
current assignment notation called a conditional concurrent
assignment. The condition preceding the arrow symbol (—)
defines the domain of the function, thus specifying a partial
function. The factors method is defined only for a positive
value of n. As mentioned earlier, an intended function is writ-

y Ly, 1=

ten in the Java expression syntax with a few CleanJava-specific
extensions. For example, the keyword result denotes the return
value of a method, and the select operation is an “iterator”
defined for a collection to select elements. This particular
select expression selects all the elements of the collection
crList(1,n) that can divide n evenly; note that an arrow notation
(—) is used for an iterator to disambiguate it from a Java
method invocation. The method crList defined in lines 21-24
is an example of a specification-only method, a method solely
introduced for the purpose of writing intended functions. The
example defines two more specification-only methods in lines
26-35, and all specification-only methods should be side-effect
free. The annotations in lines 10-11 shows another feature
of CleanJava. They specify different functions depending on
conditions; each conditional concurrent assignment specifying
a different function is separated by a vertical bar symbol (]),
and the / symbol denotes an identity function that doesn’t
change the program state.

B. Functional Programming

Functional programming is a programming paradigm where
function definitions are the basic components of programs.
Modern functional programming languages like SML [6] and
Haskell [7] are purely functional in that they contain no
imperative constructs like variables, states and statements.
They allow programmers to write concise code by providing
language constructs and features of a higher level of abstrac-
tions, such as powerful type systems, type inference, recursive
functions, high-order functions, lambda notations, and lazy
evaluation. These make the functional programming paradigm
a very powerful programming style. In Haskell, for example,
the factors function can be defined as follows.

factors n = fromTo 1 n where
fromTo y y = [y]
fromTo x y = (if mod n x == 0 then [x] else []) ++ fromTo (x+1) y

The where clause introduces local definitions—e.g., a helper
function fromTo—and [] and ++ denote a list and a list con-
catenation operation, respectively.

In most functional languages, lists are one of the most
common ways to structure data, and in fact they are the central
part of the language. In Haskell, for example, one can use
a list comprehension notation to express the factors function
succinctly as: factors n = [x|x < [1..n], mod n x == 0]

Another key feature of functional programming languages
is the elimination of side effects. There is no variable, no
assignment statement, and thus no side effect. This feature
makes it easier to reason about correctness of programs. It
supports referential transparency, meaning that a function
always returns the same result when applied to the same
values. In reasoning, this means that a function application
can always be replaced with its definition with an appropriate
renaming of parameters, thus supporting the inference rule
“substitution of equals for equals”.

III. THE PROBLEM

The notation of CleanJava is based on the Java expression
syntax in that CleanJava expressions are Java expressions
with no side effect. This makes the CleanJava language more
approachable to Java programmers. However, one downside of
this approach is that the vocabulary for writing annotations is
limited to that of Java. Besides, the Java vocabulary—e.g., pro-
gram variables and methods—is implementation-oriented and
thus is of algorithmic nature focusing on the “how” aspect of
a program. Such a vocabulary is often not suitable for writing
specifications. For writing intended functions, preferred is one
focusing on the property or “what” aspect of a program, e.g.,
a term stating all the factors of a number or the property of
one number being a factor of another, not the algorithm for
or the calculation of factors.

The designers of the CleanJava language already recognized
the need for problem or domain-specific vocabulary of a
higher-level of abstractions and in fact provided CleanJava-
specific extensions to the Java expression syntax, including a
mathematical toolkit for sets and sequences and specification-
only methods. As shown in the previous section, specification-
only methods allow one to define and build one’s own
problem-specific vocabulary for writing intended functions
without polluting the Java name space. To annotate the factors
method, for example, we defined several new terms like crList,
append, and appendAll that can be used only in annotations,
not in Java code. They enrich the vocabulary for writing
intended functions.

However, there are also shortcomings in using specification-
only methods to build one’s own vocabulary for writing
intended functions. The shortcomings are mainly caused by
the use of the Java method declaration syntax; remember that
specification-only methods are Java methods declared inside
annotations. The meanings of new terms like crList have to
be defined algorithmically as a sequence of Java statements.
The resulting annotations tend to be verbose, long and often
less readable and understandable. In the code snippet of the
previous section, for example, there are 22 lines of annotations
out of 35 lines of source code, and thus 63% of source code are
annotations. More than half of the annotation lines (59%) are
for defining new terms, i.e., three specification-only methods.
A more serious problem than the verboseness and understand-
ability is that intended functions written using specification-
only methods are less manipulatable for formal reasoning.
This is again due to the algorithmic definition of a term.
One of the key strengths of functional program verification is
its support for equational reasoning by allowing “substitution
of equals for equals”. In reasoning using intended functions,
for example, one can replace a function application with its
definition. However, this is not possible for specification-
only methods. For example, one cannot replace or expand
the expression crList(1,n) with the crList’s definition because
its definition is a Java code block, i.e., a sequence of Java
statements.

An ideal notation would be one that allows one to build

one’s own vocabulary for writing intended function succinctly
and that supports equational reasoning. One possibility would
be to use mathematical functions defined in the style of pure
functional programming languages like SML and Haskell. In
fact, this idea has arisen at an early stage of the CleanJava
language design [8] [5], and it has been used informally
in an ad-hoc fashion when writing sample annotations or
performing case studies [9] [10]. However, the idea still
needs to be fully realized by considering its implications to
the whole CleanJava language and by defining its precise
syntax and semantics. Lack of a formal definition leads to
not only confusions and inconsistency in using the notation
but also lack of tool support; e.g., the current version of the
CleanJava checker doesn’t support a notation for user-defined
mathematical functions yet [11].

IV. CHALLENGES

There are several challenges in introducing a functional
notation to the CleanJava language, and they are mainly due to
the fact that it requires blending of two different programming
paradigms. Some are simply syntactic or notational challenges
while others are more of semantic nature. The notations of
modern functional programming languages like Haskell and
SML are different from that of Java. They provide more
succinct and powerful notations for defining functions and
writing expressions. For example, the type information of a
function such as the argument types and the return type may
be omitted from a function definition, as it is automatically
inferred by the system, and a list can be constructed and
expressed in a notation similar to the form of the mathematical
set compression. In Java, however, a method signature has
to be explicitly and completely specified, and there’s no
language construct similar to the set comprehension notation.
On the semantic side, the main challenge is blending the
concepts of functions and immutable values (e.g., lists) to the
object-oriented conceptual framework of the Java program-
ming language. For example, how does the notion of functions
fit in the Java’s conceptual framework of objects, classes,
methods, inheritance, overriding, and dynamic binding, etc.?
Are functions defined for objects and classes, and if so, can
they be inherited by or overridden in subclasses?

As stated above the main challenge of our work is to
make the notion of functions fit in the Java’s object-oriented
conceptual framework and notation. The key to our solution is
to view a function as a specification-only method written using
a Haskell-like functional notation. In other words, a function
is sort of a syntactic sugar for defining a specification-only
method in a more succinct, natural, and easy-to-manipulate
way. To address the notational challenges, we tried to strike
a balance between the succinctness and the Java-likeness of
newly introduced notations. For this we make several parts of
a function definition optional by either adopting defaults for
or inferring the missing parts. In the following several sections
we describe and illustrate our approach in detail by focusing on
mathematical functions and a set comprehension-like notation.

(CIStmt) = {(fun-decl) | ...

(fun-decl) = (fun-header) ‘=" {CJExpr)

(fun-header) ::= ‘fun’ [type] (ident) * (" [(param-list)])’
(param-list) = (param) | (param) ,’ (param-list)
(param) = [(type)] (ident)

Fig. 2. Syntax for defining functions. An optional part is enclosed in square
brackets.

V. MATHEMATICAL FUNCTIONS
A. Basic Notation and Semantics

Figure 2 shows our proposed, basic syntax for defining
mathematical functions in CleanJava. A function declaration
denoted by a non-terminal (fun-decl) is introduced as a
new kind of CleanJava statements; the non-terminal (CJStm)
represents all types of CleanJava statements [11]. A function
declaration consists of a header and a body, and the body is
simply a CleanJava expression (refer to [11] for CleanJava
expressions). Note that the specification of the parameters and
return type in the header is optional. Below is an example
function declaration with the type information fully specified.

//@ fun int abs(int x) = x >=0 7?7 x : —x

As hinted in the previous section, a function is interpreted as
a specification-only method. This semantic interpretation has
some nice consequences. There is no need to define a new syn-
tax for applying functions, as the existing method invocation
syntax (e.g., abs(-10)) will work. More importantly, a function
declaration can be viewed as a syntactic sugar or a shorthand
notation for defining a specification-only method. This means
that there is no need to extend the Java’s conceptual framework
to support the notion of functions and associated features.
As we will describe below, most features of functions can
be nicely mapped to those of specification-only methods. For
example, the above function can be desugared to the following
specification-only method.

//@ public int abs(int x) { return x >=0 ? x :

—x; }

If a parameter type or the return type is omitted, it is inferred
at the compilation time. For example, if omitted, the return
type of the abs function can be inferred from the type of the
parameter x and x’s use (e.g., —x) in the body expression.

A function declaration oftentimes defines a polymorphic
function, a function that can be applied to values of different
types. This is done by omitting the parameter types. If the
type of the parameter x is omitted from the definition of
abs, for example, the abs function can now be applied to
different types of numbers such as Integer, Float, and Double.
A polymorphic function is interpreted as a generic method
(see below), and the most specific type (e.g., Number) will be
inferred for a type parameter (e.g., T).

//@ fun abs(x) =x >=07?x: —x

/%@ public <T extends Number> T abs(T x) {
@ returnx >=0?x:—x; } @/

B. Static Functions

A function is either static or non-static. By default, all
functions are non-static in that they are interpreted as, or
mapped to, non-static specification-only methods. A non-static
function can refer to non-static members of the class, such as
instance fields and methods. As in Java, one can also define a
static function by using a modifier “static” as follow.

//@ static fun int abs(int x) = x >=0? x : —x

A static function is of course mapped to a static
specification-only method, and thus its definition cannot refer
to non-static members such as instance fields and methods. A
static function can be used only in a static context such as a
static method and a static initialization block.

C. Inheritance of Functions

Since functions are members of classes, they can also have
visibility and be inherited by subclasses. All functions are
by default “public” functions. This is a slight deviation from
Java in which fields and methods default to package-visible.
However, we believe this is a good design because most
functions are likely to be introduced for a public use. One
can also define non-public functions by using modifiers like
protected, private, and package; note that package is a new
modifier that we propose specifically for CleanJava.

Since functions are mapped to specification-only methods,
public or protected functions are inherited to subclasses, and
subclasses can override inherited functions. If functions are
overridden in subclasses, the functions to be applied are
determined based on the dynamic type of the receiver; that
is, functions are dynamically dispatched.

D. Abstract and Interface Functions

Just like specification-only methods, functions can be de-
clared to be abstract by using the abstract modifier. An abstract
function allows one to defer its definition to subclasses by
omitting its body expression. It provides a way to write some
high level or incomplete specifications that will be fleshed out
by subclasses by leaving out certain details to be defined by
subclasses.

A function can also be defined in an interface, for example,
to specify the behavior of an interface method. This however
causes a problem that Java avoided avidly. A function can be
inherited multiply, e.g., one from the superclass chain and the
other from the interface chain. This should be avoided because
if it happens its meaning is undefined.

E. Local Functions

It is possible to introduce a locally-scoped function. For
example, in addition to functions declared at the class mem-
ber level, termed member functions, one can also introduce
functions at the statement level, termed statement functions.
A statement function is mainly for limiting the scope of a
function to a single method body or a block of statements. It
is also possible to define a function whose scope is a single
CleanJava expression or statement (e.g., an intended function)

(CJExpr) = {(col-expr) | ..

(col-expr) = [[‘new’] (type} “{* {col-body) ‘}’
(col-body) = (val-enum) | (val- seq)

(val-enum) = (CJExpr) | (CJExpr) *,’ (val-enum)
(col-seq) = (CJExpr) [*,’ (CJExpr)] “..” (CJExpr)

Fig. 3. Syntax for defining collection literals

using the “where” clause. The following code snippet shows
three statement functions: sum in line 1 with the whole code
block as its scope, sumH in line 2 with a single CleanJava
expression as its scope, and sumAll in line 4 with a single
CleanJava statement as its scope.

1 /@ fun sum(a, 0) = sumH(a, 0, 0) where

2 @ fun sumH(a, i, s) =i >= a.length ? s : sumH(a, i+1, s+a[i]) @%/
3

4 //@ [r := sumAll(a)] where fun sumAll(a) = sum(a, 0)

5 /1@ [r,i:=0,0]

6 r=0;inti=0;

7
8

/l@ [r, i:=r + sum(a, i), anything]
9 while (i < a.length) {

10 /1@ [r,i:=r+ali], i+ 1]
1 r=r+ ali];

12 i++;

13 }

VI. COLLECTIONS

Mathematical structures such as sets and sequences play an
important role in specifying and verifying the behavior of Java
program modules, as Java classes can be frequently modeled
as sets or sequences. In fact, CleanJava already provides
abstractions of these mathematical structures including sets,
bags, sequences, and mappings [5]. These standard library
classes define operations similar to those of Java collection
classes. However, since these classes are intended for use in
writing annotations, they are all immutable types; there is no
method for changing the state of an object. For example, an
add method creates and returns a new collection object instead
of mutating the receiver object. In this section, we propose a
new notation for creating and manipulating these mathematical
structures. Our key approach is to map these mathematical
structures to the standard CleanJava library classes by treating
the new notation as a syntactic sugar and by desugaring it to
the standard CleanJava notation.

A. Collection Literals

In CleanJava, there is no direct language construct for
expressing collection literals. One has to represent a collection
literal indirectly by defining a specification-only method (as
done in Section II-A) or using a CleanJava standard library
method such as fromArray, e.g., CJSet.fromArray(int[] {10,
20, 30}). We propose a new language construct to express a
collection literal directly (see Figure 3), and below are shown
some example collections literals specified in the new notation.

CJSet<Integer>{10, 20, 30, 40, 50}
{10, 20 .. 50}
{7 » ’Z,}

(col-body) = (val-comp) \

(val-comp) = (CJExpr) ‘|’ (var decls) [*;” (CJExpr)]
(var-decls) = (var-decl) \ <var-decl> ¢, (var-decls)
(var-decl) = [(type)] (ident) * (CJExpr)

Fig. 4. Collection comprehension notation

—

As shown, a collection literal can be expressed by either
enumerating all its element values or specifying an interval
for ordinal element values. An interval of values is specified
by a pair of values, start and end values, separated by two dots
(..); an optional step that defaults to 1 can also be specified
after the start value. It denotes a collection of consecutive
values starting at the start value and ending at the end value.
The type of a collection literal is optional. If it’s not specified,
it defaults to CJSequence<7">, where T is the element type;
CJSequence is a CleanJava standard library class representing
an immutable sequence of values [5]. If specified, it should be
one of the CleanJava standard collection classes or implement
the java.util.Collection interface. The type of all the elements
must be the same.

B. Collection Comprehension

A collection is often created based on existing collections.
For this, we propose a collection comprehension, a construct
similar to a mathematical set comprehension notation. For
example, a collection {3z + 1|z € S Az > 0} is written
in our proposed notation as:

{3*xx +1 | x:=S;x > 0}

Figure 4 shows the complete syntax of our proposed col-
lection comprehension notation. A collection comprehension
consists of three parts: an expression, generators, and an
optional predicate. The result expression (e.g., 3*x + 1) that
produces the elements of the collection is typically written
in terms of generators (e.g., x). Each generator is associated
with a collection (e.g., x with S) that provides the values for
the generator. The optional predicate filters the values of the
generators. The result collection is obtained by evaluating the
expression using generator values that satisfy the predicate.

The semantics of a collection comprehension can be defined
more formally by translating a comprehension to a standard
CleanJava expression using a collection iteration operation as
follows.

{E | z1:=C1, 22 :=Co, ..., xp = Cp; B} =
Chr—iterate(Ty z1, Te 71 = {};
r1 =711 U Cp—iterate(Ty z2, Te 72 = {};

mrn,l =rp_1 U Cp_1—iterate(Ty, xn, Te mn = {};
T =10 U(B? {E} : {})))

where T; is the element type of C;, T, is the type of Ci,
and the U symbol denotes a collection operation adding
all the elements of the second collection to the first. The
iterate operation allows one to iterate over and manipulate the
elements of a collection while accumulating the result (refer

/l@ fun factors(m,n) = {x | x := {m..n}; n % x == 0}

1
2
3 //@ [n > 0 — result := factors(1,n).asList())

4 public List<Integer> factors(int n) {

5 //@ [r, i := new ArrayList<Integer>(), 1]

6 List<Integer> r = new ArrayList<Integer>();
7 inti=1;

8

9

/%@ fun concat(l, s) = {x | x := 1}.addAll(s).asList()

11 /1@ [r, i := concat(r, factors(i,n)), anything]
12 while (i <=n) {

13 /1@ [n % i==0—r,i:=concat(r,{i}), i+ 1 | true — i:=1i+1]
14 /l@ [n % i==0 — r:= concat(r,{i}) | true — I]

15 if(n%i==0)

16 //@ [r := concat(r, {i})]

17 r.add(); }

18 /1@ [i =1+ 1]

19 i++; }

21 //@ [result := r]
2 return r; }

Fig. 5. Revised sample Java code

to [5] and [11]). For example, the above comprehension is
translated as follows, where T is the type of S.

{3%x + 1| x:=8;x >0}
= S—iterate(int x, 7' r = T'{};
r =raddAll(x > 0 ? T{3%x + 1} : T{}))
= S—collect{int x; x > 0; 3*x + 1}

As shown, if there is only one generator, the translation can
be simplified by using the collect operation.

A collection comprehension can have more than one gen-
erator. The following comprehension, for example, has two
generators (X and y) and produces a sequence consisting of
sums of the pairs from two sequences, i.e., {11, 12, 21, 22,
31, 32}.

‘ {x +y|x:={10,20,30}, y = {1, 2}}

As shown in this and previous examples, the type of the
collection may be omitted, which defaults to that of the
collection associated the first generator.

VII. EXAMPLE

In this section we apply our proposed notation to the factors
example in Section II-A. Figure 5 shows the example with
intended functions written using the new notation. As shown,
all the specification-only methods were got ridden of and
instead introduced were two functions, a member function in
line 1 and a statement function in line 9. The factors function
in line 1 returns a sequence of numbers, consisting of factors of
n that are larger than or equal to m. The concat function in line
9 concatenates a list and a sequence and returns the result as a
list; the asList method is defined for the CleanJava collection
library classes such as CJSequence. Both functions are defined
using collection comprehensions. Several intended functions
are now re-written using these two mathematical functions.

Are the new annotations better than the original ones? The
annotations are now more concise and compact. They require
a 55% less number of source code lines, occupying only 10
lines compared to 22 lines in the original example. Note that
the number of the intended functions are the same, but the
new annotations require only two lines for defining a new
vocabulary (two mathematical functions) while the original
require 13 lines for three specification-only methods. The
new annotations are more abstract and understandable, as
they are expressed using a vocabulary for the problem or
domain concepts. For example, the factors function defines
what factors are without concerning how they are calculated.
The annotations are more manipulatable in formal reasoning.
A function application can be replaced with its definition. In
reasoning, for example, the term factors(I,n) appearing in the
intended function in line 3 can be replaced with or expanded
to {z|x:={l.n}; n%ax ==0}.

VIII. DISCUSSION

The example in the previous section also shows several
aspects of our proposed notation that could be further im-
proved. The notation requires an explicit conversion between
different collections types, especially between CleanJava and
Java collections. For example, the factors function in line
1 produces an instance of CJSequence<Integer>, and the
result sequence has to be converted to List<Integer> in line
3 for an assignment to the result pseudo variable (of type
List<Integer>). The other direction of conversion is shown
by the concat function in line 9 that takes a list (/) and a
sequence (s) and returns a concatenated list. The function is
defined as {z |z := [}.addAll(s).asList(), and the whole
purpose of the comprehension subexpression is to convert the
list to a sequence to invoke the addAll method; note also
that the sequence is eventually converted back to a list. The
reason for these conversions is to manipulate collections in
annotations by calling various library methods defined in the
CleanJava collection classes. We are currently looking into this
issue by considering several possible solutions, and an ideal
solution would be to make all these conversions take place
automatically. One possibility is to introduce a type coercion
operator, say, e : 1', where e is a collection expression and 7" is
a collection type. Its meaning can be defined by translating it
to a collection iterator as: e—iterate(T, =, T r = {};r =
r.add(x)). Another possibility is to have an implicit type
conversion rule between Java collections and CleanJava col-
lections. For a Java-to-CleanJava conversion we already have
the CleanJava iterator notation, e.g., l—addAll(s) meaning
that [is first converted to a CleanJava collection and then the
addAll method is invoked. For a CleanJava-to-Java conversion
we can use the context of a collection expression to perform
an automatic conversion. If a CleanJava collection appears
in a context where a Java collection is expected, we can
automatically translate it to e : T', where T is a Java collection
type required by the context.

Another improvement possible is to provide a set of col-
lection manipulation operators. As in Haskell, for example,

we may introduce an infix collection concatenation operator,
say ++, to write an expression like | ++ s, which is short
for I—addAll(s). This may be a useful feature considering
that collections like sets and sequences play an important
role in writing model-oriented specifications. A good starting
place would be the mathematical tool kit of other specification
languages, e.g., Z specification language [12].

There are several other features of functional programming
languages that we are currently investigating for an adoption
in the CleanJava language, including higher order functions,
lambda notations, and more concise function definition no-
tations (e.g., pattern matching and splitting definitions). For
example, a higher-order function allows one to write a reusable
and flexible function by either taking functions as parameters
or yields a function as its result, or both, and a lambda
notation allows one to express a function on-the-fly in the
spot where needed without defining it in a separate declaration
statement. We believe the reusability and flexibility offered by
these language constructs make the CleanJava language more
expressible and usable. However, one concern is how to map
these concepts to the Java’s object-oriented conceptual frame-
work. One possibility would be to use a functional interface—
any interface that has exactly one explicitly declared abstract
method—as done in the recent proposal of lambda expressions
in Java 8 [13]. That is, a functional interface can be used for
a method parameter when a lambda is to be supplied as the
actual argument. Thus, a higher order function is simply a
function whose parameter types or result type are functional
interfaces. We may also adapt the lambda expression notation
of Java 8 for expressing a lambda function in CleanJava.

There are two places that the design of our notation deviates
from Java’s language rules. One is the default visibility of a
member function. In Java, when a class member such as a field
or method has no modifier, it defaults to package-private. For
a member function, however, we decided to make the default
be public; for a package visible member function, one has
to declare it explicitly by using a new package modifier. We
believe this is a good design, as we think a member function
is most likely to be introduced for a public use. However, this
still needs to be validated, for example, through case studies.
Another deviation is the possibility of multiple inheritance for
member functions by allowing them to appear in interfaces.
This is something we cannot avoid, as interfaces are an ideal
place to write interface specifications, i.e., specifications for
abstract methods declared in interfaces.

IX. SUMMARY

In this paper we reported a preliminary design of our
extended CleanJava notation for defining mathematical func-
tions and manipulating mathematical structures like sets and
sequences. Our motivation was to provide a more concise
and richer notation for defining a problem or domain-specific
vocabulary for writing CleanJava annotation by adopting con-
cepts and constructs from modern functional programming
languages such as SML and Haskell.

We are currently performing more realistic case studies to
evaluate our proposed notation. As thus, we don’t have a
critical evaluation yet, but one nice thing about our approach
is that we map the concept of functions nicely to existing
concepts of CleanJava and Java. A function is essentially a
specification-only method in CleanJava—and thus an observer
method in Java—defined in a more succinct mathematical
notation that is more understandable and more manipulatable
as well in formal reasoning. The semantics of our notation
is also defined by translating it to the standard CleanJava
language.

ACKNOWLEDGMENT
This work was supported by NSF grant DUE-0837567.

REFERENCES

[11 S.J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore, Cleanroom
Software Engineering. Addison Wesley, Feb. 1999.

[2] A. Stavely, Toward Zero Defect Programming. Addison-Wesley, 1999.

[3] Y. Cheon and M. Vela, “A tutorial on functional program verification,”
Department of Computer Science, The University of Texas at El Paso,
Tech. Rep. 10-26, Sep. 2010.

[4] Y. Cheon, “Functional specification and verification of object-oriented
programs,” Department of Computer Science, The University of Texas
at El Paso, 500 West University Ave., El Paso, TX, 79968, Tech. Rep.
10-23, Aug. 2010.

[5]1 Y. Cheon, C. Yeep, and M. Vela, “The CleanJava language for functional
program verification,” International Journal of Software Engineering,
vol. 5, no. 1, pp. 47-68, Jan. 2012.

[6] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of
Standard ML. The MIT Press, 1997.

[71 G. Hutton, Programming in Haskell. Cambridge University Press, 2007.

[81 Y. Cheon, C. Yeep, and M. Vela, “CleanJava: A formal notation
for functional program verification,” in ITNG 2011: 8th International
Conference on Information Technology: New Generations, April 11-13,
2011, Las Vegas, NV. IEEE Computer Society, 2011, pp. 221-226.

[9] C. Avila and Y. Cheon, “Functional verification of class invariants in
CleanJava,” in Innovations and Advances in Computer, Information,
Systems Sciences, and Engineering, ser. Lecture Notes in Electrical
Engineering, vol. 152. Springer-Verlag, Aug. 2012, pp. 1067-1076.

[10] Y. Cheon and C. Avila, “Constructing verifiably correct Java programs
using OCL and CleanJava,” Department of Computer Science, The
University of Texas at El Paso, 500 West University Ave., El Paso,
TX, 79968, Tech. Rep. 13-15, Feb. 2013.

[11] C. Yeep and Y. Cheon, “CJC: an extensible checker for the CleanJava
annotation language,” Department of Computer Science, The University
of Texas at El Paso, 500 West University Ave., El Paso, TX, 79968,
Tech. Rep. 13-29, May 2013.

[12] J. M. Spivey, The Z Notation: A Reference Manual, ser. International
Series in Computer Science. New York, NY: Prentice-Hall, 1989.

[13] Oracle, “JSR 335: Lambda expressions for the Java programming
language,” 2012, date retrieved: May 16, 2013. Available from
http://Jjcp.org/en/jsr/detail?id=335.

