

Finding Specifications of While Statements

Using Patterns

Aditi Barua and Yoonsik Cheon

TR #13-67

November 2013

Keywords: code pattern, functional program verification, intended functions, program specification,

specification pattern, while statement.

1998 CR Categories: D.2.1 [Software Engineering] Requirements/Specificationslanguages; D.2.4

[Software Engineering] Software/Program Verificationcorrectness proofs, formal methods; D.3.3

[Programming Languages] Language Constructs and Featurescontrol structures; F.3.1 [Logics and

Meanings of Programs] Specifying and Verifying and Reasoning about Programslogics of programs,

specification techniques.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

1

Abstract—A formal correctness proof of code containing loops

such as while statements typically uses the technique of proof-by-

induction, and often the most difficult part of carrying out an

inductive proof is formulating a correct induction hypothesis, a

specification for a loop statement. An incorrect induction

hypothesis will surely lead to a proof failure. In this paper we

propose a systematic way for identifying specifications of while

statements. The key idea of our approach is to categorize and

document common patterns of while statements along with their

specifications. This is based on our observation that similarly-

structured while statements frequently have similarly-structured

specifications. Thus, a catalog of code and specification patterns

can be used as a good reference for finding and formulating a

specification of a while statement. We explain our approach using

functional program verification in which a program is viewed as a

mathematical function from one program state to another, and a

correctness proof is done by comparing two functions, the

implemented and the specified. However, we believe our approach

is applicable to other verification techniques such as Hoare logic

using pre- and post-conditions.

Keywords—code and specification patterns, functional program

verification, intended function, specification, while statement.

I. INTRODUCTION

unctional program verification is a formal verification technique

originated from the Cleanroom Software Engineering [1], in

which a program is viewed as a mathematical function from one

program state to another. In function program verification, a

correctness proof is done by comparing the function implemented by

a program called a code function with its specification called an

intended function [2] [3]. For this, each section of code is annotated

with its intended function. If a section of code consists of only simple

statements and control structures such as assignments, sequences and

branches, its code function can be calculated directly and compared

with its intended function. However, if it contains loops such as

while statements, it is mostly impossible to calculate its code function

directly, thus its proof is done by using the technique of proof-by-

induction. Applying the inductive proof rule of while statements is in

most case rather straightforward, but finding a correct induction

hypothesis, the intended function of a while statement, is not and

often is the most difficult part of the proof. And there is no systematic

way of formulating a good intended function for a while statement,

and programmers mostly relies on their intuitions, insights, or

previous experiences to formulate one. Nevertheless, it is vital to

formulate a correct intended function for a while statement, as an

incorrect induction hypothesis will definitely fails an inductive proof.

 One possible way to help the programmers find correct intended

functions for while statements is to provide them with a catalog of

sample while statements along with their intended functions. The

samples in the catalog provide patterns of while statements and their

intended functions that can be matched to one’s own code and thus

can be instantiated to derive one’s own intended functions. If a while

statement matches a code pattern in the catalog, its intended function

will have a similar structure as that of the matched code in the

catalog. That is, similarly-structured while statements have similarly-

structured intended functions.

In this paper we describe our approach for identifying such

patterns of while statements based on loop conditions and loop

bodies, documenting them in a pattern catalog, and applying them to

find intended functions of while statements. However, there are

conflicting requirements for being a good pattern. A pattern should

be as general as possible to be widely applicable and usable, but at

the same time it should be as specific as possible to be meaningful in

deriving an accurate intended function. We explain how we address

these conflicting requirements. Like software design patterns that

describe reusable design solutions to recurring problems in software

design [4], our specification patterns also provide other benefits by

allowing one (a) to capture and document program specification

knowledge, (b) to support reuse in specification and boost one’s

confidence during program verification, and (c) to provide a

vocabulary for communicating one’s specifications and proofs. We

explain our approach using functional program verification.

However, we believe that our approach is equally applicable to other

verification techniques such as Hoare-style axiomatic verification

using pre- and post-conditions.

This paper is structured as follows. Section II provides a brief

overview of functional program verification including the notation

for writing intended functions. Section III describes the problem of

finding and formulating intended functions of while statements.

Section IV explains our approach for documenting and cataloging

patterns of while statements along with their intended functions, and

Section V illustrates some of our patterns by applying them to

examples and provides a preliminary evaluation of our approach.

Lastly Section VII concludes this paper with a concluding remark.

II. FUNCTIONAL PROGRAM VERIFICATION

Functional program verification is a program verification technique

originated from the Cleanroom Software Engineering [1]. The main

Finding Specifications of While Statements

Using Patterns
Aditi Barua and Yoonsik Cheon

 Department of Computer Science

 The University of Texas at El Paso

 El Paso, Texas, U.S.A

abarua@miners.utep.edu; ycheon@utep.edu

F

2

idea behind functional program verification is to view and model a

program as a mathematical function that maps one program state, an

initial state, to another, a final state. The specification of a program

called an intended function defines this mapping of states by

describing the expected final state in terms of the initial state.

Program verification is done by comparing the intended function of a

program with its code function, the actual function implemented by

the program. For this, each section of a program is documented with

its intended function (see Figure 1).

Figure 1: Code annotated with intended functions

An intended function is written using a concurrent assignment

notation of the form [x1, x2 …, xn := e1, e2, …, en] stating that each

xi’s new value in the final state is ei evaluated concurrently in the

initial state [2]. For example, the intended function f1 in line 1

describes the behavior of whole code and asserts that the final value

of r is the number of positive values contained in the array a. On the

other hand, the intended functions f2 and f3 in lines 2 and 6 specify

the sections of code in lines 3-4 and 7-15, respectively. In f3, the

keyword anything indicates that one doesn’t care about the final

value of the loop variable i. In this paper we write intended functions

semi-formally by using the Java expression syntax and mathematical

symbols such as ∑. There is also a formal notation for writing

intended functions[4].

Once each section of code is annotated with its intended function,

its correctness can be proved by comparing its code function with its

intended function. This proof can be performed in a modular way by

using the intended functions of lower level code in the proof of

higher level code. For example, in order to prove the correctness of

the code shown in Figure 1, we need to prove (a) the functional

composition of f2 and f3 is correct with respect to f1 and (b) both f2

and f3 are correctly implemented or refined by their code. If a section

of code consists of only assignments, sequences, and branches, its

correctness proof is often straightforward, as its code function can be

directly calculated. For example, the code function for lines 3-4 is the

same as its intended function, f2. However, the proof of a loop such

as a while statement is a bit involved, as there is no direct way of

calculating its code function. It is done by using proof-by-induction

[2]. For example, the correctness of code in lines 7-15 with respect to

its intended function f3 requires three sub-proofs: (a) termination of

the loop, (b) a basis step of proving that when the loop condition

doesn’t hold an identity function (i.e., no state change) is correct with

respect to f3, and (c) an induction step of proving that when the loop

condition holds the composition of f4 and f3 is correct with respect to

f3. The basis and induction steps are for when the loop makes no

iteration and one or more iterations, respectively.

III. INTENDED FUNCTIONS OF WHILE STATEMENTS

In order to apply functional programming verification effectively, it

is important to formulate a correct intended function for the section

of code to be verified. If the intended function is incorrectly

formulated, the proof will fail even if the code is indeed correct. This

is particularly true for the verification of loops such as while

statements, as their proofs are done inductively and their intended

functions become induction hypotheses (see Section II). With a

wrong induction hypothesis, an inductive proof will fail.

 However, formulating and defining a good intended function for a

while statement is not easy. It is often the hardest part of formal

program verification, and there is no systematic way of doing it. One

difficulty is that a loop typically computes a more general function

than the one needed. A loop is seldom used by itself in isolation but

is preceded by an initialization, which together with the loop

computes something useful. For example, the while statement in lines

7-15 of Figure 1 doesn’t calculate the number of positive values

contained in the array a, but when the loop variable i is set to 0 it

does. A loop in isolation doesn’t do a computation but completes it;

an initialization (e.g., setting i) determines where the computation

starts. An intended function of a while statement should be written in

such a way that it captures the completion of a computation

regardless of where the computation starts. It should be a correct

generalization of the intended function for the code containing both

the initialization and the loop, and at the same time it should be

specific enough to capture the accurate result of the computation.

 Formulating an intended function for a while statement requires a

programmer’s insight, practice, and experience [2]. The problem of

finding an intended function for a while statement is similar to that of

finding a loop invariant in Hoare logic. A loop invariant should be

general enough to hold on each iteration of the loop and specific

enough to lead to a post-condition when the loop terminates. Even if

there is no known work done on systematically finding intended

functions for loops, many researchers have studied this similar

problem of finding loop invariants and proposed various static and

dynamic techniques based on pre-conditions, post-conditions, loop

executions, and theorem proving (cf., [7] [8] [9]).

IV. PATTERNS OF WHILE STATEMENTS

One way to figure out a correct intended function of a while

statement is to look at other while-loops that have similar code

structures. If two while loops have similar code structures, their

intended functions are likely to have similar structures too [2].

Therefore, if we know the intended function of one, we may be able

to derive that of the other from the known one. For this, we can

develop patterns of while loops along with their intended functions

based on the code structures of while loops including loop conditions

and loop bodies, and these patterns can be used as a reference for

formulating an intended function for a while loop (see Figure 2). For

this pattern-based approach to work effectively, we need to identify

and accumulate a large number of patterns to cover a wide range of

while loops appearing in application code. And each pattern should

be as general as possible to be widely applicable to loops written in

many different ways. At the same time it should be as specific as

possible to derive an accurate intended function when applied to a

particular loop. In any pattern-based approach, properly documenting

patterns is crucial. Each pattern should be documented in such a way

that it is easy to determine its applicability, to instantiate it for a

 1: // f1: [r : = ∑i=o…a.length-1(a[i] > 0 ? 1 : 0)]

 2: // f2: [r, i := 0, 0]

 3: r = 0;

 4: int i = 0;

 5:

 6: // f3: [r, i := r + ∑j=i…a.length-1(a[j] > 0 ? 1 : 0), anything]

 7: while (i < a.length) {

 8: // f4: [r , i := a[i] > 0 ? r + 1 : r, i + 1]

 9: // [r := a[i] > 0 ? r + 1 : r]

10: if (a[i] > k)

11: // [r := r + 1]

12: r++;

13: // [i := i + 1]

14: i++;

15: }

3

particular application, and to derive an actual intended function from

it. Patterns need to be classified and organized to be presented in a

pattern catalog that can be easily looked up and matched for by

programmers. Below we explain how we address these requirements

for our patterns.

Figure 2: Pattern-based identification of intended functions

A. Pattern Documentation

We document our patterns using a format similar to that of

software design patterns [4]. Each pattern has a name, purpose,

description, structure, applicability, variations, related patterns, and

examples. Figure 3 shows one of the simplest patterns that we

identified and documented in this format. A pattern has a name to

uniquely identify it. Then, its purpose is stated briefly. The

description section explains the pattern and is followed by the

structure of the code along with its intended function. The structure

is given as a skeletal annotated code; as shown, the body of a while

loop can be abstracted to an intended function to be applicable to a

wide range of implementation variations. The applicability section

lists different contexts in which the pattern can be applied. A pattern

can have variations and related patterns. Lastly the examples section

shows sample loops matching the specified pattern.

The pattern depicted in Figure 3 is named Indexed Accumulating.

It describes a while loop that iterates over the elements of a sequence

using an index and accumulates them by using a binary accumulation

operator such as +, *, and string concatenation. In the loop body

abstracted to an intended function, the element of the sequence s at

the current index i (i.e., s@i) is accumulated to the result variable r

using an accumulator operator ⊕ (i.e., r := r ⊕ s@i), and the index

variable i is set to a new value E(i), an expression written in terms of

i. The loop iterates as long as the loop condition B(i), a Boolean

expression written in term of i, holds. The intended function of this

loop states that the final of the result variable r is its initial value

accumulated or combined with all the elements of s starting at index i

to index N, where N is the value of i just before the loop condition

becomes false. This pattern is applicable when the sequence is an

array, a string, and an index-based collection like a Java List class. It

has several variations including Conditional Accumulating in which

an element is accumulated only if it satisfies a certain condition, e.g.,

being a positive value. If a sequence or collection provides an iterator

(cf. Iterator pattern in [4]), its values can be merged or accumulated

by using its iterator operations rather than indexing, and the Iterated

Accumulating pattern is for such loops.

B. Sample Patterns

To identify patterns, we studied a wide range of while loops from

several different sources including computer programming textbooks,

class programming assignments and projects, and well-known open

source software. Through this study we were able to identify patterns

of recurring while loops and documented them as specification

patterns by generalizing their source code structures and formulating

their intended functions. Below we describe a few representative

patterns that we identified and documented.

Figure 3: Indexed Accumulating

One related pattern of the Indexed Accumulating pattern described

previously is a pattern named Indexed Conditional Counting (see

Figure 4) As hinted by its name, it represents a loop that counts the

number of elements contained in a sequence that meets a certain

condition. Its structure is very similar to that of the Indexed

Accumulating except that instead of accumulating the elements of a

sequence it accumulates 1’s for elements that satisfies a certain

condition, thus counting the occurrences of elements in a sequence

that satisfies the condition. In the pattern, the notation C(s@i)

denotes a Boolean expression that checks if the i-th element of the

sequence s satisfies a certain condition; if there is no such a condition

imposed, the loop calculates the cardinality of the sequence.

Figure 4: Indexed Conditional Counting

Another recurring pattern of while loops is searching for an

element in a collection. For example, a while loop may look for any

negative value contained in a list. We named this pattern Indexed

[r, i := r + ∑ j=i..N C(s@j) ? 1: 0, anything]

while (B(i)) {

[r, i := r + (C(s@i) ? 1: 0), E(i)]

}

Name: Indexed Accumulating

Purpose: Accumulate elements of a sequence

Description: A loop combines the values of a sequence to a

single value by using various accumulation operations such as

addition, multiplication, and concatenation. An index is used to

iterate over the elements of a sequence. The result is of the same

type as that of the elements of the sequence.

Structure:

 [r, i := r ⊕ ∑⊕ j=i..N s@j, anything]

while (B(i)) {

 [r, i := r ⊕ s@i, E(i)]

 }

 where

 s: sequence whose elements are accumulated

 r: result variable accumulating elements of s

 i: index and loop variable

 s@i: i-th element of s

 ⊕: accumulation operator such as +, -, and *

 B(i): Boolean expression with a variable i

 E(i): expression with a variable i

 N: last i prior to loop termination such that B(i)

Applicability: arrays, strings, indexable collections, etc.

Variations: Conditional Accumulating, ...

Related patterns: Iterated Accumulating, …

Examples:

 [r, i := r + ∑ j=i..a.length-1 a[i], anything]

while (i < a.length) {

 [r, i := r + a[i], i + 1]

 r = r + a[i];

 i++;

}

While-loop 1

While-loop 2

While-loop 3

Pattern 1

Pattern 2

Intended

function 1

Intended

function 2

4

Searching (see Figure 5). The intended function states that the final

value of the result variable r is the element of the sequence s at index

j, denoted by s@j, if the element at index j satisfies the searching

condition C, i.e., C(s@j); if there is no such a j, it is the initial value

of r. Note that the loop condition B(i, r) may refer to the result

variable r to allow an early termination of the loop, e.g., as soon as an

element is found.

Figure 5: Indexed Searching

A loop is also frequently used to select or collect elements from a

collection. We documented this use of while loop as a family of

patterns, and one particular pattern named Iterated Collecting is

shown in Figure 6. This particular pattern is for selecting elements of

a collection by accessing them using an iterator and transforming

them to construct a new collection. Since there are many different

implementations of iterators, we abstract away from implementation

details of iterators in our pattern documentation by introducing

abstract iterator operations such as hasNext, current, and advance.

There are several variations of this pattern, e.g., collecting only those

elements that meets a particular selection criterion and selecting

elements without transforming them.

Figure 6: Iterated Collecting

Figure 7: Variation of the Accumulating pattern

All the patterns introduced and described so far are for accessing

and manipulating elements of collections such as arrays, strings,

sequences, streams, and files. However, a loop doesn’t need to access

or manipulate a collection, and another typical use of it is to iterate

an indefinite number of times. A while statement, for example, can be

used to calculate the factorial of a positive number. Figure 7 shows a

variation of the Accumulating pattern described earlier along with its

instantiation for factorial code. In fact, it is a generalization of the

Indexed Accumulating pattern in that each occurrence of reference to

the i-th element of the sequence, s@i, is abstracted and generalized to

an expression E(i). We will discuss more on pattern generalization

and specialization in the following subsection.

C. Pattern Classification and Hierarchy

While analyzing many different while loops, we soon learned that the

structure of a pattern is determined by three factors: (a) how the value

to be manipulated is obtained, (b) how the value is manipulated, and

(c) how the termination of the loop is determined. These three factors

are mostly orthogonal, and thus most combinations of them produce

new patterns (see Figure 8). For example values can be retrieved

from collections like arrays, strings, streams, and files using indices,

iterators, or in ad-hoc fashions, or they can be created on the fly

without retrieving stored ones. There are many different

manipulations of values possible, e.g., accumulating (conditionally or

unconditionally and with or without transformation), searching,

counting, selecting, and collecting. The loop conditions may be

written in terms of indices, iterators, values being manipulated, and

others. Therefore, we can define our patterns compositionally by

picking up one particular possibility for each of these three factors.

For example, the Indexed Searching pattern is a composition of an

index-based acquisition, a search manipulation, and an index-based

termination.

Figure 8: Orthogonal factors of patterns

As mentioned previously, one key requirement of patterns is to make

them as general as possible and at the same time as specific as

possible. This is to make patterns as widely applicable as possible

and at the same time to derive accurate and detailed intended

functions upon their applications. To address this requirement we

generalized and specialized patterns to produce a pattern hierarchy.

The idea is to have abstract or general patterns to cover a wide range

of while loops but with coarse-grained intended functions. Concrete

or specialized patterns will cover a limited range of while loops but

will provide more accurate and detailed intended functions. In the

previous subsection, for example, an index-based access of elements

was denoted by an expression s@i, where s is a sequence and i is an

index, and an iterator-based access was denoted by an expression

i.current(). We can unify these two expressions to come up with a

more abstract expression E(i) and use this abstract expression to

define a pattern, thus resulting in a more abstract, general, and widely

applicable pattern. Applying such a pattern, however, requires more

[r, i := r ⊕ ∑⊕ j=i..N E1(j), anything]

while (B(i)) {

[r, i := r ⊕ E1(i), E2(i)]

}

// Instantiated with bindings

// × for ⊕, ∏ for ∑⊕, 1 for N, i > 0 for B(i), i for E1(i),

// i – 1 for E2(i)

// [r, i := r × i × (i-1) × (i-2) × ... × 1, anything]

while (i > 0) {

 // [r, i = r × i, i – 1]

 r = r * i;

 i--;

}

[r, i := r ∪ {e ∈ Ci • E(e)}, anything]

while (B(i.hasNext())) {

[r, i := r ∪ {E(i.current())}, i.advance()]

}

where

 ∪: collection merge operation such as union, concatenation, etc.

i: iterator of the collection whose elements are to be collected.

i.hasNext(): true only if the iterator i has more elements

i.current(): current element of the iterator i

i.advance(): move to the next element of the iterator i

Ci: all elements available from the iterator i

[r, i := (∃j=i..N C(s@j)) ? (s@k s.t. k∈i..N ∧C(s@k)) : r, anything]

while (B(i, r)) {

[r, i := C(s@i) ? s@i : r, E(i)]

}

manipulation
index

iterator

ad-hoc

create

accumulation search selection collection

value

iterator

index

other

termination acquisition

5

work, as a correct instantiation of an abstract expression like E(i) may

not be straightforward for both matching a pattern and deriving an

intended function from the matched pattern.

Conditional

Accumulating

Conditional

Selecting
Collecting

Searching

Counting

Conditional

Counting

Accumulating

Conditional

Collecting

Selecting

Conditional

Accumulating

Conditional

Selecting
Collecting

Searching

Counting

Conditional

Counting

Accumulating

Conditional

Collecting

Selecting

Figure 9: Pattern hierarchy

Figure 9 shows a simplified version of a pattern hierarchy focusing

on the manipulation of values, not their acquisitions or loop

termination. The Selecting pattern, for example, is a special

Conditional Selecting without any imposed condition as well as a

special Collecting without any transformation of values. As

mentioned earlier and shown in the figure, a higher level pattern such

as Conditional Accumulating is more general and thus has an

intended function applicable to a wide range of while loops. A lower

level pattern such as Selecting is more specific and thus has a more

detailed intended function with a narrow scope of applications. A

general guideline is to match patterns starting from the root of the

tree and move downward to find as specific pattern as possible.

V. PATTERN APPLICATIONS

We conducted a preliminary experiment to evaluate the effectiveness

of our patterns by applying them to industrial strength open-source

code. We chose Apache HTTP Server 2.0.65 that has about 486 C

files with over 1500 while loops [10]. We picked up a dozen different

while loops from the Apache source code and applied our patterns.

For pattern matching we used a decision tree similar to the one

shown in Figure 10. The decision tree allows us not only to perform

pattern matching systematically and semi-automatically but also to

identify general patterns first and then move toward more specific

ones. Below we describe a few simple but interesting while loops

from the Apache source code to illustrate applications of our patterns.

 The most common use of while statements in the Apache source

code is to manipulate pointer-based data structures such as linked

lists. Shown below is one such a while loop that is simple but shows

an interesting aspect of the application of our patterns. It traverses a

linked list pointed to by f and changes the r field of each node if its

current value is equal to from.

while (f) {

if (f->r == from)

 f->r = to;

f = f->next;

}

Even if the loop itself is very simple, specifying its behavior is a

bit involved because it may mutate not only a single node pointed

to by f but also potentially all the nodes reachable from f. Thus, its

intended function needs to capture the side effect caused to the

whole list, not just to a single node denoted by the pointer f. For

this, we introduce a notation to denote the whole list and

manipulate a pointer-based list data structure abstractly.

Figure 10: Using patterns

L<f: list consisting of all the nodes preceding f; whole list if f is null

Lf>: list consisting of f and all the trailing nodes; empty if f is null

〈〉: list comprehension, e.g., 〈f〉 for a singleton list consisting of f

+: list concatenation, e.g., L<f + 〈f〉

f{r := e if b}: node f with its r field set to e if b is true

 Using this notation we first calculate and document the intended

function of the loop body as follows.

while (f) {

 // [L<f, f := L<f + 〈f{r := to if r == from}〉, f->next]

 if (f->r == from)

 f->r = to;

 f = f->next;

}

 Note that the intended function of the loop body can also be

written as [f->r, f := (f->r == from) ? to : f->r, f->next]. However,

this formulation doesn’t capture the side effect of the statements in

terms of the whole list and thus will make it difficult to prove the

correctness of the whole loop. Once the intended function of the loop

body is formulated and documented, we can match the annotated

code to one of the patterns. Using the decision tree mentioned earlier

we can match it to the Iterated Collecting pattern (see Figure 10).

Although this matching doesn’t seem possible at first, it should be

apparent with the following unification of iterator operations.

Pattern Code

i.current() f

i.advance() f = f->next

i.hasNext() !f

 Once a matching pattern is found, we can instantiate its intended

function to derive the intended function for the code as follows,

where the notation I(x/y) denotes replacing every free occurrence of y

in the intended function I with an x.

 [r, i := r ∪ {e ∈ Ci • E(e)}, anything] (r/L<f, i/f, Lf>/Ci, +/∪, 〈〉/{},

 E(e)/e{r := to if r == from}) ≡

 [L<f, f := L<f + 〈n ∈ Lf> • n{r := to if r == from}〉, anything]

 The derived intended function states that every node reachable

from f now has a new final value (to) for its r field if its initial value

is from, and it matches our informal understanding of the loop.

 Another while loop from the Apache source code is shown below.

It iterates over the nodes of a list to check if there is a node with a

particular name. The code matches our Iterated Searching pattern,

6

and the matching produces the intended function annotated in the

code. The Iterated Searching pattern is similar to the Indexed

Searching pattern described in the previous section except that

elements are accessed using an iterator. As before we need to refer to

the whole list, and for this we introduce a special notation Lfilter to

denote the list consisting of the node pointed to by filter and all the

nodes reachable from it.

 /* [found, filter := (∃n∈Lfilter• f(n)) ? true: found, anything] where

 * Lfilter = list consisting of filter and all nodes reachable from it

 * f(n) = !strcasecmp(name, n->frec->name) */

while (!found && filter) {

 // [found, filter := f(filter) ? true : found, filter->next]

 if (!strcasecmp(name, filter->frec->name))

 found = true;

 filter = filter->next;

 }

 In the Apache source code, we also found while loops that refer to

arrays. The following is one such a loop, and its loop body is

annotated with its intended function written using a conditional

concurrent assignment of the form [B1→A1 |… Bn→An] that specifies

different functions (Ai’s) based on conditions (Bi’s)[2].

while (name[i] != '\0') {

 /* [C(i) → i := i + 2

 * | ¬C(i) → w, i, name[w-1] := w + 1, i + 1, name[i]]

 * where C(i) is the if condition below. */

 if (name[i] == '.' && IS_SLASH(name[i+1])

 && (i == 0 || IS_SLASH(name[i – 1])))

 i += 2;

 else

 name[w++] = name[i++];

}

 Its intended function is not obvious, but our decision tree and

patterns can guide us to it. For example, the values to be manipulated

in the loop are retrieved from an array using an index, selected on a

condition, and stored without being transformed. This leads us to the

Indexed Conditional Selecting (or its generalizations) as a possible

pattern. The pattern’s intended function and our insight on the code

lead us to the following intended function, where s[i..j] denotes a

substring of s from index i to j, inclusive.

[name, i, w := name[0..w-1] + shifted name[w..], anything,

 w + num of shifted chars]

 For more rigorous formulation, one need to state precisely what

one means by a shifted name[w..]; informally, it’s the suffix of name

starting from index w in which the characters of name starting from

index i that doesn’t match the specified patterns (e.g., “./”) were

shifted over those characters matching the patterns.

 Even if our experiment is limited in the number of while loops, the

applications and the implementation languages that we considered, it

showed a promising result. We often were able to systematically

derive very detailed and precise intended functions. Most non-trivial

loops, however, required a varying degree of insight and work to

come up with accurate intended functions for them. Nevertheless, the

pattern decision tree helped us to analyze the code systematically and

the matched patterns helped us find correct intended functions for

these loops by providing skeletal intended functions. Our patterns

also detected certain mistakes that we made when formulating

intended functions for both the loop body and the whole loope.g.,

documenting side-effect caused only to a single node, not to the

whole data structure. In fact we made such mistakes several times

during this experiment, and our patterns exposed and revealed them.

We also learned a few shortcomings of our patterns through this

experiment. Our patterns, for example, don’t capture a certain

common use of while loops very well, e.g., mutating the collection

data structure that is being iterated over. These loops can be certainly

abstracted to selecting or collecting patterns as done in this paper, but

more direct and concrete patterns would be preferred and appreciated

by the users of our patterns. Some of our patterns may be further

specialized to address language-specific features and constructs such

as C/C++ pointers and pointer-based data structures.

VI. CONCLUSION

In this paper we proposed specification patterns to address the

problem of formulating specifications of loop statements such as

while statements, which is recognized as one of the most difficult part

of formal program verification. Our approach was initially inspired

by software design patterns [4], however the key difference and thus

contribution of our patterns compared with design patterns and other

specification patterns (e.g., [6]) is that our specification patterns are

compositional and hierarchical. Each pattern consists of three

orthogonal componentsvalue acquisition, value manipulation, and

loop conditionand thus is assembled by selecting an appropriate

combination of these building blocks. Our patterns are classified into

a pattern hierarchy. A generalized pattern is applicable to a wide

range of loops, but its specification is more abstract. A specialized

pattern, on the other hand, is more specific with limited applicability

but provides a more accurate specification. The pattern hierarchy

allows one to match patterns starting from more general ones to more

detailed. The work reported in this paper is an on-going research, and

thus the number of patterns identified and documented is limited.

Nevertheless, a preliminary experiment showed a promising result in

that the patterns were able to derive specifications for a representative

set of while loops found in well-known open source code.

REFERENCES

[1] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore, Cleanroom

Software Engineering. Addison Wesley, Feb. 1999.

[2] A. Stavely, Toward Zero Defect Programming. Addison-Wesley, 1999.

[3] Y. Cheon, Functional Specification and Verification of Object-oriented

Programs, Department of Computer Science, The University of Texas at

El Paso, El Paso, TX, Technical Report 10-23, Aug. 2010.

[4] Y. Cheon, C. Yeep, and M. Vela, The CleanJava Language For

Functional Program Verification, International Journal of Software

Engineering, 5(1):47-68, Jan. 2012.

[5] E. Gamma, et al., Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1994.

[6] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, Patterns in Property

Specifications for Finite-state Verification, 21st International

Conference on Software Engineering, pages 411-420, May, 1999.

[7] C. A. Furia and B. Meyer, Inferring Loop Invariant Using

Postconditions, Fields of Logic and Computation, volume 6300 of

Lecture Notes in Computer Science, pages 277-300, Springer, 2010.

[8] R. Sharma, et al., A Data Driven Approach for Algebraic Loop

Invariants, ESOP, volume 7792 of Lecture Notes in Computer Science,

pages 574-592. Springer, 2013.

[9] K. R. M. Leino and F. Logozzo, Loop Invariants on Demand,

Proceedings of the 3rd Asian Symposium on Programming Languages

and Systems (APLAS'05), pages 119-134, Nov. 2005.

[10] The Apache Software Foundation, Apache HTTP Server Project,

available from http://httpd.apache.org.

