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Abstract—A formal correctness proof of code containing loops 

such as while statements typically uses the technique of proof-by-

induction, and often the most difficult part of carrying out an 

inductive proof is formulating a correct induction hypothesis, a 

specification for a loop statement. An incorrect induction 

hypothesis will surely lead to a proof failure. In this paper we 

propose a systematic way for identifying specifications of while 

statements. The key idea of our approach is to categorize and 

document common patterns of while statements along with their 

specifications. This is based on our observation that similarly-

structured while statements frequently have similarly-structured 

specifications. Thus, a catalog of code and specification patterns 

can be used as a good reference for finding and formulating a 

specification of a while statement. We explain our approach using 

functional program verification in which a program is viewed as a 

mathematical function from one program state to another, and a 

correctness proof is done by comparing two functions, the 

implemented and the specified. However, we believe our approach 

is applicable to other verification techniques such as Hoare logic 

using pre- and post-conditions.  

 

Keywords—code and specification patterns, functional program 

verification, intended function, specification, while statement.  

I. INTRODUCTION 

unctional program verification is a formal verification technique  

originated from the Cleanroom Software Engineering [1], in 

which a program is viewed as a mathematical function from one 

program state to another. In function program verification, a 

correctness proof is done by comparing the function implemented by 

a program called a code function with its specification called an 

intended function [2] [3]. For this, each section of code is annotated 

with its intended function. If a section of code consists of only simple 

statements and control structures such as assignments, sequences and 

branches, its code function can be calculated directly and compared 

with its intended function. However, if it contains loops such as 

while statements, it is mostly impossible to calculate its code function 

directly, thus its proof is done by using the technique of proof-by-

induction. Applying the inductive proof rule of while statements is in 

most case rather straightforward, but finding a correct induction 

hypothesis, the intended function of a while statement, is not and 

often is the most difficult part of the proof. And there is no systematic 

way of formulating a good intended function for a while statement, 

 
 

and programmers mostly relies on their intuitions, insights, or 

previous experiences to formulate one. Nevertheless, it is vital to 

formulate a correct intended function for a while statement, as an 

incorrect induction hypothesis will definitely fails an inductive proof. 

 One possible way to help the programmers find correct intended 

functions for while statements is to provide them with a catalog of 

sample while statements along with their intended functions. The 

samples in the catalog provide patterns of while statements and their 

intended functions that can be matched to one’s own code and thus 

can be instantiated to derive one’s own intended functions. If a while 

statement matches a code pattern in the catalog, its intended function 

will have a similar structure as that of the matched code in the 

catalog. That is, similarly-structured while statements have similarly-

structured intended functions.  

In this paper we describe our approach for identifying such 

patterns of while statements based on loop conditions and loop 

bodies, documenting them in a pattern catalog, and applying them to 

find intended functions of while statements. However, there are 

conflicting requirements for being a good pattern. A pattern should 

be as general as possible to be widely applicable and usable, but at 

the same time it should be as specific as possible to be meaningful in 

deriving an accurate intended function. We explain how we address 

these conflicting requirements. Like software design patterns that 

describe reusable design solutions to recurring problems in software 

design [4], our specification patterns also provide other benefits by 

allowing one (a) to capture and document program specification 

knowledge, (b) to support reuse in specification and boost one’s 

confidence during program verification, and (c) to provide a 

vocabulary for communicating one’s  specifications and proofs. We 

explain our approach using functional program verification. 

However, we believe that our approach is equally applicable to other 

verification techniques such as Hoare-style axiomatic verification 

using pre- and post-conditions.  

This paper is structured as follows. Section II provides a brief 

overview of functional program verification including the notation 

for writing intended functions. Section III describes the problem of 

finding and formulating intended functions of while statements. 

Section IV explains our approach for documenting and cataloging 

patterns of while statements along with their intended functions, and 

Section V illustrates some of our patterns by applying them to 

examples and provides a preliminary evaluation of our approach. 

Lastly Section VII concludes this paper with a concluding remark. 

II. FUNCTIONAL PROGRAM VERIFICATION 

Functional program verification is a program verification technique 

originated from the Cleanroom Software Engineering [1]. The main 
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idea behind functional program verification is to view and model a 

program as a mathematical function that maps one program state, an 

initial state, to another, a final state. The specification of a program 

called an intended function defines this mapping of states by 

describing the expected final state in terms of the initial state. 

Program verification is done by comparing the intended function of a 

program with its code function, the actual function implemented by 

the program. For this, each section of a program is documented with 

its intended function (see Figure 1). 

 

 
Figure 1: Code annotated with intended functions 

 

An intended function is written using a concurrent assignment 

notation of the form [x1, x2 …, xn := e1, e2, …, en] stating that each 

xi’s new value in the final state is ei evaluated concurrently in the 

initial state [2]. For example, the intended function f1 in line 1 

describes the behavior of whole code and asserts that the final value 

of r is the number of positive values contained in the array a. On the 

other hand, the intended functions f2 and f3 in lines 2 and 6 specify 

the sections of code in lines 3-4 and 7-15, respectively. In f3, the 

keyword anything indicates that one doesn’t care about the final 

value of the loop variable i. In this paper we write intended functions 

semi-formally by using the Java expression syntax and mathematical 

symbols such as ∑. There is also a formal notation for writing 

intended functions[4]. 

Once each section of code is annotated with its intended function, 

its correctness can be proved by comparing its code function with its 

intended function. This proof can be performed in a modular way by 

using the intended functions of lower level code in the proof of 

higher level code. For example, in order to prove the correctness of 

the code shown in Figure 1, we need to prove (a) the functional 

composition of f2 and f3 is correct with respect to f1 and (b) both f2 

and f3 are correctly implemented or refined by their code. If a section 

of code consists of only assignments, sequences, and branches, its 

correctness proof is often straightforward, as its code function can be 

directly calculated. For example, the code function for lines 3-4 is the 

same as its intended function, f2. However, the proof of a loop such 

as a while statement is a bit involved, as there is no direct way of 

calculating its code function. It is done by using proof-by-induction 

[2]. For example, the correctness of code in lines 7-15 with respect to 

its intended function f3 requires three sub-proofs: (a) termination of 

the loop, (b) a basis step of proving that when the loop condition 

doesn’t hold an identity function (i.e., no state change) is correct with 

respect to f3, and (c) an induction step of proving that when the loop 

condition holds the composition of f4 and f3 is correct with respect to 

f3. The basis and induction steps are for when the loop makes no 

iteration and one or more iterations, respectively.  

III. INTENDED FUNCTIONS OF WHILE STATEMENTS      

In order to apply functional programming verification effectively, it 

is important to formulate a correct intended function for the section 

of code to be verified. If the intended function is incorrectly 

formulated, the proof will fail even if the code is indeed correct. This 

is particularly true for the verification of loops such as while 

statements, as their proofs are done inductively and their intended 

functions become induction hypotheses (see Section II). With a 

wrong induction hypothesis, an inductive proof will fail.  

 However, formulating and defining a good intended function for a 

while statement is not easy. It is often the hardest part of formal 

program verification, and there is no systematic way of doing it. One 

difficulty is that a loop typically computes a more general function 

than the one needed. A loop is seldom used by itself in isolation but 

is preceded by an initialization, which together with the loop 

computes something useful. For example, the while statement in lines 

7-15 of Figure 1 doesn’t calculate the number of positive values 

contained in the array a, but when the loop variable i is set to 0 it 

does. A loop in isolation doesn’t do a computation but completes it; 

an initialization (e.g., setting i) determines where the computation 

starts. An intended function of a while statement should be written in 

such a way that it captures the completion of a computation 

regardless of where the computation starts. It should be a correct 

generalization of the intended function for the code containing both 

the initialization and the loop, and at the same time it should be 

specific enough to capture the accurate result of the computation. 

 Formulating an intended function for a while statement requires a 

programmer’s insight, practice, and experience [2]. The problem of 

finding an intended function for a while statement is similar to that of 

finding a loop invariant in Hoare logic. A loop invariant should be 

general enough to hold on each iteration of the loop and specific 

enough to lead to a post-condition when the loop terminates. Even if 

there is no known work done on systematically finding intended 

functions for loops, many researchers have studied this similar 

problem of finding loop invariants and proposed various static and 

dynamic techniques based on pre-conditions, post-conditions, loop 

executions, and theorem proving (cf., [7] [8] [9]).  

IV. PATTERNS OF WHILE STATEMENTS 

One way to figure out a correct intended function of a while 

statement is to look at other while-loops that have similar code 

structures. If two while loops have similar code structures, their 

intended functions are likely to have similar structures too [2]. 

Therefore, if we know the intended function of one, we may be able 

to derive that of the other from the known one. For this, we can 

develop patterns of while loops along with their intended functions 

based on the code structures of while loops including loop conditions 

and loop bodies, and these patterns can be used as a reference for 

formulating an intended function for a while loop (see Figure 2).  For 

this pattern-based approach to work effectively, we need to identify 

and accumulate a large number of patterns to cover a wide range of 

while loops appearing in application code. And each pattern should 

be as general as possible to be widely applicable to loops written in 

many different ways. At the same time it should be as specific as 

possible to derive an accurate intended function when applied to a 

particular loop. In any pattern-based approach, properly documenting 

patterns is crucial. Each pattern should be documented in such a way 

that it is easy to determine its applicability, to instantiate it for a 

 1:  // f1: [r : = ∑i=o…a.length-1(a[i] > 0 ? 1 : 0)] 

 2:    // f2: [r, i := 0, 0] 

 3:      r = 0; 

 4:      int i = 0; 

 5: 

 6:    // f3:  [r, i := r + ∑j=i…a.length-1(a[j] > 0 ? 1 : 0), anything] 

 7:      while (i < a.length) { 

 8:        // f4:  [r , i :=  a[i] > 0 ? r + 1 : r,  i + 1] 

 9:           // [r := a[i] > 0 ? r + 1 : r] 

10:             if (a[i] > k)  

11:               // [r := r + 1] 

12:                  r++; 

13:         // [i := i + 1] 

14:            i++; 

15:     } 
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particular application, and to derive an actual intended function from 

it. Patterns need to be classified and organized to be presented in a 

pattern catalog that can be easily looked up and matched for by 

programmers. Below we explain how we address these requirements 

for our patterns. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pattern-based identification of intended functions 

 

A. Pattern Documentation 

We document our patterns using a format similar to that of 

software design patterns [4]. Each pattern has a name, purpose, 

description, structure, applicability, variations, related patterns, and 

examples. Figure 3 shows one of the simplest patterns that we 

identified and documented in this format. A pattern has a name to 

uniquely identify it. Then, its purpose is stated briefly. The 

description section explains the pattern and is followed by the 

structure of the code along with its intended function. The structure 

is given as a skeletal annotated code; as shown, the body of a while 

loop can be abstracted to an intended function to be applicable to a 

wide range of implementation variations. The applicability section 

lists different contexts in which the pattern can be applied. A pattern 

can have variations and related patterns. Lastly the examples section 

shows sample loops matching the specified pattern. 

The pattern depicted in Figure 3 is named Indexed Accumulating. 

It describes a while loop that iterates over the elements of a sequence 

using an index and accumulates them by using a binary accumulation 

operator such as +, *, and string concatenation. In the loop body 

abstracted to an intended function, the element of the sequence s at 

the current index i (i.e., s@i) is accumulated to the result variable r 

using an accumulator operator ⊕ (i.e., r := r ⊕ s@i), and the index 

variable i is set to a new value E(i), an expression written in terms of 

i. The loop iterates as long as the loop condition B(i), a Boolean 

expression written in term of i, holds. The intended function of this 

loop states that the final of the result variable r is its initial value 

accumulated or combined with all the elements of s starting at index i 

to index N, where N is the value of i just before the loop condition 

becomes false. This pattern is applicable when the sequence is an 

array, a string, and an index-based collection like a Java List class. It 

has several variations including Conditional Accumulating in which 

an element is accumulated only if it satisfies a certain condition, e.g., 

being a positive value. If a sequence or collection provides an iterator 

(cf. Iterator pattern in [4]), its values can be merged or accumulated 

by using its iterator operations rather than indexing, and the Iterated 

Accumulating pattern is for such loops. 

B. Sample Patterns 

To identify patterns, we studied a wide range of while loops from 

several different sources including computer programming textbooks, 

class programming assignments and projects, and well-known open 

source software. Through this study we were able to identify patterns 

of recurring while loops and documented them as specification 

patterns by generalizing their source code structures and formulating 

their intended functions. Below we describe a few representative 

patterns that we identified and documented.   
 

 
Figure 3: Indexed Accumulating 

 

One related pattern of the Indexed Accumulating pattern described 

previously is a pattern named Indexed Conditional Counting (see 

Figure 4) As hinted by its name, it represents a loop that counts the 

number of elements contained in a sequence that meets a certain 

condition. Its structure is very similar to that of the Indexed 

Accumulating except that instead of accumulating the elements of a 

sequence it accumulates 1’s for elements that satisfies a certain 

condition, thus counting the occurrences of elements in a sequence 

that satisfies the condition. In the pattern, the notation C(s@i) 

denotes a Boolean expression that checks if the i-th element of the 

sequence s satisfies a certain condition; if there is no such a condition 

imposed, the loop calculates the cardinality of the sequence.  

 

 
Figure 4: Indexed Conditional Counting 

 

Another recurring pattern of while loops is searching for an 

element in a collection. For example, a while loop may look for any 

negative value contained in a list. We named this pattern Indexed 

[r, i := r + ∑ j=i..N  C(s@j) ? 1: 0, anything] 

while (B(i)) { 

[r, i := r + (C(s@i) ? 1: 0), E(i)] 

} 

Name: Indexed Accumulating 

Purpose: Accumulate elements of a sequence 

Description: A loop combines the values of a sequence to a 

single value by using various accumulation operations such as 

addition, multiplication, and concatenation. An index is used to 

iterate over the elements of a sequence. The result is of the same 

type as that of the elements of the sequence.  

Structure:  

 [r, i := r ⊕ ∑⊕ j=i..N  s@j, anything] 

while (B(i)) { 

 [r, i := r ⊕ s@i, E(i)] 

 } 

 where 

      s: sequence whose elements are accumulated 

  r: result variable accumulating elements of s 

   i: index and loop variable 

   s@i: i-th element of s 

       ⊕: accumulation operator such as +, -, and * 

   B(i): Boolean expression with a variable i 

   E(i): expression with a variable i 

   N: last i prior to loop termination such that B(i) 
 

Applicability:  arrays, strings, indexable collections, etc. 

Variations: Conditional Accumulating, ... 

Related patterns: Iterated Accumulating,  … 

Examples: 

 [r, i := r + ∑ j=i..a.length-1 a[i], anything] 

while (i < a.length) { 

    [r, i := r + a[i], i + 1] 

   r = r + a[i]; 

   i++; 

} 

While-loop 1  

While-loop 2  

While-loop 3  

Pattern 1  

Pattern 2  

Intended 

function 1  

Intended 

function 2  
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Searching (see Figure 5). The intended function states that the final 

value of the result variable r is the element of the sequence s at index 

j, denoted by s@j, if the element at index j satisfies the searching 

condition C, i.e., C(s@j); if there is no such a j, it is the initial value 

of r. Note that the loop condition B(i, r) may refer to the result 

variable r to allow an early termination of the loop, e.g., as soon as an 

element is found. 

 

 
Figure 5: Indexed Searching 

 

A loop is also frequently used to select or collect elements from a 

collection. We documented this use of while loop as a family of 

patterns, and one particular pattern named Iterated Collecting is 

shown in Figure 6. This particular pattern is for selecting elements of 

a collection by accessing them using an iterator and transforming 

them to construct a new collection. Since there are many different 

implementations of iterators, we abstract away from implementation 

details of iterators in our pattern documentation by introducing 

abstract iterator operations such as hasNext, current, and advance. 

There are several variations of this pattern, e.g., collecting only those 

elements that meets a particular selection criterion and selecting 

elements without transforming them.  

 

 
Figure 6: Iterated Collecting 

 

 
Figure 7: Variation of the Accumulating pattern 

 

All the patterns introduced and described so far are for accessing 

and manipulating elements of collections such as arrays, strings, 

sequences, streams, and files. However, a loop doesn’t need to access 

or manipulate a collection, and another typical use of it is to iterate 

an indefinite number of times. A while statement, for example, can be 

used to calculate the factorial of a positive number. Figure 7 shows a 

variation of the Accumulating pattern described earlier along with its 

instantiation for factorial code. In fact, it is a generalization of the 

Indexed Accumulating pattern in that each occurrence of reference to 

the i-th element of the sequence, s@i, is abstracted and generalized to 

an expression E(i). We will discuss more on pattern generalization 

and specialization in the following subsection. 

C. Pattern Classification and Hierarchy 

While analyzing many different while loops, we soon learned that the 

structure of a pattern is determined by three factors: (a) how the value 

to be manipulated is obtained, (b) how the value is manipulated, and 

(c) how the termination of the loop is determined. These three factors 

are mostly orthogonal, and thus most combinations of them produce 

new patterns (see Figure 8). For example values can be retrieved 

from collections like arrays, strings, streams, and files using indices, 

iterators, or in ad-hoc fashions, or they can be created on the fly 

without retrieving stored ones. There are many different 

manipulations of values possible, e.g., accumulating (conditionally or 

unconditionally and with or without transformation), searching, 

counting, selecting, and collecting. The loop conditions may be 

written in terms of indices, iterators, values being manipulated, and 

others. Therefore, we can define our patterns compositionally by 

picking up one particular possibility for each of these three factors. 

For example, the Indexed Searching pattern is a composition of an 

index-based acquisition, a search manipulation, and an index-based 

termination. 

 

 
Figure 8: Orthogonal factors of patterns 

 

As mentioned previously, one key requirement of patterns is to make 

them as general as possible and at the same time as specific as 

possible. This is to make patterns as widely applicable as possible 

and at the same time to derive accurate and detailed intended 

functions upon their applications. To address this requirement we 

generalized and specialized patterns to produce a pattern hierarchy. 

The idea is to have abstract or general patterns to cover a wide range 

of while loops but with coarse-grained intended functions. Concrete 

or specialized patterns will cover a limited range of while loops but 

will provide more accurate and detailed intended functions. In the 

previous subsection, for example, an index-based access of elements 

was denoted by an expression s@i, where s is a sequence and i is an 

index, and an iterator-based access was denoted by an expression 

i.current(). We can unify these two expressions to come up with a 

more abstract expression E(i) and use this abstract expression to 

define a pattern, thus resulting in a more abstract, general, and widely 

applicable pattern. Applying such a pattern, however, requires more 

[r, i := r ⊕ ∑⊕ j=i..N  E1(j), anything] 

while (B(i)) { 

[r, i := r ⊕ E1(i), E2(i)] 

} 

 

// Instantiated with bindings 

//   × for ⊕, ∏ for ∑⊕, 1 for N, i > 0 for B(i), i for E1(i), 

//   i – 1 for E2(i) 

// [r, i := r × i × (i-1) × (i-2) × ... × 1, anything] 

while (i > 0) { 

 // [ r, i = r × i, i – 1] 

   r = r * i; 

   i--; 

} 

[r, i := r ∪ {e ∈ Ci • E(e)}, anything] 

while (B(i.hasNext())) {  

[r, i := r ∪ {E(i.current())}, i.advance()] 

} 

where  

  ∪: collection merge operation such as union, concatenation, etc. 

i: iterator of the collection whose elements are to be collected. 

i.hasNext(): true only if the iterator i has more elements 

i.current(): current element of the iterator i 

i.advance(): move to the next element of the iterator i 

Ci: all elements available from the iterator i 

[r, i := (∃j=i..N C(s@j)) ? (s@k s.t. k∈i..N ∧C(s@k)) : r, anything] 

while (B(i, r)) { 

[r, i := C(s@i) ? s@i : r, E(i)] 

} 

manipulation 
index 

iterator 

ad-hoc 

create 

accumulation  search  selection  collection 

value 

iterator 

index 

other 

termination acquisition 



 

5 

 

work, as a correct instantiation of an abstract expression like E(i) may 

not be straightforward for both matching a pattern and deriving an 

intended function from the matched pattern. 

 

Conditional

Accumulating

Conditional

Selecting
Collecting

Searching

Counting

Conditional

Counting

Accumulating

Conditional

Collecting

Selecting

Conditional

Accumulating

Conditional

Selecting
Collecting

Searching

Counting

Conditional

Counting

Accumulating

Conditional

Collecting

Selecting
 

Figure 9: Pattern hierarchy 

 

Figure 9 shows a simplified version of a pattern hierarchy focusing 

on the manipulation of values, not their acquisitions or loop 

termination. The Selecting pattern, for example, is a special 

Conditional Selecting without any imposed condition as well as a 

special Collecting without any transformation of values. As 

mentioned earlier and shown in the figure, a higher level pattern such 

as Conditional Accumulating is more general and thus has an 

intended function applicable to a wide range of while loops. A lower 

level pattern such as Selecting is more specific and thus has a more 

detailed intended function with a narrow scope of applications. A 

general guideline is to match patterns starting from the root of the 

tree and move downward to find as specific pattern as possible. 

V. PATTERN APPLICATIONS 

We conducted a preliminary experiment to evaluate the effectiveness 

of our patterns by applying them to industrial strength open-source 

code. We chose Apache HTTP Server 2.0.65 that has about 486 C 

files with over 1500 while loops [10]. We picked up a dozen different 

while loops from the Apache source code and applied our patterns. 

For pattern matching we used a decision tree similar to the one 

shown in Figure 10. The decision tree allows us not only to perform 

pattern matching systematically and semi-automatically but also to 

identify general patterns first and then move toward more specific 

ones. Below we describe a few simple but interesting while loops 

from the Apache source code to illustrate applications of our patterns. 

 The most common use of while statements in the Apache source 

code is to manipulate pointer-based data structures such as linked 

lists. Shown below is one such a while loop that is simple but shows 

an interesting aspect of the application of our patterns. It traverses a 

linked list pointed to by f and changes the r field of each node if its 

current value is equal to from.  

 

while (f) { 

if (f->r == from)  

     f->r = to; 

f = f->next; 

} 

 

Even if the loop itself is very simple, specifying its behavior is a 

bit involved because it may mutate not only a single node pointed 

to by f but also potentially all the nodes reachable from f. Thus, its 

intended function needs to capture the side effect caused to the 

whole list, not just to a single node denoted by the pointer f. For 

this, we introduce a notation to denote the whole list and 

manipulate a pointer-based list data structure abstractly. 

 

 
Figure 10: Using patterns 

 

L<f: list consisting of all the nodes preceding f; whole list if f is null 

Lf>: list consisting of f and all the trailing nodes; empty if f is null 

〈〉: list comprehension, e.g., 〈f〉 for a singleton list consisting of f 

+: list concatenation, e.g., L<f + 〈f〉 

f{r := e if b}: node f with its r field set to e if b is true 

  

 Using this notation we first calculate and document the intended 

function of the loop body as follows. 

 

while (f) { 

 // [L<f, f := L<f  + 〈f{r := to if r == from}〉, f->next] 

        if (f->r == from)  

      f->r = to; 

    f = f->next;  

} 

 

 Note that the intended function of the loop body can also be 

written as [f->r, f := (f->r == from) ? to : f->r, f->next]. However, 

this formulation doesn’t capture the side effect of the statements in 

terms of the whole list and thus will make it difficult to prove the 

correctness of the whole loop. Once the intended function of the loop 

body is formulated and documented, we can match the annotated 

code to one of the patterns. Using the decision tree mentioned earlier 

we can match it to the Iterated Collecting pattern (see Figure 10). 

Although this matching doesn’t seem possible at first, it should be 

apparent with the following unification of iterator operations. 

 

Pattern Code 

i.current() f 

i.advance() f = f->next 

i.hasNext() !f 

 

 Once a matching pattern is found, we can instantiate its intended 

function to derive the intended function for the code as follows, 

where the notation I(x/y) denotes replacing every free occurrence of y 

in the intended function I with an x. 

 

 [r, i := r ∪ {e ∈ Ci • E(e)}, anything] (r/L<f, i/f, Lf>/Ci, +/∪, 〈〉/{}, 

  E(e)/e{r := to if r == from}) ≡ 

  [L<f, f := L<f  + 〈n ∈ Lf> • n{r := to if r == from}〉, anything] 

 

 The derived intended function states that every node reachable 

from f now has a new final value (to) for its r field if its initial value 

is from, and it matches our informal understanding of the loop. 

 Another while loop from the Apache source code is shown below. 

It iterates over the nodes of a list to check if there is a node with a 

particular name. The code matches our Iterated Searching pattern, 
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and the matching produces the intended function annotated in the 

code. The Iterated Searching pattern is similar to the Indexed 

Searching pattern described in the previous section except that 

elements are accessed using an iterator. As before we need to refer to 

the whole list, and for this we introduce a special notation Lfilter to 

denote the list consisting of the node pointed to by filter and all the 

nodes reachable from it. 

 

 /* [found, filter := (∃n∈Lfilter• f(n)) ? true: found, anything] where 

     *   Lfilter = list consisting of filter and all nodes reachable from it 

  *   f(n) = !strcasecmp(name, n->frec->name) */ 

while (!found && filter) { 

 // [found, filter  := f(filter) ? true : found, filter->next]  

        if (!strcasecmp(name, filter->frec->name))  

            found = true; 

        filter = filter->next; 

 } 

 

 In the Apache source code, we also found while loops that refer to 

arrays. The following is one such a loop, and its loop body is 

annotated with its intended function written using a conditional 

concurrent assignment of the form [B1→A1 |… Bn→An] that specifies 

different functions (Ai’s) based on conditions (Bi’s)[2].  

 

while (name[i] != '\0') { 

 /* [C(i) → i := i + 2  

  *  | ¬C(i) → w, i, name[w-1] := w + 1, i + 1, name[i]]   

     *  where C(i) is the if condition below. */ 

        if (name[i] == '.'  && IS_SLASH(name[i+1]) 

        && (i == 0 || IS_SLASH(name[i – 1])))  

        i += 2; 

    else 

       name[w++] = name[i++]; 

} 

 

 Its intended function is not obvious, but our decision tree and 

patterns can guide us to it. For example, the values to be manipulated 

in the loop are retrieved from an array using an index, selected on a 

condition, and stored without being transformed. This leads us to the 

Indexed Conditional Selecting (or its generalizations) as a possible 

pattern. The pattern’s intended function and our insight on the code 

lead us to the following intended function, where s[i..j] denotes a 

substring of s from index i to j, inclusive. 
 

[name, i, w := name[0..w-1] + shifted name[w..], anything, 

   w + num of shifted chars] 
 

 For more rigorous formulation, one need to state precisely what 

one means by a shifted name[w..]; informally, it’s the suffix of name 

starting from index w in which the characters of name starting from 

index i that doesn’t match the specified patterns (e.g., “./”) were 

shifted over those characters matching the patterns. 

 Even if our experiment is limited in the number of while loops, the 

applications and the implementation languages that we considered, it 

showed a promising result. We often were able to systematically 

derive very detailed and precise intended functions. Most non-trivial 

loops, however, required a varying degree of insight and work to 

come up with accurate intended functions for them. Nevertheless, the 

pattern decision tree helped us to analyze the code systematically and 

the matched patterns helped us find correct intended functions for 

these loops by providing skeletal intended functions. Our patterns 

also detected certain mistakes that we made when formulating 

intended functions for both the loop body and the whole loope.g., 

documenting side-effect caused only to a single node, not to the 

whole data structure. In fact we made such mistakes several times 

during this experiment, and our patterns exposed and revealed them. 

We also learned a few shortcomings of our patterns through this 

experiment. Our patterns, for example, don’t capture a certain 

common use of while loops very well, e.g., mutating the collection 

data structure that is being iterated over. These loops can be certainly 

abstracted to selecting or collecting patterns as done in this paper, but 

more direct and concrete patterns would be preferred and appreciated 

by the users of our patterns. Some of our patterns may be further 

specialized to address language-specific features and constructs such 

as C/C++ pointers and pointer-based data structures.  

VI. CONCLUSION 

In this paper we proposed specification patterns to address the 

problem of formulating specifications of loop statements such as 

while statements, which is recognized as one of the most difficult part 

of formal program verification. Our approach was initially inspired 

by software design patterns [4], however the key difference and thus 

contribution of our patterns compared with design patterns and other 

specification patterns (e.g., [6]) is that our specification patterns are 

compositional and hierarchical. Each pattern consists of three 

orthogonal componentsvalue acquisition, value manipulation, and 

loop conditionand thus is assembled by selecting an appropriate 

combination of these building blocks. Our patterns are classified into 

a pattern hierarchy. A generalized pattern is applicable to a wide 

range of loops, but its specification is more abstract. A specialized 

pattern, on the other hand, is more specific with limited applicability 

but provides a more accurate specification. The pattern hierarchy 

allows one to match patterns starting from more general ones to more 

detailed. The work reported in this paper is an on-going research, and 

thus the number of patterns identified and documented is limited. 

Nevertheless, a preliminary experiment showed a promising result in 

that the patterns were able to derive specifications for a representative 

set of while loops found in well-known open source code. 
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