

Extending OCL to Better Express

UML Qualified Associations

Alla Dove, Aditi Barua and Yoonsik Cheon

TR #14-20

March 2014

Keywords: formal specification, constraints, map, qualified association, OCL, UML.

1998 CR Categories: D.2.1 [Software Engineering] Requirements/Specificationslanguages; D.2.4

[Software Engineering] Software/Program Verificationclass invariants, formal methods, programming

by contract; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reasoning about

Programsassertions, invariants, pre- and post-conditions, specification techniques.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

1

Abstract—A qualified association in the Unified Modeling

Language (UML) is an association that allows one to restrict the

objects referred in an association using a key called a qualifier. A

qualified association can appear in a constraint written in the

Object Constraint Language (OCL) to specify a precise UML

model. However, the OCL notation fails to provide appropriate

support for expressing certain types of constraints written using

qualified associations. In this paper we first describe a deficiency

of OCL in expressing qualified associations and then propose a

small extension to OCL to make it more expressive. The key idea

of our extension is to view a qualified association as a map and

provides a language construct to manipulate it as a first class

entity in OCL. For this, we also extend the OCL standard library

to introduce a wide range of map-specific collection operations.

Our extension makes OCL not only more expressive but also

amenable to a more direct translation to programming languages

for various implementation uses of OCL constraints.

Keywords— Formal specification, constraints, map, qualified

association, OCL, UML.

I. INTRODUCTION

he Object Constraint Language (OCL) is a formal, textual

notation designed specifically for use with UML diagrams

such as class diagrams to specify additional business rules or

constraints that the diagrams have to satisfy [9]. While it

enables software developers to construct more precise UML

models by reducing ambiguities occurring in diagram-based

models, its notation lacks expressiveness for certain UML

concepts such as qualified associations. A qualified association

is an association that allows one to restrict the objects referred

in an association using a key called a qualifier [8]. An optional

qualifier at an association end enables the indexing of many

associations between classes. It partitions associations into

key-to-value mappings, where the key comes from the qualifier

and the value is given by the associated class.

 In this paper we first point out a deficiency of OCL in its

support for qualified associations. A qualified association can

be conceptually viewed as a key-to-value map, but OCL

doesn’t provide a notation for manipulating it as a map; its

notation is only for traversing associated classes through

qualified associations. In other words, a qualified association

is not a first-class entity in OCL, and this limits its

expressiveness in writing constraints on or using qualified

associations. We then propose a small extension to OCL to

improve its expressiveness. Our extension consists of an

extension to the notation and a new standard collection library

class. We extend the OCL notation for navigating a qualified

association to view it as a key-to-value map, and our new

collection library class provides a wide range of operations to

manipulate this map. Our preliminary evaluations show that

our small extension makes OCL more expressible but also the

resulting constraints more readable, understandable and

directly translatable to various programming languages for

implementations [3] [5].

 The remainder of this paper is structured as follows. In the

next section we explain OCL by applying it to a small example

that will be used throughout this paper. In Section III we

identify and describe a deficiency of OCL in supporting

qualified associations. In Section IV we explain our approach

of extending OCL to better support qualified associations. Our

extension includes both the notation and the collection library.

In Section V we apply our extension to our running example

and produce a series of small OCL specifications. In Section

VI we conclude this paper with a concluding remark.

II. THE OBJECT CONSTRAINT LANGUAGE

 The Object Constraint Language (OCL) is a textual,

declarative notation used to specify constraints or rules that

apply to UML models [9]. OCL can play an important role in

Extending OCL to Better Express UML

Qualified Associations
Alla Dove, Aditi Barua and Yoonsik Cheon

 Department of Computer Science

 The University of Texas at El Paso

 El Paso, Texas, U.S.A

alladove@gmail.com; abarua@miners.utep.edu; ycheon@utep.edu

T

Figure 1: Example UML class diagram

2

model-based software development because UML diagrams

generally lack sufficient precision to enable the transformation

of a UML model to complete code [5]. A UML diagram alone

often cannot express rich semantics of and all relevant

information about an application. As an example, consider the

class diagram depicted in Figure 1 that models an on-line test-

taking application. The application allows students to take

tests consisting of multiple choice questions. Each question

has two to five options, one of which is a correct answer.

However, the class diagram does not express the fact that the

answer to a question should be one of its options. OCL allows

one to precisely specify this kind of additional constraints on

UML modeling elements. It is based on set theory and

predicate logic and supplements UML diagrams by providing

expressions that have neither the ambiguities of natural

language nor the inherent difficulty of using complex

mathematics. The above constraint, for example, can be

written in OCL as a class invariant as follows.

context Question

inv: options→includes(answer)

It states that for each question its options should include its

answer. The collection operation includes tests if an element

appears in a collection; as shown, an OCL collection operation

is invoked using an arrow (→) notation. OCL supports a wide

range of collection operations to write sophisticated queries

and constraints by navigating associations and manipulating

associated objects. For example, we can specify an operation,

say calcAverage, which calculates the average of student’s test

scores by using such collection operations as size, collect, and

sum as follows.

 context Student::calcAverage(): Real

pre: testTaken→size() > 0

post: result = testTaken→collect(score)→sum()

 / testTaken→size()

In OCL an association class (e.g., TestTaken) that is part of

an association relationship between two other classes can be

referred to by using its name.

In UML, an association may have an optional qualifier at an

association end to enable the indexing of many associations

between classes [8]. It allows partitioning associations into

key-to-value mappings, where the key comes from the qualifier

and the value is given by the associated class. A qualified

association is the UML equivalent of a programming concept

variously known as associative arrays, maps, and dictionaries.

In Figure 1, for example, the association between TestTaken

and Option is a qualified association with a qualifier q of type

Question. Here the keys are objects of type Question and the

values are objects of type Option. It models student responses

to test questions by stating that for each question q there may

be zero or one option, the answer provided by a student. The

object diagram shown below depicts one possible object

configuration that conforms to the class diagram. A test e1 has

only one question q1 consisting of two options o1 and o2, and a

test taken by a student, t1, says that the student’s response to

the question q1 is the option o2.

e1: Test q1: Question

o1: Option

o2: Option

t1:

TestTaken
q1

One can refer to a qualified association when writing OCL

constraints. For example, we can define the value of the

derived attribute score of the TestTaken class as follows.

context TestTaken::score: Real

derive: tests.questions

 →select(q| self.response[q] = q.answer)→size())

 / tests.questions→size()

The expression self.response[q] denotes an Option object

associated with the TestTaken object self through the qualifier

q; if a qualifier is omitted, e.g. self.response, it denotes all the

associated objects regardless of their qualifiers. The select

operation selects all the test questions that are correctly

answered. In the following section we will show more OCL

constraints written using qualified associations to describe a

shortcoming of the OCL support for qualified associations.

III. THE PROBLEM

 As shown in the previous section, OCL provides a special

notation to navigate through a qualified association. One needs

to specify the value for a qualifier to the navigation in square

brackets, e.g., response[q], to obtain the associated objects. If

the value for a qualifier is left out from the navigation, e.g.,

response, it denotes all the associated objects regardless of the

qualifier value. The way to navigate through a qualified

association is consistent with that of an unqualified association

in that both produce a collection of associated objects that

could be manipulated using various collection operations.

 However, interpreting a qualified association as an

unqualified association by specifying a qualifier value limits

the expressiveness of the OCL language, as a qualified

association cannot be viewed or manipulated as a set of key-

value pairs, e.g., one cannot write constraints on the keys (i.e.,

qualifier values). Let’s consider our running example of the

on-line test-taking application shown in Figure 1 in Section II.

One important domain constraint for this application is that

student’s responses to test questions should be the options of

the questions, which may be written as a class invariant as

follows.

3

context TestTaken

inv: tests.questions→forAll(q|

 not self.response[q].oclIsUndefined()

 implies q.options→includes(self.response[q])

The forAll iterator operation is similar to a universal

quantifier in logic and asserts that a predicate holds for each

element of a collection. The invariant states that for each

question of the test taken if a response is provided by a

student, it should be one of the options of the question. The

invariant constraint restricts the responses a student can

provide to the options of the questions by putting a constraint

on the value side of the key-value pairs of a qualified

association. However, it doesn’t impose any constraints on the

key side of the qualified association. As shown in Figure 2, for

example, it doesn’t prevent a student from answering a

question that is not included in the test; q2 is not in the test and

thus the qualified association between t1 and q2 trivially

satisfies the invariant. The set of test questions answered by a

student can be larger than the set of questions of the test taken.

One possible fix would be to introduce another constraint to

disallow student-provided responses to the questions not

included in the test.

context TestTaken

inv: Question.allInstances()→forAll(q|

 not tests.questions→includes(q)

 implies self.response[q].oclIsUndefined())

The invariant is written using the allInstances operation that

denotes the set of all instances of a type, and states that if a

question q is not a question of the test taken, response[q] is

undefined. Although this invariant constrains the values of the

key-value pairs of a qualified association, its real purpose or

intention is to indirectly constrain the keys or qualifier values

of the association. This indirect, convoluted way of writing

assertions not only confuses the readers, especially, about the

purposes of the assertions but also the resulting constraints are

long and complex, making them less readable, understandable

and amenable to formal manipulations and treatments. In

general, more direct and concise assertions are preferred. In

this particular case, a better solution would be to write a direct

statement requiring the qualifier values be a subset of the test

questions, e.g., dom f ⊆ tests.questions, where f denotes the

key-value mapping of the qualified association and dom

denotes its keys. In the following section we explain our

approach for writing such a direct and concise constraint on a

qualified association.

IV. OUR APPROACH

As explained in the previous sections, a qualifier is a

property of a binary association and is an optional part of an

association end [8]. A qualifier holds a set of association

attributes which model the keys that are used to index a subset

of relationship instances. Conceptually, a qualified association

thus can be viewed as a map from qualifier values (keys) to

associated objects (values). When navigating through a

qualified association, however, this map view is lost because it

produces only the associated objects. This is the reason that

OCL lacks expressiveness in writing constraints on or using

qualified associations. The key idea of our approach is to make

a qualified association a first class entity in OCL by exposing

it as a map and allowing one to query and manipulate the map

directly. For this we make a small extension to the OCL

notation to denote the qualified association map and introduce

a new collection library class to model a map.

A. An Extension to OCL Notation

In OCL, to navigate through a qualified association one can

append to the navigation an optional qualified value enclosed

in a pair of square brackets, e.g., response[q], to obtain the

associated objects; a navigation with no qualified value (e.g.,

response) denotes all the associated objects regardless of their

qualifier values. We propose a small extension to this OCL

notation to denote the map itself modeling a qualified

association, that we call a qualified association map. Our

proposed notation is to use an empty pair of square brackets,

e.g., response[] (see Figure 3).

Once a qualified association map is obtained by using the

proposed notation, it can be queried and manipulated by using

a wide range of collection operations (refer to Section IV.B for

new operations). For example, we can easily express the

previously-mentioned key constraint, dom f ⊆ tests.questions

as: tests.questions→includesAll(answers[]→keys()), where

Figure 3: Notation for referring to qualified associations

e1: Test q1: Question

q2: Question

o1: Option

o2: Option

o3: Option

o4: Option

t1:

TestTaken

q1

q2

Figure 2: Sample object configuration

4

keys is a new collection operation introduced to obtain the

domain of a qualified association map (see Section IV.B).

The proposed new notation does not contradict or overwrite

the standard OCL notation. It is merely a small addition, which

can be applied to denote a qualified association map and to

express constraints on a qualified association when used in

conjunction with new collection operations (see the following

subsection). In summary, while the standard OCL notation

allows one only to navigate through a qualified association,

i.e., by denoting the values of key-value pairs of a qualified

association map, our extension allows one to query and

manipulate it as a map itself, i.e., a set of key-value pairs.

B. An Extension to OCL Standard Library

Alongside the new notation we also propose to extend the

OCL standard library to introduce a new collection type to

model a qualified association map. The OCL standard defines

one abstract collection type named Collection and four

concrete collection types named Set, OrderedSet, Bag, and

Sequence [6]. The Collection type is a common supertype of

all the concrete collection types and defines operations

common to all collection types. Additionally, each concrete

collection type has a number of specific collection operations

not shared among all concrete collection types.

We propose to introduce a new collection type named Map.

This collection type provides a model for a qualified

association map. A map is a set of key-value pairs and cannot

have duplicate keys, meaning that each key can map to at most

one value. A key-value pair is represented as a tuple of type

Tuple(key: K, value: V) (see Appendix A.2). Both Set and

Map are unique, unordered collections of elements. The only

difference between them is that Map consists of tuples. For

that reason, we also propose to make the Map a direct subtype

of Set. This will ensure for Map to have all the operations of

Collection and Set without duplicating them.

Another strong argument for introducing this new collection

type is that when translating a UML qualified association to an

implementation, an associative array or map is frequently used

as a concrete representation to implement the required

functionality [1].

The usual collection, iteration and Set-specific operations

such as size, includes, includesAll, isEmpty, select, collect,

forAll, union, intersection, including, and asBag are defined

for Map, as they are inherited from Collection and Set.

However, elements are assumed to be of type Tuple(key: K,

value: V). In addition to these common collection, iteration

and Set-specific operations, Map defines many new map-

specific collection operations, and Table 1 shows a list of

representative operations; refer to Appendix A.2 for a

complete list of map-specific collection operations and their

specifications. In the following subsection we present a series

of small examples to illustrate the use of these new collection

operations.

V. APPLICATION

A. Examples

Using our new notation and collection operations we can

easily express the constraint discussed in Section III that

motivated our work. Essentially we need to limit the set of

keys of the qualified association map to the test questions as

shown below.

context TestTaken

inv: tests.questions→includesAll(response[]→keys())

inv: response[]→forAll(p|p.key.options→includes(p.value))

 The first invariant expresses the motivating constraint by

stating that the set of test questions is a superset of the keys of

the qualified association map. That is, only questions included

in the test can have responses. The second invariant asserts

that the student-provided responses should be the options of

the test questions. The forAll collection operation is used to

constrain each key-value pair of the qualified association map.

It would be instructive to compare these new constraints with

the ones presented in Section III, which is copied below.

context TestTaken

inv: Question.allInstances()→forAll(q|

 not tests.questions→includes(q)

 implies self.response[q].oclIsUndefined())

inv: tests.questions→forAll(q|

 not self.response[q].oclIsUndefined()

 implies q.options→includes(self.response[q])

The new constraints are not only more concise but also

easier to read and understand, as they capture and express the

core of the constraints directly, e.g., a relationship between

two sets, the test questions and the keys of the qualified

association map. We expect such direct constraints to be more

amenable to formal and informal treatments of constraints,

Table 1: Map-specific collection operations

Operation Description

including(k,v) Map with (k, v) pair added

excludingKey(k) Map with key k removed

includesKey(k) Is k mapped to a value?

includesValue(v) Is v mapped by a key?

keys() Domain of self

values() Range of self

apply(k) Application of self to k, i.e., self[k]

override(k,v) Map with (k,v) pair added or replaced

restrictDomain(d) Domain restriction by keys d

restrictRange(r) Range restriction by values r

compose(m) Relational composition of self and m

5

e.g., formal verification and transformation to code.

In Section II we defined the value of the derived attribute

score of the TestTaken class. We can simplify its formulation

and rewrite it by using our extended notation as follows.

context TestTaken::score: Real

derive: response[]→select(p|p.key.answer=p.value)→size())

 / tests.questions→size()

The select iteration operation defined in OCL returns a

collection with all the elements of the receiver that meets a

specified condition. In this example it returns the set of correct

responsesi.e., question-and-option pairs; as specified in the

condition of the select operation, a response p is correct if its

value (option) is equal to the answer of its key (question).

Below we show several operations of the TestTaken class

that can be easily and naturally specified in our extended

notation along with new map-specific collection operations.

context TestTaken::isAnswered(q: Question): Boolean

post: result = response[]→includesKey(q)

context TestTaken::unanswered(): Set(Question)

post: result = tests.questions – response[].keys()

context TestTaken::incorrectlyAnswered(): Set(Question)

post: result = response[]→select(p|p.key.answer <> p.value)

context TestTaken::responses(): Map(Question, Option)

post: result = response[]

context TestTaken::addResponse(q: Question, a: Option)

pre: tests.questions→includes(q)

pre: q.options→includes(a)

post: response[] = response[]@pre→including(q, a)

 The includesKey operation used in the specification of the

isAnswered operation tests whether a given key is defined by a

map. The keys operation in the second specification returns the

set of all keys defined by a map. The specifications of the last

two operations are interesting, as they clearly show the benefit

of querying and manipulating a qualified association as a map

itself. For example, we can easily specify the behavior of such

mutation operations as addResponse that changes the values of

a qualified association. The new value of the qualified

association response is its old value with the given new

response added; the including operation appearing in the post-

condition adds a new key-value pair to a map.

 As the last example we specify below the takeTest operation

of the Student class that models a test taking by a student. The

operation takes a test to be taken by the student and the student

responses to the test, a map of question-option pairs. The

operation adds the given test to the set of tests taken by the

student and links a new TestTaken object to the newly created

Student-Test association.

context Student::takeTest(t: Test, a: Map(Question,Option))

pre: not tests→includes(t)

pre: t.questions→includesAll(a→keys())

pre: a→forAll(p| p.key.options→includes(p.value))

post: tests = tests@pre→including(t)

post: testTaken→exist(tt| tt.oclIsNew() and

 tt.student = self and tt.test = t and tt.response[] = a)

post: testTaken→includesAll(testTaken@pre)

post: testTaken→size() = testTaken@pre→size() + 1

 The first precondition is to ensure that a given test is not

already taken by the student, and the other preconditions are

for establishing the class invariant of the TestTaken class.

• The set of questions in the map of the student’s

responses should be a subset of all questions of the test

to be taken.

• For each question in the map, the student’s response is

one of the options of the question.

The first postcondition states that the given test is added to

the set of tests taken by the student. The second is to assert that

a new TestTaken object is created and linked to the new

Student-Test association introduced by the first postcondition.

The other two postconditions are to assert that all the previous

Student-Test associations are still there and no new one is

added. The formulation of the postconditions is a bit

convoluted, as the creation of a new TestTaken object has to

be asserted indirectly; OCL does provides a direct and concise

way for modeling object creation [4].

B. Preliminary Evaluation

A formal evaluation of our proposed extension is pending

but a series of example constraints presented in the previously

subsection convince us that our extension makes the OCL

notation more expressive, readable, and understandable. For

example, there is no straightforward way to write the following

constraint using the standard OCL notation.

context TestTaken::isAnswered(q: Question): Boolean

post: result = response[]→includesKey(q)

It is because the standard doesn’t provide any notation for

referring to the qualified association relationship itself, its keys

when it is viewed as a map. Our finding is that in general

constraints written using our extended notation are more direct

and explicit especially when the constraints are on the

qualifiers of qualified association relationships. They are also

tend to be more concise and less convoluted.

A nice side benefit of our extension is the translation of

constraints to code for various uses of design constraints

6

during implementation, including transformation of models

into source code in model-driven development [5], runtime

constraint checks [3], and even verification and validation of

UML/OCL models [7]. In most cases, it is straightforward to

translate constraints to implementations; it can be done

systematically and thus fully automated. This is because

developers frequently use such data structures as associative

arrays and maps to reify qualified associations in their

implementations [1] and most modern programming languages

provide map data structures, e.g., Map in Java and C++,

associative arrays in PHP, and Dictionary in C#. In Java, for

example, the qualified association response[] can be easily

translated to a field of type Map<Question, Option>.

VI. CONCLUSION

In this paper we first pointed out a limitation of OCL in

supporting qualified associations and then proposed a small

extension to both the OCL notation and the standard collection

library. Our extension allows one to query and manipulate

qualified associations as key-values pairs that we call qualified

association maps. While a more rigorous evaluation is still

needed, a series of small example specifications written using

our extension shows that the notion of qualified association

maps not only improves the expressiveness of OCL but also

produces constraints that are in general more direct, concise,

readable, and amenable to various types of formal and

informal manipulations, e.g., translation to code. From this we

conclude that our extension meet the needs of both software

specifiers and programmers. Two most important contributions

of our work is that (1) we showed the need of OCL to provide

a better, more expressive way of wring constraints on or using

qualified associations and (2) we addressed this need by

proposing a small extension to the OCL notation and its

collection library.

REFERENCES

[1] D. H. Akehurst, W. G. J. Howells, and K. D. McDonald-Maier,

Implementing Associations: UML 2.0 to Java 5. Journal of Software and

Systems Modeling, 6 (1):3-35, 2006.

[2] C. Avila, et al., Runtime Constraint Checking Approaches for OCL, A

Critical Comparison, International Conference on Software

Engineering and Knowledge Engineering, July 1-3, 2010, pp. 293-398.

[3] Y. Cheon, et al., Checking Design Constraints at Run-time Using OCL

and AspectJ, International Journal of Software Engineering, 2(3):5-28,

December 2009.

[4] A. Hamie, et al., Reflections on the Object Constraint Language, The

Unified Modeling Language 98: Beyond the Notation, LNCS, vol. 1618,

pp. 162-172, Springer, 1998.

[5] K. Lano, Model-Driven Software Development with UML and Java.

Course Technology, 2009.

[6] Object Management Group, Object Constraint Language, version 2.3.1.

Jan. 2012. Available from http://www.omg.org/spec/OCL/.

[7] M. Richters and M. Gogolla, Validating UML Models and OCL

Constraints, The Unified Modeling Language 200, LNCS, vol. 1939, pp.

2650277, Springer, 2000.

[8] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling

Language Reference Manual, 2nd ed. Addison-Wesley, 2004

[9] J. Warmer and A. Kleppe, The Object Constraint Language: Getting

Your Models Ready for MDA, 2nd ed. Addison-Wesley, 2003.

ACKNOWLEDGEMENTS

The work of Dove is supported in part by the National

Science Foundation (NSF) Graduate Research Fellowship, and

the work of Barua and Cheon is supported in part by NSF

grant DUE-0837567. Any opinion, findings, and conclusions

or recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of NSF.

A. APPENDIX

A.1 An Extension to OCL Notation

 We extend the OCL notation for navigating a qualified

association. In OCL, the production rule representing a

navigation call expression [6] (Section 9.4.37) is defined in

terms of the production rule for navigating to an association

class [6] (Section 9.4.38).

AssociationClassCallExpCS ::= OclExpressionCS ‘.’

 simpleNameCS (‘[’ argumentsCS? ‘]’)? isMarkedPreCS?

AssociationClassCallExpCS ::=

 simpleNameCS (‘[’ argumentsCS? ‘]’)? isMarkedPreCS?

The production rule argumentsCS represents a sequence of

arguments [6] (Section 9.4.40), and our extension is to make it

optional (denoted by using a meta-symbol “?”). This allows us

to introduce a new expression like response[] to denote an

qualified association map. The optional production rule

isMarkerPreCS represents the marking @pre in an OCL

expression [6] (Section 9.4.39).

A.2 A New Collection Type, Map

 The Map type is a template type with two type parameters,

K for keys and V for values. A concrete map type is obtained

by substituting actual types for K and V, e.g., Map(Person,

Address). A map is a set of tuples of type Tuple(key: K, value:

V), mapping keys to values. A map cannot have duplicate keys

meaning that each key can map to at most one value.

 The Map(K,V) is a subtype of Set(Tuple(key: K, value: V))

and inherits all the collection operations defined by Collection

and Set-specific operations, including =, <>, size, includes,

excludes, count, includesAll, excludesAll, isEmpty, notEmpty,

union, intersection, including, excluding, asSequence and

asBag. However, such operations as max, min, and sum are not

defined for Map. The equality operation (=) and including

operations are redefined as follow.

= (m : Map(K,V)) : Boolean

post: result = (self→forAll(t| m→includes(t)) and

 m→forAll(t| self→includes(t)))

including(t: Tuple(key: K, value: V): Map(K, V)

The map containing all elements of self and e.

pre: self→excludesKey(e.key).

post: result→forAll(e | self→includes(e) or (e = t))

post: self→forAll(e | result→includes(e))

post: result→includes(t)

7

 Map defines the following new operations.

including(k: K, v: V): Map(K, V)

The map containing all elements of self and a k-v pair.

pre: self→excludesKey(k).

post: result→forAll(e | self→includes(e) or

 (e.key = k and e.value = v))

post: self→forAll(e | result→includes(e))

post: result→includes(Tuple(key = k, value = v))

excludingKey(k: Key): Map(K, V)

The map containing all element of self without those with k as

the key.

post: result→forAll(e | self→includes(e) and (e.key <> k))

post: self→forAll(e | result→includes(e) = (e.key <> k))

post: result→excludesKey(k)

includesKey(k: K): Boolean

True if k is mapped to a value by self, false otherwise.

post: result = self→exist(key = k)

excludesKey(k: K): Boolean

True if k is not mapped to a value by self, false otherwise.

post: result = self→forAll(key <> k)

includesValue(v: V): Boolean

True if a key is mapped to v by self, false otherwise.

post: result = self→exist(value = v)

excludeValue(v: V): Boolean

True if no key is mapped to v by self, false otherwise.

post: result = self→forAll(value <> v)

keys(): Set(K)

The domain of self.

post: result = self→collect(key)→asSet()

values(): Collection(V)

The range of self.

post: result = self→collect(value)

values(keys: Set(K)): Collection(V)

The relational image of a set of keys.

post: result =

 self→select(keys→includes(key))→collect(value)

apply(k: K): V

The application of self to k.

pre: self→includesKey(k)

post: result = (self→any(key = k)).value

override(map: Map(K,V)): Map(K,V)

Relational overriding.

post: result = map→iterate(t; acc: Map(K,V) = self|

 acc→excluding(t.key)→including(t.key, t.value))

restrictDomain(dom: Set(K)): Map(K,V)

Domain restriction.

post: result = self→select(dom→includes(key))

antirestrictDomain(dom: Set(K)): Map(K,V)

Domain anti-restriction.

post: result = self→select(dom→excludes(key))

restrictRange(ran: Set(V)): Map(K,V)

Range restriction.

post: result = self→select(ran→includes(value))

restrictRange(ran: Set(V)): Map(K,V)

Range anti-restriction.

post: result = self→select(ran→excludes(value))

compose(map: Map(V,V2)): Map(K,V2)

Forward relational composition.

post: result = self→iterate(t; acc: Map(K,V) = Map()|

 if map→includesKey(t.value)

 then acc→including(t.key, map→apply(t.value))

 else acc)

composeBackward(map: Map(V,V2)): Map(K,V2)

Backward relational composition.

post: result = map→iterate(t; acc: Map(K,V) = Map()|

 if self→includesKey(t.value)

 then acc→including(t.key, self→apply(t.value))

 else acc)

