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Abstract—A qualified association in the Unified Modeling 

Language (UML) is an association that allows one to restrict the 

objects referred in an association using a key called a qualifier. A 

qualified association can appear in a constraint written in the 

Object Constraint Language (OCL) to specify a precise UML 

model. However, the OCL notation fails to provide appropriate 

support for expressing certain types of constraints written using 

qualified associations. In this paper we first describe a deficiency 

of OCL in expressing qualified associations and then propose a 

small extension to OCL to make it more expressive. The key idea 

of our extension is to view a qualified association as a map and 

provides a language construct to manipulate it as a first class 

entity in OCL. For this, we also extend the OCL standard library 

to introduce a wide range of map-specific collection operations. 

Our extension makes OCL not only more expressive but also 

amenable to a more direct translation to programming languages 

for various implementation uses of OCL constraints. 

 
Keywords— Formal specification, constraints, map, qualified 

association, OCL, UML. 

I. INTRODUCTION 

he Object Constraint Language (OCL) is a formal, textual 

notation designed specifically for use with UML diagrams 

such as class diagrams to specify additional business rules or 

constraints that the diagrams have to satisfy [9]. While it 

enables software developers to construct more precise UML 

models by reducing ambiguities occurring in diagram-based 

models, its notation lacks expressiveness for certain UML 

concepts such as qualified associations. A qualified association 

is an association that allows one to restrict the objects referred 

in an association using a key called a qualifier [8]. An optional 

qualifier at an association end enables the indexing of many 

associations between classes. It partitions associations into 

key-to-value mappings, where the key comes from the qualifier 

and the value is given by the associated class.  

 In this paper we first point out a deficiency of OCL in its 

support for qualified associations. A qualified association can 

be conceptually viewed as a key-to-value map, but OCL 

doesn’t provide a notation for manipulating it as a map; its 

notation is only for traversing associated classes through 

qualified associations. In other words, a qualified association 

is not a first-class entity in OCL, and this limits its 

expressiveness in writing constraints on or using qualified 

associations. We then propose a small extension to OCL to 

improve its expressiveness. Our extension consists of an 

extension to the notation and a new standard collection library 

class. We extend the OCL notation for navigating a qualified 

association to view it as a key-to-value map, and our new 

collection library class provides a wide range of operations to 

manipulate this map. Our preliminary evaluations show that 

our small extension makes OCL more expressible but also the 

resulting constraints more readable, understandable and 

directly translatable to various programming languages for 

implementations [3] [5]. 

 The remainder of this paper is structured as follows. In the 

next section we explain OCL by applying it to a small example 

that will be used throughout this paper. In Section III we 

identify and describe a deficiency of OCL in supporting 

qualified associations. In Section IV we explain our approach 

of extending OCL to better support qualified associations. Our 

extension includes both the notation and the collection library. 

In Section V we apply our extension to our running example 

and produce a series of small OCL specifications. In Section 

VI we conclude this paper with a concluding remark. 

 

 

II. THE OBJECT CONSTRAINT LANGUAGE 

 The Object Constraint Language (OCL) is a textual, 

declarative notation used to specify constraints or rules that 

apply to UML models [9]. OCL can play an important role in 
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Figure 1: Example UML class diagram 
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model-based software development because UML diagrams 

generally lack sufficient precision to enable the transformation 

of a UML model to complete code [5]. A UML diagram alone 

often cannot express rich semantics of and all relevant 

information about an application. As an example, consider the 

class diagram depicted in Figure 1 that models an on-line test-

taking application. The application allows students to take 

tests consisting of multiple choice questions. Each question 

has two to five options, one of which is a correct answer. 

However, the class diagram does not express the fact that the 

answer to a question should be one of its options. OCL allows 

one to precisely specify this kind of additional constraints on 

UML modeling elements. It is based on set theory and 

predicate logic and supplements UML diagrams by providing 

expressions that have neither the ambiguities of natural 

language nor the inherent difficulty of using complex 

mathematics. The above constraint, for example, can be 

written in OCL as a class invariant as follows. 

 

context Question 

inv: options→includes(answer) 

 

It states that for each question its options should include its 

answer. The collection operation includes tests if an element 

appears in a collection; as shown, an OCL collection operation 

is invoked using an arrow (→) notation. OCL supports a wide 

range of collection operations to write sophisticated queries 

and constraints by navigating associations and manipulating 

associated objects. For example, we can specify an operation, 

say calcAverage, which calculates the average of student’s test 

scores by using such collection operations as size, collect, and 

sum as follows. 

 

 context Student::calcAverage(): Real 

pre: testTaken→size() > 0 

post: result = testTaken→collect(score)→sum() 

         / testTaken→size() 

 

In OCL an association class (e.g., TestTaken) that is part of 

an association relationship between two other classes can be 

referred to by using its name.   

In UML, an association may have an optional qualifier at an 

association end to enable the indexing of many associations 

between classes [8]. It allows partitioning associations into 

key-to-value mappings, where the key comes from the qualifier 

and the value is given by the associated class. A qualified 

association is the UML equivalent of a programming concept 

variously known as associative arrays, maps, and dictionaries. 

In Figure 1, for example, the association between TestTaken 

and Option is a qualified association with a qualifier q of type 

Question. Here the keys are objects of type Question and the 

values are objects of type Option. It models student responses 

to test questions by stating that for each question q there may 

be zero or one option, the answer provided by a student. The 

object diagram shown below depicts one possible object 

configuration that conforms to the class diagram. A test e1 has 

only one question q1 consisting of two options o1 and o2, and a 

test taken by a student, t1, says that the student’s response to 

the question q1 is the option o2. 

 

e1: Test q1: Question

o1: Option

o2: Option

t1: 

TestTaken
q1

 
 

One can refer to a qualified association when writing OCL 

constraints. For example, we can define the value of the 

derived attribute score of the TestTaken class as follows. 

 

context TestTaken::score: Real 

derive: tests.questions 

             →select(q| self.response[q] = q.answer)→size())  

             / tests.questions→size() 

 

The expression self.response[q] denotes an Option object 

associated with the TestTaken object self through the qualifier 

q; if a qualifier is omitted, e.g. self.response, it denotes all the 

associated objects regardless of their qualifiers. The select 

operation selects all the test questions that are correctly 

answered. In the following section we will show more OCL 

constraints written using qualified associations to describe a 

shortcoming of the OCL support for qualified associations. 

III. THE PROBLEM 

 As shown in the previous section, OCL provides a special 

notation to navigate through a qualified association. One needs 

to specify the value for a qualifier to the navigation in square 

brackets, e.g., response[q], to obtain the associated objects. If 

the value for a qualifier is left out from the navigation, e.g., 

response, it denotes all the associated objects regardless of the 

qualifier value. The way to navigate through a qualified 

association is consistent with that of an unqualified association 

in that both produce a collection of associated objects that 

could be manipulated using various collection operations. 

 However, interpreting a qualified association as an 

unqualified association by specifying a qualifier value limits 

the expressiveness of the OCL language, as a qualified 

association cannot be viewed or manipulated as a set of key-

value pairs, e.g., one cannot write constraints on the keys (i.e., 

qualifier values). Let’s consider our running example of the 

on-line test-taking application shown in Figure 1 in Section II. 

One important domain constraint for this application is that 

student’s responses to test questions should be the options of 

the questions, which may be written as a class invariant as 

follows. 
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context TestTaken 

inv: tests.questions→forAll(q|  

        not self.response[q].oclIsUndefined() 

        implies q.options→includes(self.response[q]) 

 

The forAll iterator operation is similar to a universal 

quantifier in logic and asserts that a predicate holds for each 

element of a collection. The invariant states that for each 

question of the test taken if a response is provided by a 

student, it should be one of the options of the question. The 

invariant constraint restricts the responses a student can 

provide to the options of the questions by putting a constraint 

on the value side of the key-value pairs of a qualified 

association. However, it doesn’t impose any constraints on the 

key side of the qualified association. As shown in Figure 2, for 

example, it doesn’t prevent a student from answering a 

question that is not included in the test; q2 is not in the test and 

thus the qualified association between t1 and q2 trivially 

satisfies the invariant. The set of test questions answered by a 

student can be larger than the set of questions of the test taken. 

 

 
   

One possible fix would be to introduce another constraint to 

disallow student-provided responses to the questions not 

included in the test. 

 

context TestTaken 

inv: Question.allInstances()→forAll(q| 

        not tests.questions→includes(q) 

        implies self.response[q].oclIsUndefined()) 

 

The invariant is written using the allInstances operation that 

denotes the set of all instances of a type, and states that if a 

question q is not a question of the test taken, response[q] is 

undefined. Although this invariant constrains the values of the 

key-value pairs of a qualified association, its real purpose or 

intention is to indirectly constrain the keys or qualifier values 

of the association. This indirect, convoluted way of writing 

assertions not only confuses the readers, especially, about the 

purposes of the assertions but also the resulting constraints are 

long and complex, making them less readable, understandable 

and amenable to formal manipulations and treatments. In 

general, more direct and concise assertions are preferred. In 

this particular case, a better solution would be to write a direct 

statement requiring the qualifier values be a subset of the test 

questions, e.g., dom f  ⊆ tests.questions, where f denotes the 

key-value mapping of the qualified association and dom 

denotes its keys. In the following section we explain our 

approach for writing such a direct and concise constraint on a 

qualified association. 

IV. OUR APPROACH 

As explained in the previous sections, a qualifier is a 

property of a binary association and is an optional part of an 

association end [8]. A qualifier holds a set of association 

attributes which model the keys that are used to index a subset 

of relationship instances. Conceptually, a qualified association 

thus can be viewed as a map from qualifier values (keys) to 

associated objects (values). When navigating through a 

qualified association, however, this map view is lost because it 

produces only the associated objects. This is the reason that 

OCL lacks expressiveness in writing constraints on or using 

qualified associations. The key idea of our approach is to make 

a qualified association a first class entity in OCL by exposing 

it as a map and allowing one to query and manipulate the map 

directly. For this we make a small extension to the OCL 

notation to denote the qualified association map and introduce 

a new collection library class to model a map. 

A. An Extension to OCL Notation 

In OCL, to navigate through a qualified association one can 

append to the navigation an optional qualified value enclosed 

in a pair of square brackets, e.g., response[q], to obtain the 

associated objects; a navigation with no qualified value (e.g., 

response) denotes all the associated objects regardless of their 

qualifier values. We propose a small extension to this OCL 

notation to denote the map itself modeling a qualified 

association, that we call a qualified association map. Our 

proposed notation is to use an empty pair of square brackets, 

e.g., response[] (see Figure 3). 

 

 
 

Once a qualified association map is obtained by using the 

proposed notation, it can be queried and manipulated by using 

a wide range of collection operations (refer to Section IV.B for 

new operations). For example, we can easily express the 

previously-mentioned key constraint, dom f  ⊆ tests.questions 

as: tests.questions→includesAll(answers[]→keys()), where 

 
Figure 3: Notation for referring to qualified associations  

e1: Test q1: Question

q2: Question

o1: Option

o2: Option

o3: Option

o4: Option

t1: 

TestTaken

q1

q2

 
Figure 2: Sample object configuration  



 

4 

 

keys is a new collection operation introduced to obtain the 

domain of a qualified association map (see Section IV.B). 

The proposed new notation does not contradict or overwrite 

the standard OCL notation. It is merely a small addition, which 

can be applied to denote a qualified association map and to 

express constraints on a qualified association when used in 

conjunction with new collection operations (see the following 

subsection). In summary, while the standard OCL notation 

allows one only to navigate through a qualified association, 

i.e., by denoting the values of key-value pairs of a qualified 

association map, our extension allows one to query and 

manipulate it as a map itself, i.e., a set of key-value pairs.   

B. An Extension to OCL Standard Library 

Alongside the new notation we also propose to extend the 

OCL standard library to introduce a new collection type to 

model a qualified association map. The OCL standard defines 

one abstract collection type named Collection and four 

concrete collection types named Set, OrderedSet, Bag, and 

Sequence [6]. The Collection type is a common supertype of 

all the concrete collection types and defines operations 

common to all collection types. Additionally, each concrete 

collection type has a number of specific collection operations 

not shared among all concrete collection types. 

We propose to introduce a new collection type named Map. 

This collection type provides a model for a qualified 

association map. A map is a set of key-value pairs and cannot 

have duplicate keys, meaning that each key can map to at most 

one value. A key-value pair is represented as a tuple of type 

Tuple(key: K, value: V) (see Appendix A.2). Both Set and 

Map are unique, unordered collections of elements. The only 

difference between them is that Map consists of tuples. For 

that reason, we also propose to make the Map a direct subtype 

of Set. This will ensure for Map to have all the operations of 

Collection and Set without duplicating them. 

Another strong argument for introducing this new collection 

type is that when translating a UML qualified association to an 

implementation, an associative array or map is frequently used 

as a concrete representation to implement the required 

functionality [1]. 

The usual collection, iteration and Set-specific operations 

such as size, includes, includesAll, isEmpty, select, collect, 

forAll, union, intersection, including, and asBag are defined 

for Map, as they are inherited from Collection and Set. 

However, elements are assumed to be of type Tuple(key: K, 

value: V).  In addition to these common collection, iteration 

and Set-specific operations, Map defines many new map-

specific collection operations, and Table 1 shows a list of 

representative operations; refer to Appendix A.2 for a 

complete list of map-specific collection operations and their 

specifications. In the following subsection we present a series 

of small examples to illustrate the use of these new collection 

operations. 

 

 

V. APPLICATION 

A. Examples 

Using our new notation and collection operations we can 

easily express the constraint discussed in Section III that 

motivated our work. Essentially we need to limit the set of 

keys of the qualified association map to the test questions as 

shown below.  

 

context TestTaken 

inv: tests.questions→includesAll(response[]→keys()) 

inv: response[]→forAll(p|p.key.options→includes(p.value)) 

 

 The first invariant expresses the motivating constraint by 

stating that the set of test questions is a superset of the keys of 

the qualified association map. That is, only questions included 

in the test can have responses. The second invariant asserts 

that the student-provided responses should be the options of 

the test questions. The forAll collection operation is used to 

constrain each key-value pair of the qualified association map. 

It would be instructive to compare these new constraints with 

the ones presented in Section III, which is copied below. 

 

context TestTaken 

inv: Question.allInstances()→forAll(q| 

        not tests.questions→includes(q) 

        implies self.response[q].oclIsUndefined()) 

inv: tests.questions→forAll(q|  

        not self.response[q].oclIsUndefined() 

        implies q.options→includes(self.response[q]) 

 

The new constraints are not only more concise but also 

easier to read and understand, as they capture and express the 

core of the constraints directly, e.g., a relationship between 

two sets, the test questions and the keys of the qualified 

association map. We expect such direct constraints to be more 

amenable to formal and informal treatments of constraints, 

Table 1: Map-specific collection operations 

 

Operation Description 

including(k,v) Map with (k, v) pair added 

excludingKey(k) Map with key k removed 

includesKey(k) Is k mapped to a value? 

includesValue(v) Is v mapped by a key? 

keys() Domain of self 

values() Range of self 

apply(k) Application of self to k, i.e., self[k] 

override(k,v) Map with (k,v) pair added or replaced 

restrictDomain(d) Domain restriction by keys d 

restrictRange(r) Range restriction by values r 

compose(m) Relational composition of self and m 
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e.g., formal verification and transformation to code. 

In Section II we defined the value of the derived attribute 

score of the TestTaken class. We can simplify its formulation 

and rewrite it by using our extended notation as follows. 

 

context TestTaken::score: Real 

derive: response[]→select(p|p.key.answer=p.value)→size()) 

             / tests.questions→size() 

 

The select iteration operation defined in OCL returns a 

collection with all the elements of the receiver that meets a 

specified condition. In this example it returns the set of correct 

responsesi.e., question-and-option pairs; as specified in the 

condition of the select operation, a response p is correct if its 

value (option) is equal to the answer of its key (question). 

Below we show several operations of the TestTaken class 

that can be easily and naturally specified in our extended 

notation along with  new map-specific collection operations. 

 

context TestTaken::isAnswered(q: Question): Boolean 

post: result = response[]→includesKey(q) 

 

context TestTaken::unanswered(): Set(Question) 

post: result = tests.questions – response[].keys() 

 

context TestTaken::incorrectlyAnswered(): Set(Question) 

post: result = response[]→select(p|p.key.answer <> p.value) 

 

context TestTaken::responses(): Map(Question, Option) 

post: result = response[] 

 

context TestTaken::addResponse(q: Question, a: Option) 

pre: tests.questions→includes(q) 

pre: q.options→includes(a) 

post: response[] = response[]@pre→including(q, a) 

 

 The includesKey operation used in the specification of the 

isAnswered operation tests whether a given key is defined by a 

map. The keys operation in the second specification returns the 

set of all keys defined by a map. The specifications of the last 

two operations are interesting, as they clearly show the benefit 

of querying and manipulating a qualified association as a map 

itself. For example, we can easily specify the behavior of such 

mutation operations as addResponse that changes the values of 

a qualified association. The new value of the qualified 

association response is its old value with the given new 

response added; the including operation appearing in the post-

condition adds a new key-value pair to a map. 

 As the last example we specify below the takeTest operation 

of the Student class that models a test taking by a student. The 

operation takes a test to be taken by the student and the student 

responses to the test, a map of question-option pairs. The 

operation adds the given test to the set of tests taken by the 

student and links a new TestTaken object to the newly created 

Student-Test association. 

 

context Student::takeTest(t: Test, a: Map(Question,Option)) 

pre: not tests→includes(t) 

pre: t.questions→includesAll(a→keys()) 

pre: a→forAll(p| p.key.options→includes(p.value)) 

post: tests = tests@pre→including(t) 

post: testTaken→exist(tt| tt.oclIsNew() and 

         tt.student = self and tt.test = t and tt.response[] = a) 

post: testTaken→includesAll(testTaken@pre) 

post: testTaken→size() = testTaken@pre→size()  + 1 

 

 The first precondition is to ensure that a given test is not 

already taken by the student, and the other preconditions are 

for establishing the class invariant of the TestTaken class. 

 

• The set of questions in the map of the student’s 

responses should be a subset of all questions of the test 

to be taken. 

• For each question in the map, the student’s response is 

one of the options of the question. 

 

The first postcondition states that the given test is added to 

the set of tests taken by the student. The second is to assert that 

a new TestTaken object is created and linked to the new 

Student-Test association introduced by the first postcondition. 

The other two postconditions are to assert that all the previous 

Student-Test associations are still there and no new one is 

added. The formulation of the postconditions is a bit 

convoluted, as the creation of a new TestTaken object has to 

be asserted indirectly; OCL does provides a direct and concise 

way for modeling object creation [4]. 

B. Preliminary Evaluation 

A formal evaluation of our proposed extension is pending 

but a series of example constraints presented in the previously 

subsection convince us that our extension makes the OCL 

notation more expressive, readable, and understandable. For 

example, there is no straightforward way to write the following 

constraint using the standard OCL notation.  

 

context TestTaken::isAnswered(q: Question): Boolean 

post: result = response[]→includesKey(q) 

 

It is because the standard doesn’t provide any notation for 

referring to the qualified association relationship itself, its keys 

when it is viewed as a map. Our finding is that in general 

constraints written using our extended notation are more direct 

and explicit especially when the constraints are on the 

qualifiers of qualified association relationships. They are also 

tend to be more concise and less convoluted. 

A nice side benefit of our extension is the translation of 

constraints to code for various uses of design constraints 



 

6 

 

during implementation, including transformation of models 

into source code in model-driven development [5], runtime 

constraint checks [3], and even verification and validation of 

UML/OCL models [7]. In most cases, it is straightforward to 

translate constraints to implementations; it can be done 

systematically and thus fully automated. This is because 

developers frequently use such data structures as associative 

arrays and maps to reify qualified associations in their 

implementations [1] and most modern programming languages 

provide map data structures, e.g., Map in Java and C++, 

associative arrays in PHP, and Dictionary in C#. In Java, for 

example, the qualified association response[] can be easily 

translated to a field of type Map<Question, Option>.  

VI. CONCLUSION 

In this paper we first pointed out a limitation of OCL in 

supporting qualified associations and then proposed a small 

extension to both the OCL notation and the standard collection 

library. Our extension allows one to query and manipulate 

qualified associations as key-values pairs that we call qualified 

association maps. While a more rigorous evaluation is still 

needed, a series of small example specifications written using 

our extension shows that the notion of qualified association 

maps not only improves the expressiveness of OCL but also 

produces constraints that are in general more direct, concise, 

readable, and amenable to various types of formal and 

informal manipulations, e.g., translation to code. From this we 

conclude that our extension meet the needs of both software 

specifiers and programmers. Two most important contributions 

of our work is that (1) we showed the need of OCL to provide 

a better, more expressive way of wring constraints on or using 

qualified associations and (2) we addressed this need by 

proposing a small extension to the OCL notation and its 

collection library. 
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A. APPENDIX 

A.1 An Extension to OCL Notation 

 We extend the OCL notation for navigating a qualified 

association. In OCL, the production rule representing a 

navigation call expression [6] (Section 9.4.37) is defined in 

terms of the production rule for navigating to an association 

class [6] (Section 9.4.38).  

 

AssociationClassCallExpCS ::= OclExpressionCS ‘.’ 

 simpleNameCS (‘[’ argumentsCS? ‘]’)? isMarkedPreCS?  

AssociationClassCallExpCS ::=  

    simpleNameCS (‘[’ argumentsCS? ‘]’)? isMarkedPreCS?  

 

The production rule argumentsCS represents a sequence of 

arguments [6] (Section 9.4.40), and our extension is to make it 

optional (denoted by using a meta-symbol “?”). This allows us 

to introduce a new expression like response[] to denote an 

qualified association map. The optional production rule 

isMarkerPreCS represents the marking @pre in an OCL 

expression [6] (Section 9.4.39). 

 

A.2 A New Collection Type, Map 

 The Map type is a template type with two type parameters, 

K for keys and V for values. A concrete map type is obtained 

by substituting actual types for K and V, e.g., Map(Person, 

Address). A map is a set of tuples of type Tuple(key: K, value: 

V), mapping keys to values. A map cannot have duplicate keys 

meaning that each key can map to at most one value. 

 The Map(K,V) is a subtype of Set(Tuple(key: K, value: V)) 

and inherits all the collection operations defined by Collection 

and Set-specific operations, including =, <>, size, includes, 

excludes, count, includesAll, excludesAll, isEmpty, notEmpty, 

union, intersection, including, excluding, asSequence and 

asBag. However, such operations as max, min, and sum are not 

defined for Map. The equality operation (=) and including 

operations are redefined as follow. 

 

= (m : Map(K,V)) : Boolean 

post: result = (self→forAll(t| m→includes(t)) and 

   m→forAll(t| self→includes(t))) 

 

including(t: Tuple(key: K, value: V): Map(K, V) 

The map containing all elements  of self and e. 

pre: self→excludesKey(e.key). 

post: result→forAll(e | self→includes(e) or (e = t)) 

post: self→forAll(e | result→includes(e)) 

post: result→includes(t) 
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 Map defines the following new operations. 

 

including(k: K, v: V): Map(K, V) 

The map containing all elements  of self and a k-v pair. 

pre: self→excludesKey(k). 

post: result→forAll(e | self→includes(e) or 

         (e.key = k and e.value = v)) 

post: self→forAll(e | result→includes(e)) 

post: result→includes(Tuple(key = k, value = v)) 

 

excludingKey(k: Key): Map(K, V) 

The map containing all element of self without  those with k as 

the key. 

post: result→forAll(e | self→includes(e) and (e.key <> k)) 

post: self→forAll(e | result→includes(e) = (e.key <> k)) 

post: result→excludesKey(k) 

 

includesKey(k: K): Boolean 

True if k is mapped to a value by self, false otherwise. 

post: result = self→exist(key = k) 

 

excludesKey(k: K): Boolean 

True if k is not mapped to a value by self, false otherwise. 

post: result = self→forAll(key <> k) 

 

includesValue(v: V): Boolean 

True if a key is mapped to v by self, false otherwise. 

post: result = self→exist(value = v) 

 

excludeValue(v: V): Boolean 

True if no key is mapped to v by self, false otherwise. 

post: result = self→forAll(value <> v) 

 

keys(): Set(K) 

The domain of self. 

post: result = self→collect(key)→asSet() 

 

values(): Collection(V) 

The range of self. 

post: result = self→collect(value) 

 

values(keys: Set(K)): Collection(V) 

The relational image of a set of keys. 

post: result =  

  self→select(keys→includes(key))→collect(value) 

 

apply(k: K): V 

The application of self to k. 

pre: self→includesKey(k) 

post: result = (self→any(key = k)).value 

 

override(map: Map(K,V)): Map(K,V) 

Relational overriding. 

post: result = map→iterate(t; acc: Map(K,V) = self|  

   acc→excluding(t.key)→including(t.key, t.value)) 

 

restrictDomain(dom: Set(K)): Map(K,V) 

Domain restriction. 

post: result = self→select(dom→includes(key)) 

 

antirestrictDomain(dom: Set(K)): Map(K,V) 

Domain anti-restriction. 

post: result = self→select(dom→excludes(key)) 

 

restrictRange(ran: Set(V)): Map(K,V) 

Range restriction. 

post: result = self→select(ran→includes(value)) 

 

restrictRange(ran: Set(V)): Map(K,V) 

Range anti-restriction. 

post: result = self→select(ran→excludes(value)) 

 

compose(map: Map(V,V2)): Map(K,V2) 

Forward relational composition. 

post: result = self→iterate(t; acc: Map(K,V) = Map()| 

   if map→includesKey(t.value) 

   then acc→including(t.key, map→apply(t.value)) 

   else acc) 

 

composeBackward(map: Map(V,V2)): Map(K,V2) 

Backward relational composition. 

post: result = map→iterate(t; acc: Map(K,V) = Map()| 

   if self→includesKey(t.value) 

   then acc→including(t.key, self→apply(t.value)) 

   else acc) 


