
Writing Self-testing Java Classes with SelfTest
Yoonsik Cheon

TR #14-31
April 2014

Keywords: annotation; annotation processor; test case; unit test; Java; JUnit; SelfTest.

1998 CR Categories: D.2.3 [Software Engineering] Coding Tools and Techniques — Object-oriented
programming; D.2.5 [Software Engineering] Testing and Debugging — Testing tools (e.g., data generators,
coverage testing); D.3.4 [Programming Languages] Processors — Compilers, preprocessors.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Writing Self-testing Java Classes with SelfTest

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu

Abstract—This document provides a tutorial introduction to
Java annotations called SelfTest. The SelfTest annotations allow
one to annotate Java classes with test data, and the SelfTest
annotation processor generates executable JUnit test classes from
annotated Java classes by translating test cases to executable
JUnit tests. The SelfTest annotations not only automate unit
testing of Java classes significantly but also provides a step toward
writing self-testing Java classes by embedding test data in source
code for both compile and runtime processing.

I. INTRODUCTION

Program testing is a practical means for improving and
assuring the correctness of software. In Extreme Programming
(XP) [1], for example, unit testing is viewed as integral part of
programming. Tests are created before, during, and after code
is written—often emphasized as “code a little, test a little, code
a little, and test a little ... ” [2]. The idea is to use regression
testing as a practical means of supporting code refactoring.
However, writing unit tests is a laborious, tedious and time-
consuming task. One can use a framework that automates some
of the details of running tests. One such a framework is JUnit,
a simple yet practical testing framework for Java classes [2]
[5]. It encourages a close integration of testing with develop-
ment by allowing a test suite be built incrementally. However,
even with frameworks like JUnit, writing and maintaining unit
tests requires a great deal of time and effort. Separate test code
must be written and maintained in synchrony with the code
under development. This test code must be reviewed when the
code changes and, if necessary, revised to reflect changes in
the code. The difficulty and expense of writing test code are
exacerbated during development, when the code being tested
changes frequently. As a result, there is pressure to not write
test code and to not test as frequently as might be optimal.

Annotations are compiler directives in that they provide
data about a program that is not part of the program itself.
In Java, annotations are markers which associate information
with program constructs, but have no effect at run time [3,
Chapter 9]; they have no direct effect on the operation of
the code they annotate, but may affect the behavior of the
compiler. When source code is compiled, annotations can be
processed by compiler plug-ins called annotation processors.
Annotation processors can produce informational messages or
create additional Java source code files or resources, but they
cannot modify the annotated code itself.

SelfTest is a small set of Java annotation types along with
an annotation processor. Its annotations allow one to annotate
Java classes with test data, and the annotation processor gener-

Fig. 1. SelfTest annotations and generated JUnit tests on Eclipse

ates executable JUnit test classes from annotated Java classes
by translating test cases to executable JUnit test methods
(see Figure 1). SelfTest was created to help programmers
focus more on interesting or challenging aspects of testing
by freeing them from laborious, tedious, or time-consuming
testing chores. For example, when one uses unit tests as a
safety net for code refactoring, one has to test every method
of a class. However, it is often the case that except for a
few primary or core methods most methods are simple and
straightforward to test, but one still needs to test all these
methods by writing executable test code. Even for testing the
primary methods, a more creative and interesting aspect is
designing tests and test data, not writing low-level, executable
test code and maintaining it. In short, SelfTest allows one
to embed test data in source code for both compile and
runtime processing. It not only automates unit testing of
Java classes significantly by generating executable tests from
annotations but also provides a step toward writing self-testing
Java classes.

The remainder of this document is structured as follows.
In Section II below we will describe a tic-tac-toe game that
will be used as a running example throughout this document.
In Section III we will write a series of SelfTest annotations
to test tic-tac-toe classes, starting with simple annotations and
moving to more advanced ones. In Section IV we will list
and describe all Selftest annotation types. In the appendix at
the end of this document we will provides information about
downloading SelfTest and configuring Java compilers [6] and
Eclipse [4] to recognize SelfTest annotations.

0..1

players
{ordered}2

1

places

Place

mark(Player): void
marker(): Player
isMarked(): boolean

Place

mark(Player): void
marker(): Player
isMarked(): boolean

Board

mark(int, int, Player): void
marker(int, int): Player
isMarked(int, int): boolean
isWonBy(Player): boolean

x: 0..2
y: 0..2

Board

mark(int, int, Player): void
marker(int, int): Player
isMarked(int, int): boolean
isWonBy(Player): boolean

x: 0..2
y: 0..2

Player

name(): String

Player

name(): String

markedBy

marker

0..5

Fig. 2. A tic-tac-toe game

II. A RUNNING EXAMPLE

We will use an implementation of the tic-tac-toe game as a
running example. A tic-tac-toe game consists of nine places in
a 3×3 grid, and two players take turns to mark the places and
win a game by marking three places in a horizontal, vertical,
or diagonal row. We will be concerned with only the model
classes of a tic-tac-toe game, shown in Figure 2. The class
diagram depicts three model classes along with their primary
operations and relationships. The association between Board
and Place is a qualified association, an association that allows
one to restrict the objects referred in an association using a key
called a qualifier [7]. An optional qualifier at an association
end, e.g., x and y, enables the indexing of many associations
between classes. The qualifiers x and y denotes the column and
row indices of a place in a board; e.g., places[2,0] denotes the
place at the top right corner of a board.

In the next section we will annotate tic-tac-toe classes
with SelfTest annotations to automate their unit testing by
embedding test cases in source code. The embedded test
cases are translated to executable JUnit tests by the SelfTest
annotation processor. Since version 4, JUnit also uses anno-
tations to identify methods called test methods that specify
tests [5]. Figure 3 shows a JUnit test class that has two test
methods, testMark and testIsWonBy. A test method uses JUnit
framework methods such as assertEquals and assertTrue to
check the expected result of code execution versus the actual
result. It is common to share test data among test methods
by sharing variables, e.g., fields like board, p1, and p2. These
variables together define a test fixture, a fixed state of the
program under test, and are often initialized by the so-called
Before method (e.g., setUp) that is executed before each test
to prepare a test environment.

III. TESTING WITH SELFTEST

In this section we will write a series of SelfTest annota-
tions to test the tic-tac-toe classes presented in the previous
section. We will start with simple and most commonly-used
annotations and move to more advanced annotations. The
appendix at the end of this document contains information
about downloading SelfTest and configuring Java compilers
[6] and Eclipse [4] to recognize SelfTest annotations.

import org.junit.∗;
import static org.junit.Assert.∗;

public class BoardTest {
private Board board;
private Player p1 = new Player(”O”);
private Player p2 = new Player(”X”);

@Before public void setUp() {
board = new Board();

}

@Test public void testMark() {
board.mark(0, 1, p1);
assertEquals(p1, board.marker(0, 1));

}

@Test public void testIsWonBy() {
markBoard(1,0,2,

2,1,0,
0,0,1);

assertTrue(board.isWonBy(p1));
assertFalse(board.isWonBy(p2));

}

private void markBoard(int... marks) {
// mark board to the given configuration

}
}

Fig. 3. Sample JUnit tests

A. Writing the First Self-testing Class

The first class to write and test is the Player class because
it doesn’t depend on any other classes. It will have just one
constructor and one accessor method. The code listing below
shows its skeleton code along with tests specified in SelfTest
annotations.

1 import edu.utep.selftest.∗;
2 public class Player {
3 @Test(in=”\”O\””, post=”result.name().equals(\”O\”)”)
4 public Player(String name) { ... }
5

6 @Test(self=”new Player(\”X\”)”, out=”\”X\””)
7 public String name() { ... }
8 }

The first line imports all SelfTest annotation types including
the Test annotation used in this example. The Test annotation
defines a single test case and is the most commonly-used an-
notation. A test case for a method or constructor is essentially
a pair of sample inputs and the expected output for the inputs.

The Test annotation in line 3 defines a test case for the con-
structor. Its in element specifies argument values, and the post
element specifies the condition, called a postcondition, that
must be true upon termination of the method or constructor
under test. A postcondition is a test oracle in that it determines
the test outcome, a test success or failure. The pseudo variable
result in the postcondition denotes the object that is initialized
by the constructor. This test case tests that if the constructor is
called with a value “O” then the name of the newly initialized
player object should be “O”.

The annotation in line 6 shows two new elements of the Test
annotation. The self element specifies the implicit argument

2

for a non-static method—the receiver or the object under test.
The out element specifies the expected return value for a non-
void method; it is another way of writing a test oracle. This
test case tests that if the name method is invoked on a player
object, new Player(“X”) it should return a “X”.

It would be instructive to see how these annotations are
translated to JUnit tests. The code below shows the JUnit test
class generated from the above annotations. As expected, each
Test annotation is translated to a JUnit test method and a test
oracle to an assert method call.

import static org.junit.Assert.∗;
public class PlayerSelfTest {

@org.junit.Test
public void testPlayer() {

String $arg1 = ”O”;
Player result = new Player($arg1);
assertTrue(”post: result.name().equals(\”O\”)”,

result.name().equals(”O”));
}

@org.junit.Test
public void testName() {

Player self = new Player(”X”);
String $expected = ”X”;
result = self.name();
assertEquals($expected, result);

}
}

To summarize, the Test annotation defines a single test
case by specifying sample inputs—including the receiver for a
non-static method and the argument values—and the expected
output. The expected output defines a test oracle and can
be stated by writing postconditions or by specifying a return
value. Each test case should define a test oracle, and the pseudo
variables like result and self can be referred to when writing
a test oracle.

B. Defining Multiple Test Cases

It is common to define multiple test cases for a single
method or constructor. For this, you can use the SelfTest
annotation whose value is a list of Test values1. The following
code snippet shows two test cases for the isMarked method of
the Place class that checks if a place is marked.

@SelfTest({
@Test(self=”new Place(0, 0)”, out=”false”),
@Test(self=”new Place(0, 0); mark(new Player(\”O\”))”, out=”true”)})

public boolean isMarked() { ... }

The first test case tests an unmarked place and the second
a marked one. The second test case also shows how one
can construct an object of a more complex state in a single
expression. An expression of a reference type can be written in
the form: e0;m1(e1);m2(e2); ...;mn(en). It denotes the object
e0 after invoking on it all the methods mi’s in the specified
order; each mi may mutate the object or change its state. The
expression e0 defines an initial state of the object, and each

1A new annotation type SelfTest was introduced because Java doesn’t allow
more than one annotation of the same type; this was fixed in Java 8 released
in 2014.

mi may change the object’s state to bring it to a new state.
For example, the state of the pseudo variable self defined in
the second test case is the same as the one defined by the
following Java statements.

Place self = new Place(0, 0);
self.mark(new Player(”O”));

C. Testing Exceptional Behavior

You can also test an exceptional behavior of a method or
constructor by using the Test annotation. If the mark method
of the Place class should throw an IllegalStateException when
the given place is already marked, it can be tested using the
following test case.

@Test(self=”new Place(0, 0); mark(new Player(\”O\”))”,
in=”new Player(\”X\”)”,
err=IllegalStateException.class)

public void mark(Player p) { ... }

The err element specifies the exception that has to be thrown
by the method or constructor under test when the specified
test inputs are supplied. It is yet another way of writing a test
oracle, as it determines the test outcome.

D. Sharing Test Data

You often want to share test data among test cases. The
SelfTest annotation provides ways to define variables that we
call test variables that can be referred to when defining test
cases, thus achieving sharing of test data. In fact, there are
three different levels of sharing possible:

• sharing among test cases for all methods or constructors
of a class

• sharing among test cases for a single method or construc-
tor

• sharing in a single test case
The basic mechanism for sharing test data is to define a

new test variable using the Var annotation, as shown below.

@Var(type=Place.class, name=”p”, value=”new Place(1,2)”)
public class Place {

@Test(self=”p”, out=”1”)
public int getX() { ... }

@Test(self=”p”, out=”2”)
public int getY() { ... }

}

The above Var annotation introduces a new test variable
named p of type Place whose initial value is new Place(1,2).
A Var annotation like the above annotating a class introduces
a test variable that can be referred to by all the test cases
of the annotated class. Such a test variable is translated to a
class field whose value is initialized by the so-called Before
method (a.k.a. the setUp method) of a JUnit test class; that
is, it defines a test fixture variable [2]. You can define more
than one test fixture variable by using the SelfVar annotation
whose value is a list of Var values; the order matters because
a later one may be defined in terms of earlier ones.

3

If a Var annotation annotates a method or constructor, it
introduces a test variable that can be referred to by all the
test cases of the annotated method or constructor. Such a test
variable is translated to a local variable of a JUnit test method,
and its value is initialized before the method or constructor
under test is called; it is a pre-state variable. For example, the
following code snippet introduces two variables (o and x) for
use by test cases of the isMarkedBy method of the Place class
that tests if a place is marked by a given player.

@SelfVar({
@Var(type=Player.class, name=”o”, value=”new Player(\”O\”)”),
@Var(type=Player.class, name=”x”, value=”new Player(\”X\”)”)})

@SelfTest({
@Test(self=”p”, in=”o”, out=”false”),
@Test(self=”p; mark(o)”, in=”o”, out=”true”),
@Test(self=”p; mark(o)”, in=”x”, out=”false”)})

public boolean isMarkedBy(Player m) { ... }

It is possible for a local variable introduced by a Var
annotation to shadow another test variable. If you change the
name of variable o to p in this example, it will shadow the
p test variable introduced by the Var annotation of the Place
class (refer to the previous example). As in Java, you can refer
to a shadowed variable by fully qualifying it, e.g., this.p.

You can also define variables for use in a single test case
by specifying the var element of the Test annotation. The var
element defines a list of Var values, as shown below. The
following example also shows that you can define more than
one postcondition; multiple postconditions are conjoined.

@Test(
var={@Var(type=int.class, name=”x”, value=”1”),

@Var(type=int.class, name=”y”, value=”2”)},
in={”x”, ”y”},
post={”result.getX() == x && result.getY() == y”,

”!result.isMarked()”})
public Place(int x, int y) { ... }

E. Importing Classes for Writing Annotations

There are often cases when you need to use other classes
only in annotations—i.e., not in the source code of the
annotated classes themselves. You can import classes for use
only in annotations by using the SelfImport annotation. The
annotation takes a list of strings, each conforming to the import
declaration syntax of Java, e.g., java.util.Arrays and java.util.*.

@SeflImport(”java.util.Arrays”)
public class MyListUtil {

@Test(in=”Arrays.asList(1,2,3)”, out=”6”)
public static int sum(List<Integer> l) { ... }

}

F. Writing Helper Code

Perhaps, the most interesting method to test in our example
is the isWonBy method of the Board class that checks if a
given player has a winning row in a board. To test the method
thoroughly, you will need to create Board objects of various
configurations, e.g., with a winning horizontal, vertical, or
diagonal row. One way to create objects of different states is

to use the extended expression syntax introduced earlier, e.g.,
new Board(); mark(0,0,x); mark(1,0,x); mark(2,0,x). However,
manually creating test data in such a way is time-consuming
and even worse, test data are hard to read, understand and
maintain.

If you are an experienced tester, however, you will instead
write a helper method or class to ease the construction of
test data. For example, you can easily write a helper method,
say mark, that takes an encoding of a board configuration and
constructs a Board object of the given configuration. However,
one big question is how to include such helper code in your
tests. Obviously, you don’t want to mix it with regular code
of the class under test because it is introduced solely for the
testing purpose. One possibility would be to define a separate
utility class hosting all such helper code and import it using the
SelfImport annotation. This, perhaps, will be a recommended
way if you have complicate or large amount of helper code.

However, if you have a small chunk of helper code, another
possibility would be to include it directly in your annotations
using the SelfCode annotation. The SelfCode annotation takes
a chunk of Java code given as a list of strings and dumps it
to the generated JUnit test class. The code is dumped at the
member level, so it would better be member declarations like
field declarations and method declarations. Figure 4 shows an
example use of the SelfCode annotation. In line 1–3 we define
two test variables named o and x to denote two players. A
SelfCode annotation in lines 5–15 defines a helper method
named mark that takes a sequence of numbers encoding a
board configuration and creates a new board object of the
given configuration. The argument values represents rows of
a board with each number encoding the mark of a place, 0
for unmarked, 1 for marked by the player o and 2 for marked
by the player x. In lines 19–27, the helper method is used to
define test data for the isWOnBy method.

One caveat of the SelfCode annotation is that the current
annotation processor doesn’t perform any checks (e.g., syntac-
tic or static checks) on the code. If there are any errors in the
code, they will show up only when the generated Junit class
is compiled. Thus, the annotation will work better if the code
is simple or you use an IDE like Eclipse [4] that supports
incremental and automatic compilation so that you receive
errors immediately. If you have more complicate code, you can
write it initially as regular Java code—especially when you
are still developing your tests—and once the code compiles
or your tests are fully developed, you can turn it into an
annotation.

IV. SELFTEST ANNOTATIONS

In this section we briefly describe all the annotation types
supported by SelfTest. These include Test, SelfTest, Var,
SelfVar, SelfImport, and SelfCode.

A. Test

This annotation defines a single test case for a method or
constructor; use SelfTest annotation to define more than one
test case (see Section IV-B below). The annotated method or

4

1 @SelfVar({
2 @Var(type=Player.class, name=”o”, value=”new Player(\”O\”)”),
3 @Var(type=Player.class, name=”x”, value=”new Player(\”X\”)”)})
4

5 @SelfCode(
6 ”private Board mark(int... marks) {
7 Board board = new Board();
8 for (int i = 0; i < marks.length; i++) {
9 if (marks[i] != 0) {

10 int x = i % 3, y = i / 3;
11 mark(x, y, marks[i] == 1 ? this.o : this.x);
12 }
13 }
14 return board;
15 }”)
16

17 public class Board {
18

19 @SelfTest({
20 @Test(self=”mark(1,1,1, 0,2,2, 0,0,0)”, in=”o”, out=”true”),
21 @Test(self=”mark(1,1,1, 0,2,2, 0,0,0)”, in=”x”, out=”false”),
22 @Test(self=”mark(2,1,0, 2,0,1, 2,0,1)”, in=”o”, out=”false”),
23 @Test(self=”mark(2,1,0, 2,0,1, 2,0,1)”, in=”x”, out=”true”),
24 @Test(self=”mark(1,2,2, 0,1,0, 0,2,1)”, in=”o”, out=”true”),
25 @Test(self=”mark(1,2,2, 0,1,0, 0,2,1)”, in=”x”, out=”false”),
26 @Test(self=”mark(1,0,2, 1,2,0, 2,1,0)”, in=”o”, out=”false”),
27 @Test(self=”mark(1,0,2, 1,2,0, 2,1,0)”, in=”x”, out=”true”)})
28 public boolean isWonBy(Player p) { ... }
29 }

Fig. 4. SelfCode annotations

constructor should be concrete and non-private. The annotation
has the following named elements.

• Var[] var: local variables whose scopes are the test case
being defined (refer to Section IV-C below for the Var
annotation type).

• String self: value for the implicit argument (receiver) for
a non-static method under test.

• String[] in: values for the parameters of the method or
constructor under test.

• String out: expected return value for a non-void method.
• String[] post: conditions that must be true upon termina-

tion of the method or constructor under test.
• Class<? extends Throwable> err: exception that must be

thrown by the method or constructor under test.
All the elements are optional, and if no element is specified,

an empty test method, a test method with no body, will be
generated. For a non-empty test case, a test oracle—at least
one of out, post and err—must be specified; err cannot be
used together with out or post.

The value specified by the self element can be referred in
annotations by using the pseudo variable self ; similarly the
return value of a non-void method or the object initialized by
a constructor can be referred to by using the pseudo variable
result.

B. SelfTest

This annotation defines a list of test cases for a method or
constructor. The annotated method or constructor should be
concrete and non-private. The annotation has the following
unnamed element.

• Test[] value: list of test cases (refer to Section IV-A for
the Test annotation type).

Another use of this annotation is to indicate that a class
should be processed for generating its test class; for this, the
annotation should have an empty value and the annotated class
must be concrete and non-private. Similarly, an annotation
with an empty value attached to a method or constructor will
trigger generation of an empty test method.

C. Var

This annotation defines a variable that can be referred to
in other annotations, allowing to share test values and data.
It can annotates a class, method, or constructor, and has the
following named elements.

• Class<?> type: type of the variable.
• String name: name of the variable.
• String value: value of the variable.
• boolean isStatic: true if the variable is static; the default

is false.
A Var annotation annotating a class is translated to a class

field, and thus it can be shared by all test cases for the
class under test. A Var annotation annotating a method or
constructor is translated to a local variable, and thus it can
be shared only by the test cases for the annotated method
or constructor. A local variable may shadow a field, and a
shadowed field can be referred to by fully qualifying it, e.g.,
this.x and TSelfTest.x.

D. SelfVar

This annotation defines a list of variables that can be
referred to in other annotations, allowing to share test values
and data. It can annotates a class, method, or constructor, and
has the following unnamed element.

• Var[] value: list of variables (refer to Section IV-A for
the Var annotation type).

Variables are translated to either fields or local variables,
allowing different levels of sharing (refer to Section IV-A).

E. SelfImport

This annotation defines classes to be imported by the
generated test class. It annotates a class and has the following
unnamed element.

• String[] value: names of classes to be imported.
The names should conform to those of Java import state-

ments, e.g, java.util.List and java.util.*.

F. SelfCode

This annotation defines a chunk of Java code to be dumped
to the generated test class. It annotates a class and has the
following unnamed element.

• String[] value: Java statements.
The code will be dumped to the generated test class at the

member level (e.g., fields and methods) as given without being
checked or processed.

5

G. Reserved Names
The following two names are reserved and can be used in

annotations.
• self: denote the receiver (a.k.a. the implicit argument) of

a non-static method under test.
• result: denote the return value for a non-void method or

the object just initialized for a constructor under test.

V. SUMMARY

This document provided a tutorial introduction to SelfTest
annotations that allow Java programmers to embed test cases
in source code. The SelfTest annotation processor translates
the embedded test cases to executable JUnit tests and thus can
automate unit testing of Java classes significantly.

However, there are several shortcomings or limitations on
the current SelfTest annotations and the annotation processor.
One inherent limitation is that in Java only values of prim-
itive and java.lang.Class types are allowed in annotations,
and thus test values or data should be expressed as strings,
affecting writability and readability of annotated test cases.
And the current annotation processor doesn’t perform much
syntactic and static checks on these expressions written in
strings; this, however, is an engineering challenge, not an
inherent limitation. Expressiveness of annotations may be a
concern, as test values or data must be written in a single
expression. Although an extended form of expressions, e.g,
e0;m1(e1); ...;mn(en), and test variables may be used, it is
often difficult to express complicate test values or data, e.g.,
complex composite objects, concisely in a single expression.

Another limitation is that the unit of testing is a method
or constructor; each method or constructor is tested separately
in isolation. It is impossible to test several methods together
or protocol aspects of a class, e.g., allowed sequences of
method calls. However, note that it is never the intention of
SelfTest to completely replace human-based testing but to
complement or even strengthen it by helping programmers
focus more on interesting, challenging or creative aspects of
testing. Nevertheless we expect that the SelfTest annotations
makes testing more efficient by automating most of tedious,
time-consuming, mundane testing chores and provides a step
toward writing self-testing Java classes.

REFERENCES

[1] K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.
[2] K. Beck and E. Gamma. Test infected: Programmers love writing tests.

Java Report, 3(7):37–50, 1998.
[3] J. Gosling et al. The Java Language Specification, Java SE 7 Edition.

Addison-Wesley, 2013.
[4] Eclipse Foundation. Eclipse. http://www.eclipse.org. Date retrieved:

March 26, 2014.
[5] JUnit.org. Junit: A programmer-oriented testing framework for Java.

http://www.junit.org. Date retrieved: March 26, 2014.
[6] Oracle. Java Platform, Standard Edition. http://www.oracle.com/technet

work/java/javase. Date retrieved: March 26, 2014.
[7] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual. Addison-Wesley, second edition, 204.

APPENDIX

SelfTest is distributed as a single jar file and is available
from: http://www.cs.utep.edu/cheon/download/selftest/.

A. Configuring the javac Compiler

Since Java 6, annotation processing is integrated into the
javac compiler, known as pluggable annotation processing [6].
The compiler automatically searches for annotation processors
unless disabled with -proc:none option, and processors can
also be specified explicitly with -processor option. Thus, all
you have to do is to add the downloaded jar file to your
CLASSPATH or specify it using -classpath (-cp) option; the
SelfTest jar file is packaged in such a way that it triggers the
Java compiler to search for the included annotation processor.
You will also need to add the JUnit 4 jar file to your CLASS-
PATH because generated source code needs JUnit classes for
its compilation. A shell script like below will be useful; replace
colons with semicolons on Cygwin.

#!/bin/sh
LIB=”libs”
CP=”$CLASSPATH:$LIB/selftest.jar:$LIB/junit.jar”
exec javac −cp ”$CP” ”$@”

B. Configuring Eclipse

You can configure an Eclipse project to use SelfTest anno-
tations [4]. There may be several different ways to achieve
this, but one way is to perform the following two steps; these
steps are tested on Eclipse Juno (4.2.2) and Kepler (4.3.2) [4].

1) Add selftest.jar and JUnit 4 to the “Java Build Path.” To
do this, first click Project→Properties>Java Build Path
and then select Libraries>Add External Jars... to add
selftest.jar and Libraries>Add Library... to add JUnit 4.
It may be a good idea to create a directory named libs
in your project to store or import selftest.jar there first.

2) Enable annotation processing for your project. First,
go to Project→Properties>Java Compiler>Annotation
Processing and check all the check boxes, i.e., “Enable
project specific settings”, “Enable annotation process-
ing”, and “Enable processing in editor”. It is also rec-
ommended to change the generated source directory to a
name that does start with a dot so that it won’t be hidden
in the package explorer; the default is .apt generated.
And then configure the so-called factory path by expand-
ing Annotation Processing and selecting Factory Path.

a) Check the “Enable project specific settings” box.
b) Click the “Add External Jars...” item and add the

SelfTest jar file, selftest.jar.
c) Once added, select the newly added jar file and

click the “Advanced...” item. From the Advanced
Options dialog that shows contained annotation
processors, select edu.utep.selftest.MainProcessor.

This configuration enables Eclipse to recognize SelfTest
annotations by showing annotation errors in the built-in
Java editor and generating/compiling a JUnit test class
whenever annotated Java source code is saved by the
editor.

6

