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Abstract

Any non-trivial program contains loop control structures such as while, for and do state-
ments. A formal correctness proof of code containing loop control structures is typically
performed using an induction-based technique, and oftentimes the most challenging part
of an inductive proof is formulating a correct induction hypothesis. An incorrectly-
formulated induction hypothesis will surely lead to a failure of the proof. In this paper
we propose an approach to systematically formulate and drive specifications of loop con-
trol structures for formal analysis and verification of programs. We explain our approach
using while loops and a functional program verification technique, in which a program
is viewed as a mathematical function from one program state to another. The most
common use of loop control structures is to iterate over a certain sequence of values
and manipulate it, one value at a time. Many loops exhibit certain common flavors
or patterns, and similarly-structured loops have similarly-structured specifications. Our
approach is to categorize and document the common flavors, or usage patterns, of loop
control structures as reusable specification patterns. One key idea of our pattern speci-
fication is to promote manipulation of individual values to the whole sequence iterated
over by a loop. Our patterns are compositional and can be organized into a pattern hier-
archy. A catalog of loop specification patterns can be a good resource for systematically
formulating and deriving specifications of loops. Indeed, our case study indicates that
our patterns are applicable to a wide range of programs from systems programming to
scientific and business applications.

Keywords: formal proof, functional program verification, intended function, program
specification, specification pattern, while statement

1. Introduction

In the functional program verification method, a program is viewed as a mathematical
function from one program state to another, and a correctness proof of a program is done
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by comparing the function implemented by the program, called a code function, with its
specification called an intended function [1, 2, 3]. For the verification, each section of
code is annotated with its intended function. If a section of code consists of only simple
statements or control structures such as assignment statements, conditional statements,
and sequences of simple statements, its code function can be calculated directly from
the code and then compared with the intended function. However, if the code contains
loop statements like while statements, it is generally impossible to calculate its code
function directly from the code, thus its proof should be done by using a technique based
on induction. Dealing with loops is the most difficult part of program analysis as well
as formal verification [4]. Applying a proof-by-induction technique involves formulating
an induction hypothesis and proving its truth both for basis cases and inductive steps.
In general, proving the induction hypothesis can be done systematically or even semi-
automatically by symbolically executing statements and recording their side-effects in
a table called a trace table to calculate intended functions [2, 3]. However, finding a
correct induction hypothesis of a loop—e.g., a candidate, or likely, intended function
of a while loop—is not, and it is often the most difficult step of an inductive proof
[2]. This is because there is no simple rule, or systematic way, for formulating a good
intended function for a loop statement, and thus programmers rely on their intuitions,
insights, skills, and experiences. Nevertheless, it is crucial to come up with a good
intended function for a loop statement because an incorrect induction hypothesis causes
an inductive proof to fail.

One possible way to help programmers find correct, or likely, intended functions for
loops is to provide them with a catalog of sample, representative loops along with their
intended functions [5]. The samples in the catalog provide patterns of loops along with
their intended functions that can be matched to and instantiated for particular occur-
rences of loops in code. If a particular loop matches a pattern in the catalog, its intended
function is likely to have a similar structure as that of the pattern. It was observed that
that many loops exhibit certain common flavors or patterns, and similarly-structured
loops have similarly-structured intended functions [6]. For any pattern-based approach
to be useful in practice, however, the choice and the variety of patterns are crucial.
There is also a conflicting requirement for specification patterns. A good specification
pattern should be as general as possible to be widely applicable and usable, but at the
same time it should be as specific as possible to be meaningful in deriving an accurate,
detailed intended function when applied and instantiated. Like software design patterns
that describe reusable design solutions to recurring problems in software design [7], loop
specification patterns also provide other benefits by allowing one (a) to capture and docu-
ment program specification knowledge, (b) to support reuse in program specification and
boost one’s confidence in the analysis and verification of programs, and (c) to provide a
vocabulary for communicating formal program specifications and proofs.

In this paper we explain our pattern-based approach for systematically deriving likely
loop specifications for functional verification of programs. A recent study shows that,
among the three main loop control structures (for, while, and do statements) in C,
C++, and Java, the most frequently used is the for statement [8]. However, since the for
statement can be viewed as a syntactic sugar of the while statement, we use the while
statement as a representative loop control structure to explain our approach. In fact,
the proof rule of the for statement is a specialization of that of the while statement [2].
We identified and documented a number of specification patterns to capture the common
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use of while loops, and some of the patterns are specializations, or sub-patterns, of other
more general ones [5]. The most common use of while loops is to iterate over a certain
sequence of values and manipulate it, one value at a time. One of the key ideas of our loop
pattern documentation is to promote the manipulation of individual values to the whole
sequence iterated over by a loop. For this, we also invented a conceptual framework for
analyzing while loops systematically. The framework consists of four different, orthogonal
analysis dimensions, including one for analyzing the manipulation of individual values
iterated over by a loop, making our patterns compositional. We used the framework
to identify and classify different while loops along with their intended functions. The
documented patterns are language-neutral in that they can be applied to a wide range
of programming languages, from imperative, procedural languages to object-oriented
languages. For example, the patterns can be matched to while loops that iterate over
different implementations of index-based collections like arrays, strings, and sequences, as
well as iterator-based collections like linked lists and pointer or reference-based collection
data structures commonly found in popular programming languages such as C, C++,
and Java. The documented patterns have skeletal loop code, consisting of loop conditions
and bodies, as well as skeletal intended functions. The cataloged pattern can be used
to derive intended functions of while loops by first matching the loops to loop patterns
and then instantiating the corresponding skeletal intended functions. Once candidate,
or likely, intended functions are formulated and written, the correctness of the loops
can be proved rigorously or formally using the functional program verification technique
in which a program is viewed as a mathematical function from one program state to
another [1, 2, 3]. We also suggest a step-by-step process for applying the cataloged
patterns to derive intended functions systematically and semi-automatically. In a case
study we applied our patterns to source code of several open-source projects by examining
and analyzing more than 100 while loops. Our findings are very promising in that
our patterns are applicable to a wide range of programs from systems programming
to scientific and business applications, covering 96% of loops examined. Even though
we explain our approach using functional program verification, we believe its key ideas
be equally applicable to other program specification and verification techniques such as
Hoare-style axiomatic approaches.

The rest of this paper is organized as follows. In Section 2 we provide a brief overview
of functional program verification, including the notation for writing intended functions,
formal correctness proof of while loops, and the challenge of finding likely intended func-
tions for while loops. In Section 3 we explain our approach for documenting and cat-
aloging patterns of while loops and their intended functions. We first describe a new
conceptual framework for analyzing while loops systematically. The framework is used
to identify and classify different loop patterns. We then describe in detail several rep-
resentative loop patterns documented using a format similar to that of software design
patterns. In Section 4 we suggest a step-by-step process for applying our documented
patterns. We show sample applications of two of our documented patterns by following
the suggested process. In Section 5 we evaluate our approach and patterns and summa-
rize our findings along with lessons learned. In Section 6 we mention few broadly related
work, including loop invariants, and we conclude this paper with a concluding remark in
Section 7.
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2. Functional Program Verification

In the late 70s, Harlan Mills and his colleagues at IBM developed an approach to soft-
ware development named Cleanroom Software Engineering [9, 10, 11]. Its name was taken
from the electronics industry, where a physical clean room exists to prevent introduction
of defects during hardware fabrication, and the method reflects the same emphasis on de-
fect prevention rather than defect removal. Special methods are used at each stage of the
software development—from requirement specification and design to implementation—
to avoid errors. In particular, it uses specification and verification, where verification
means proving mathematically that a program agrees with its specification. Cleanroom
is a lightweight, or semi-formal, method and tries to verify the correctness of a pro-
gram using a technique called functional program verification [1, 2, 3]. The technique
requires a minimal mathematical background by viewing a program as a mathematical
function from one program state to another and by using equational reasoning based on
sets and functions. The specification of a program called an intended function defines
this mapping of states by describing the expected final state in terms of the initial state
[2]. In essence, the functional verification involves (a) calculating the function computed
by code called a code function and (b) comparing it with the intention of the code also
written as a function, an intended function. For this, the behavior of each section of code
is documented, as well as the behavior of the whole program. The documented behavior
is the specification to which the correctness of a program is verified.

2.1. Programs As Functions

An execution of a program produces a side-effect on a program state by changing the
values of some state variables such as program variables. In functional program verifi-
cation, a program execution is modeled as a mathematical function from one program
state to another, where a program state is a mapping from state variables to their values.
For example, consider the following code snippet that swaps the values of two variables
x and y.

x = x + y;
y = x − y;
x = x − y;

Its execution can be modeled as a mathematical function that, given a program
state, produces a new state in which x and y are mapped to the initial values of y and
x, respectively. The rest of the state variables, if any, are mapped to their initial values;
their values remain the same. This is a more direct way of describing computations than
the assertions used in Hoare-style axiomatic verification, which state facts about values
of variables.

A succinct notation, called a concurrent assignment, is used to express these functions
by only stating changes in an input state [12, 2, 3]. A concurrent assignment is written
as [x1, x2, . . . , xn := e1, e2, . . . , en] and states that each xi’s new value is ei, evaluated
concurrently in the initial state, i.e., the input state or the state just before executing
the code. The value of a state variable that doesn’t appear in the left-hand side of a
concurrent assignment remains the same. For example, the function that swaps two
variables, x and y, is written as [x, y := y, x]. The concurrent assignment notation can
be used to express the actual function computed by a section of code, a code function,
as well as one’s intention for the code, an intended function.
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2.2. Correctness Verification

The functional verification method is quite different from the Hoare-style axiomatic
method. It is based on functional semantics and reduces software verification to ordinary
mathematical reasoning about sets and functions as directly as possible. The correctness
of code is verified by comparing its code function and its intended function. And verifica-
tion means showing that the code function computes the result predicted by the intended
function. A program, or a section of code, with an intended function f is correct if it
has a code function p such that:

• The domain of p is a superset of the domain of f , i.e., dom(p) ⊇ dom(f). The
program may accept more values than what its specification says.

• For every x in the domain of f , p maps x to the same value that f maps to,
i.e., p(x) ≡ f(x) for x ∈ dom(f). For each value allowed by its specification, the
program should produce the same value as stated in the specification

It is also said that p is a refinement of f , denoted by p ⊑ f . For correctness verifi-
cation, an intended function is written for each section of the code to be verified. For
example, Listing 1 show an annotated code snippet that counts the number of positive
values contained in an array. An indentation is used to indicate the region of code that an
intended function annotates. For example, the intended function f0 in line 1 describes
the behavior of the whole code and states that the final value of r is the number of
positive values contained in the array a. The intended functions f1 and f2 in lines 2
and 6 specify the sections of code in lines 3–4 and 7–15, respectively. In f3, the word
anything means that one doesn’t care about the final value of the loop variable i. In this
paper we write intended functions semi-formally using Java expressions and well-known
mathematical notations like Σ. There is also a formal specification language for writing
intended functions [13].

Once each section of code is annotated with its intended function, its correctness can
be proved by comparing its code function with intended function. A proof can be done in
a modular way by using the intended functions of lower level code in the proof of higher
level code. For example, in order to prove the correctness of the code in Listing 1, one
needs to prove (a) the function composition of f1 and f2 is correct with respect to f0
and (b) both f1 and f2 are correctly implemented or refined by their code. If a section of
code consists of only assignments, sequences, and branches, its correctness proof is often
straightforward. Its code function can be calculated directly from the code using tools
like trace tables that facilitate symbolic execution of statements and functions [2, 3]. For
example, the code function of lines 3–4 is exactly the same as its intended function, f1.
However, a correctness proof of a loop such as a while loop is more involved because there
is no direct way of calculate its code function. It is done by using a proof-by-induction
technique [2, 3]. For example, the correctness of code in lines 7–15 with respect to its
intended function f2 requires three sub-proofs: (a) termination of the loop, (b) a basis
step proving that when the loop condition doesn’t hold, an identity function (i.e., no
state change) is correct with respect to f2, and (c) an induction step proving that when
the loop condition holds, function composition of f3 (intended function of the loop body)
and f2 is correct with respect to f2. The basis and induction steps are for when the loop
makes no iteration and one or more iterations, respectively. Therefore, verification of the
above code requires discharging the following four proof obligations.
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Listing 1: Code annotated with intended functions

1 // f0: [r := Σj=0..a.length−1(a[i] > 0 ? 1 : 0)]
2 // f1: [r, i := 0, 0]
3 r = 0;
4 int i = 0;
5

6 // f2: [r, i := r + Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]
7 while (i < a.length) {
8 // f3: [r , i := a[i] > 0 ? r + 1 : r, i + 1]
9 // [r := a[i] > 0 ? r + 1 : r]

10 if (a[i] > k)
11 // [r := r + 1]
12 r++;
13 // [i := i + 1]
14 i++;
15 }

1. f1; f2 ⊑ f0, i.e., a proof that f1 followed by f2 is a refinement of f0, where the
symbol “;” denotes the forward function composition.

2. Refinement of f1, i.e., correctness of f1’s code.

3. Refinement of f2, which requires the following three sub-proofs.

(a) Termination of the loop
(b) Basis step: ¬(i < a.length) ⇒ I ⊑ f2, where I denotes an identity function.
(c) Induction step: i < a.length ⇒ f3; f2 ⊑ f2

4. Refinement of f3, i.e., correctness of the loop body

Below we prove the correctness of the while loop by discharging its three proof obli-
gations listed above.

1. Termination of the loop. The intended function of loop body (f3) state that i is
incremented by 1 on each iteration of the loop, and thus i will eventually become
equal to a.length, at which time the loop terminates. That is, a.length - i is a loop

variant whose value is decreased on each iteration of the loop, thereby ensuring its
termination.

2. Basis step: ¬(i < a.length) ⇒ I ⊑ f2, where I is an identity function. If we assume
¬(i < a.length), we have the following.

f2 = [r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r, anything] (∵ i ≥ a.length)

⊒ [r, i := r, i]

≡ I

Therefore, ¬(i < a.length) ⇒ I ⊑ f2.
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3. Induction step: i < a.length ⇒ f3; f2 ⊑ f2.

f3; f2 = [r, i := a[i] > 0 ? r + 1 : r, i+ 1] ;

[r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := (a[i] > 0 ? r + 1 : r) + Σj=i+1..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r + (a[i] > 0 ? 1 : 0) + Σj=i+1..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ [r, i := r +Σj=i..a.length−1(a[j] > 0 ? 1 : 0), anything]

≡ f2

Therefore, i < a.length ⇒ f3; f2 ⊑ f2.

In functional program verification, a proof is often straightforward because one can
calculate code functions and compare them with intended functions. Although one needs
to use such techniques as case analysis and induction depending on the control structures
used as shown above in the proof of a while loop, carrying out a proof itself is essentially
the same as that of a block of sequential statements. As shown above, unlike an axiomatic
approach that works backward from a postcondition to a precondition, a functional
verification approach supports forward reasoning. Thus, it is more intuitive and natural
in that it matches the way programmers read code and reason about its correctness
informally.

2.3. Intended Functions for While Loops

In order to apply functional programming verification effectively, it is crucial to for-
mulate a correct intended function for the section of code to be verified. If the intended
function itself is incorrect, the proof will fail even if the code is indeed correct. This is
particularly true for proofs of loop control structures such as while statements, as their
proofs are done inductively and their intended functions become induction hypotheses
(see Section 2.2). An inductive proof would fail with an incorrect induction hypothesis.

However, formulating and writing a candidate, or likely, intended function for a while
loop is challenging. It is often the hardest part of formal program verification. There is
no simple rule to calculate it nor a systematic way of doing it. One difficulty is that a
loop typically computes a more general function than needed for a given task [2, Section
4]. A while loop is seldom used by itself in isolation but is preceded by an initialization,
which together with the loop computes something useful. For example, the while loop
in lines 7–15 of Listing 1 doesn’t count the number of positive values contained in the
whole array a. It performs a more general function, counting the number of positive
values in a starting from the index i. When the loop variable i is set to 0, however, it
does count the whole array. In a sense, a loop in isolation doesn’t do a computation but
completes it. An initialization, e.g., setting i to 0, determines where the computation
starts. An intended function of a while loop should be written in such a way that it
captures the completion of a computation regardless of where the computation starts.
It should be a correct generalization of the intended function for the code containing
both the initialization and the loop, and at the same time it should be specific enough
to capture the accurate result of the computation.

Formulating an intended function for a while loop requires a programmer’s insight,
practice, skill, and experience. The challenge of finding a likely intended function for a
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while loop is similar to that of finding a likely loop invariant in an axiomatic approach.
A loop invariant is a property that holds before and after each repetition of a loop and is
essential for understanding the effect of a loop and proving its properties [14, 15]. A loop
invariant should be general enough to hold during each iteration of the loop and specific
enough to lead to a postcondition when the loop terminates. Many researchers have
studied the problem of finding loop invariants and proposed various static and dynamic
techniques (see Section 6).

3. Loop Patterns

One way to figure out a likely intended function for a loop is to look at other loops that
have similar structures [2, Section 4.4]. If two loops have similar code structures, their
intended functions are likely to have similar structures as well. If we know the intended
function of one loop, we may be able to adapt it to derive that of the other. Besides,
many intended functions of loop control structures exhibit certain common flavors or
characteristics. To capitalize on this idea, we can develop reusable patterns of while loops
along with their intended functions that can be used as a valuable resource for formulating
a likely intended function for a loop. As mentioned previously, for the patterns to be
useful in practice, the choice and the variety of patterns are crucial. We need to identify
and accumulate a number of good patterns to cover a wide range of loops in different
types of applications. A good specification pattern should be as general as possible to
be widely applicable and usable, but at the same time it should be as specific as possible
to be meaningful in deriving an accurate, detailed intended function. In any pattern-
based approach, it is crucial to properly document patterns [7]. Each pattern should be
documented in such a way that it is easy to determine its applicability, to instantiate
it, and to derive a useful intended function from it. Furthermore, patterns need to be
classified, organized, and presented in a pattern catalog such that they can be easily
looked up and matched for an application. In this section we describe how we address
these requirements and explain several representative patterns that we documented in
our pattern catalog. Below we first describe a technique that we used to analyze loops
systematically to identify recurring patterns.

3.1. Loop Analysis

The most common use of loops is to iterate over a certain sequence of values and
manipulate it, one value at a time. For example, a study indicates that 60% of loops
written in C traverse arrays in some fashion—45.2% for non-string arrays and 14.3%
for string arrays—and linked lists account for 13.0% [4]. A loop has a chain of steps
that are performed and then repeated. There are four different types of steps or actions
in the chain. The next value is obtained from the sequence being iterated over, the
obtained value is manipulated, and the manipulation result is stored. A termination
condition is checked to determine repetition of the steps; these steps are repeated unless
(or until) a certain termination condition holds. This observation provides an excellent
conceptual framework for analyzing loops systematically: examine each of these steps or

actions separately and then combine the results. Each step or action becomes a different,
orthogonal dimension for analyzing a loop. That is, a loop can be examined along the
following four different analysis dimensions: (a) how it acquires the values to manipulate,
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(b) what manipulation it performs on the acquired values, (c) where the manipulation
result is stored, and (d) when it stops its iteration. As an example, consider the following
while loop taken from the sample code presented in Section 2.2.

1 while (i < a.length) {
2 if (a[i] > k)
3 r = r + 1;
4 i++;
5 }

The sequence iterated over by the loop is the elements of the array a starting from
index i to the end in order, i.e., a[i..a.length− 1], and it is used as follows.

• Acquiring values: An index (i) is used to access the elements of a (a[i] in line 2)
and each element is accessed in order (i++ in line 4).

• Manipulating values: If the current value is positive, compute r + 1 (lines 2-3).

• Storing results: If the current value is positive, the manipulation result is stored in
a scalar variable r (line 3). Assuming that i is an incidental variable used only for
iterating over the sequence, there is only one non-local variable that is updated or
changed.

• Determining termination: The loop terminates when the last element is accessed
(line 1), i.e., when it completes iteration over all elements of a starting from index
i.

Acquisition

Manipulation

Termination

Storage

indexed

iterated

created

accumulating

searching

selecting

collecting
global scalar

global collection

Input collection

all 
elements 
accessed

certain
element 

accessed
# of

iterations

certain
condition

met

Figure 1: Dimensions of loop analysis

We applied this analysis framework to study a large number of while loops from sev-
eral different sources including a few well-known, open-source projects (see Section 5)
and to identify common patterns of while loops and their intended functions. The frame-
work is also recommended for analyzing a loop to find a matching pattern in our pattern
catalog (see Section 4). We learned that there is a wide range of possibilities along
the four analysis dimensions, including several, most commonly-used ones described in
Figure 1. The acquisition dimension tells how the loop acquires the next value of the
sequence being iterated over. As shown in [4], the sequence is frequently stored explicitly
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in such structures as arrays, strings, collections, streams, and files, and its elements are
accessed by using indices or various forms of iterators. It is also possible to create the
elements on-the-fly on a need basis instead of retrieving stored ones. The manipulation
dimension determines the functionality of a loop by telling how the acquired values are
manipulated, or what operations are performed on them. It is often the most important
analysis dimension, as it represents the purpose of a loop. As expected, there are nu-
merous manipulations possible, including several common types such as accumulating,
searching, counting, selecting, and collecting (see Sections 3.3–3.6). The storage dimen-
sion tells where and how the results are stored. There are also a variety of possibilities
here, e.g., updating the input sequence and storing in output variables distinct from
the input sequence. For accumulation and searching, the results are stored in scalar
variables; for selecting and collecting, they are stored in vector or collection variables.
The termination dimension specifies the termination condition of a loop—a condition
that stops the iteration. It is the opposite of the test condition that allows the loop to
continue looping. A loop termination condition can differ in many ways, e.g., when all
elements are accessed, when a certain element is accessed, and when a certain number
of iterations has been completed. The conditions may be written in terms of indices,
iterators, values of the input sequence, and others. The four dimensions allow one to
analyze a loop in a modular, compositional fashion by examining each dimension sepa-
rately and composing the results. For example, the above while loop is a composition of
an index-based sequential acquisition, a counting manipulation, a scalar variable storage,
and termination when the last element is accessed.

3.2. Pattern Documentation

We examined a large number of while loops from several different sources including
programming textbooks, class assignments, our own research projects, and other open-
source projects. We applied the framework and technique described above to study,
group, and classify loops. From this study we identified a number of loop patterns that
are most frequently used, and we documented them in a pattern catalog [5]. Some pat-
terns are specializations, or sub-patterns, of other more general ones. The documented
patterns are language-neutral in that they can be applied to a wide range of programming
languages, from imperative, procedural languages to object-oriented languages. The pat-
terns can be matched to loops that iterate over different implementations of index-based
collections such as arrays, strings, and sequences as well as iterator-based collections such
as linked list and pointer or reference-based collection data structures commonly found
in programming languages like C, C++, and Java.

One interesting decision is to document a pattern based on the behavior of a loop
body, not its source code structure or implementation. This makes a pattern not only
language neutral but also its application modular in that it can handle nested loops
by first figuring out the intended function of the inner loops. As shown below, each
pattern consists of two structural elements: a skeletal intended function (f1) from which a
candidate, or likely, intended function of a matching loop can be derived and an intended
function of the loop body (f2).

[f1]
while (E) {
[f2]
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Table 1: Main patterns documented

Name Description
Accumulating Combine elements of a collection to a single value
Unconditionally Accumulating Accumulate all elements of a collection
Searching Find a certain element of a collection
Selecting Filter certain elements of a collection
Unconditionally Selecting Select all elements of a collection
Collecting Select and map certain elements of a collection
Unconditionally Collecting Collect all elements of a collection

...
}

The intended function f1 captures the behavior of the whole loop in terms of f2 that
specifies the behavior of the loop body. As mentioned earlier, the loop body is not given
in skeletal code but is abstracted to an intended function so that any code segment that
correctly implements the intended function can be matched to the pattern.

We documented our patterns using a format similar to that of software design patterns
[7]. Each pattern has a name, purpose, description, structure, example, application,
variations, and related patterns. Each pattern has a name to uniquely identify it. Then,
its main purpose is described briefly, including the kind of loops that can be matched
to the pattern. The description section provides more detailed information about the
pattern including its skeletal intended function. For example, it provides descriptions of
main elements of skeletal intended function, such as result variables and the sequence
being iterated over by the loop, and explains in detail the structure of the pattern. The
application section suggests a general process for applying the described pattern. It also
shows a sample application of the pattern to illustrate in a step-by-step fashion how
the pattern can be used. The variations and related patterns section lists variations
possible for the described pattern, and some of the variations are named and catalogued
separately as related patterns.

In our pattern catalog we used the manipulation dimension as the primary dimen-
sion for naming patterns, as it shows the purposes of loops—i.e., the behavior of loops.
We documented seven major patterns along with numerous variations (see Table 1) [5].
As can be guessed from the table, some patterns are specializations of others (see Sec-
tion 3.7). The reason that we documented them as separate patterns is because they
have appeared frequently in the code that we studied. In the following subsections we
describe several representative patterns in detail.

3.3. Accumulating Pattern

One common use of while loops is to combine certain elements of a collection into a
single value by applying various binary operators such as addition, multiplication, and
concatenation. The Accumulating pattern provides a skeleton intended function for these
loops. The type of the accumulated value is often the same as that of the elements of
the collection being accumulated.
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3.3.1. Notation

A loop that matches the Accumulating pattern iterates over a collection of values,
regardless of whether the values are read from data structures or generated on the fly. As
described in Section 3.1, there are many different ways of storing and accessing the col-
lection to be iterated over. To specify a pattern in a language-neutral and representation-
independent way, we need to abstract away from these specific implementation details.
Since its elements are accessed in a certain order by a loop, the collection can be viewed
logically as a sequence and its elements can be denoted by specifying their positions in
the sequence. The specifics of accessing elements are also abstracted to an abstract iter-
ator. If needed, the sequence and its iterator can be defined formally as model variables
[16]. Below we use the following notation to express and manipulate the collection being
iterated over by a loop.

• 〈〉: an empty sequence

• e ⊢ s: concatenation of an element e and a sequence s

• i: an abstraction of an iterator to access a sequence

• E(i): an expression written in terms of the abstract iterator i. It represents an
advancement of the iterator i to the next element, e.g., i + 1 for an index-based
collection like an array and i.next() for an iterator-based collection.

• s@i: i-th element of a sequence s, where i is an abstract iterator for s.

3.3.2. Pattern

As mentioned earlier, a pattern is specified by a pair of intended functions, one for
the loop body and the other for the whole loop. The Accumulating pattern is specified
by referring to four different values or elements: r representing the accumulated value, s
denoting the collection whose elements are accumulated, i denoting an abstract iterator
of s, and ⋄ denoting an accumulation operator.

f1: [r, i := ~⋄(r, s@i..), anything]
while (C) {
f2: [r, i := P (s@i) ? (r ⋄ s@i) : r, E(i)]

}

Let’s first examine the intended function of the loop body (f2). The loop body may
change two state variables, r and i. The variable r stores the accumulated value, and i is
an abstraction of the iterator to access the elements of s. The new value of r is defined
by using a conditional expression of the form E1 ? E2 : E3, denoting either E2 or E3

depending on the value of a Boolean expression E1. The value of r is defined in terms of
the following expression and operator.

• P (x): a predicate defined on the elements of the sequence s. It specifies the criterion
for selecting the elements to be accumulated and is a function of the signature
T → Boolean, where T is the element type of s. For each element x of s, it tells
whether x is to be accumulated.
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• ⋄: a binary operator of the signature T × T → T , where T is the element type
of s1. It’s an accumulation operator such as addition, multiplication, and string
concatenation to combine the elements of s.

The intended function states that the current element of the sequence s (i.e., s@i)
is accumulated in r using the accumulation operator (⋄) only if it satisfies the selection
criterion (P (s@i)). The new value of i is E(i), denoting an advancement of the iterator
i to the next element of s.

Let’s next look at the intended function of the whole loop (f1). It is defined by
promoting the accumulation operator (⋄) to the whole sequence s, denoted by ~⋄. The
final value of r is defined in terms of the following expression and operator.

• s@i..: a subsequence of s starting at i, consisting of elements selected using the
advancement expression E(i). It is a sequence consisting of elements s@i, s@E(i),
s@E(E(i)), s@E(E(E(i))), etc, and denotes the elements of s that are accessed
by the loop. The last element is determined by the loop termination condition C;
if the condition fails at the first iteration, the sequence is empty. The sequence is
defined recursively.

s@i.. ,

{

s@i ⊢ s@E(i).. if i denotes a valid position of s
〈〉 otherwise

Remember that 〈〉 denotes an empty sequence and ⊢ denotes concatenation of an
element and a sequence.

• ~⋄: a promotion of a binary operator ⋄ to a sequence. It is a function of the signature
T × Seq(T ) → T , where T is the argument and result type of ⋄ and Seq(T ) is a
sequence of T . It accumulates the elements of a given sequence and a given seed
value using a binary operator ⋄, and is defined recursively as follows.

~⋄(v, 〈〉) , v

~⋄(v, h ⊢ t) , P (h) ? ~⋄(v ⋄ h, t) : ~⋄(v, t)

If the given sequence is empty, it returns the seed value. If the sequence is not
empty and the first element (h) satisfies the selection criterion (P ), the seed value
(v) and the first element (h) are combined using the accumulation operator (⋄) and
the function is recursively applied to the rest of the sequence. If the first element
doesn’t satisfy the selection criterion, it is ignored and the function is recursively
applied to the rest of the sequence.

The intended function states that the final value of r is ~⋄(r, s@i..), accumulation,
using the ⋄ operator, of those elements of s at positions i, E(i), E(E(i)), and so on that
satisfy the selection criterion P .

1The most general signature of an accumulator is R × T → R, where R is the result (accumulated
value) type, allowing the accumulated value to be of different type (see Section 3.3.4).
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3.3.3. Example

The while loop below adds all positive elements of an array a starting at index i and
stores the result to sum. In Section 4.1, it will be shown how its intended function can
be derived by applying the Accumulating pattern.

// [sum, i := sum + Σj=i..a.length−1 (a[j] > 0 ? a[j] : 0), anything]
while (i < a.length) {
// [sum, i := a[i] > 0 ? a[i] : 0, i + 1]
if (a[i] > 0) {

sum = sum + a[i];
}
i++;

}

3.3.4. Variations and Related Patterns

There is a huge number of variations possible for the Accumulating pattern. Each axis
of the four-dimensional loop analysis described in Section 3.1 can produce many varia-
tions, e.g., indexing vs. iterator for the acquisition dimension. Below we describe several
noticeable variations that are not mentioned in the description of the four-dimensional
loop analysis in Section 3.1.

• Selection: The intended function of the loop body has a general form of [r, i :=
P (e) ? (r ⋄e) : r, E(i)]. One possible variation is the case where the condition P is
always true; there is no constraint and thus all elements are accumulated. In fact, it
occurs so frequently that we defined it as a separate pattern named Unconditionally
Accumulating [5]. Another possible variation is the case where the condition P is
written in terms of the iterator itself, not the current element. An example is to
accumulate every other element of a collection, P (i) , i % 2 == 0.

• Accumulator: An accumulation operator is a binary operator such as addition,
multiplication, and string concatenation. Often, its two arguments are of the same
type, meaning that the accumulated value is of the same type as the element type
of the sequence. In general, however, an accumulator can be of the signature
R × T → R, where R is the result (accumulated value) type and T is the element
type. It is also possible to have more than one accumulator, e.g., accumulating
elements differently depending on certain conditions.

• Manipulation: The elements of a sequence are often transformed or manipulated
prior to accumulation. To incorporate this into the pattern, the intended function
of the loop body can be refined to: [r, i := P (e) ? (r⋄M(e)) : r, E(i)]. An element
e is first transformed by applying a function M : T → S, that maps an element to
another value, and then the accumulator ⋄: R× S → R combines the transformed
value. An example is to count positive values contained in an array, in which case
M is a constant function that always returns 1.

• Acquisition: Beside various ways of acquiring elements described in Section 3.1,
a loop can accumulate elements of more than one sequence using either a single
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iterator or multiple iterators. An example is to accumulate elements of two different
arrays using a single iterator, e.g., [r, i := r + a[i] + b[i], i+ 1] or using two iterators,
e.g., [r, i, j := r + a[i] + b[j], i + 1, j + 1].

• Storage: It is possible for a loop to produce more than one accumulated value; it
can have multiple result variables. An example is to sum all positive values as well
as all negative values of an array; the loop body will have an intended function of
the form [pos, neg, i := pos + (a[i] > 0 ? a[i] : 0), neg + (a[i] < 0 ? a[i] : 0), i +
1].

3.4. Searching Pattern

A loop is frequently used to find an element in a collection, e.g., a largest value of an
array. This pattern provides a skeleton intended function for those loops that search for
a particular element in a collection. The result of such a loop is typically the element
found; however, other results are possible, such as the position or index of the element
found and a flag indicating whether an element is found or not. As in the Accumulating
pattern, the intended function of the loop is defined by promoting the intended function
of the loop body to a sequence.

f1: [r, i := ~⋄(r, s@i..), anything]
while (C) {
f2: [r, i := P (r, s@i) ? M(s@i) : r, E(i)]
...

}

As specified in f2, the loop body may change two state variables, r and i. The variable
r stores the search result, and as explained previously i is an abstract iterator to access
the elements of the sequence s. The new value of r is defined in terms of a predicate P

and a function M .

• P (r, e): a predicate defined on a pair of the result value and an element of the
sequence s. It specifies the search criterion for the elements contained in s, and is
a function of the signature R × T → Boolean, where R and T are the result type
and the element type of s, respectively.

• M(e): a manipulation function of the signature T → R, where T is the element
type and R is the result type, that transforms or maps an element to the result;
it is is frequently an identity function. However, the result value doesn’t have to
be the element found; it can be a flag indicating the presence of an element in
the sequence, which can be modeled by a constant function M that always returns
true. Another common use of the manipulation function is to obtain only a certain
part of a composite value, e.g., only the name of an employee.

The new value of r is the current element of s (s@i) transformed by M (M(s@i))
if the current element satisfies the search criterion (P (r, s@i)); otherwise, r remains the
same. The new value of i is E(i), denoting an advancement of the iterator i to the next
element.

As in the Accumulating pattern, the intended function of the whole loop (f1) is
defined by promoting the function of the loop body to the whole sequence. Specifically,
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the manipulation function M is promoted to a sequence, denoted by ~⋄, a function of the
signature R × Seq(T ) → R, where R is the result type, T is the element type of the
sequence s, and Seq(T ) is a sequence of type T . It calculates the result from a given
sequence using the manipulation function M and is defined recursively.

~⋄(r, 〈〉) , r

~⋄(r, h ⊢ t) , P (r, h) ? ~⋄(M(h), t) : ~⋄(r, t)

If the given sequence is empty, it returns the given result value (r). If the sequence
is not empty and the pair of the first element (h) and the given result value satisfies
the search criterion (P ), the first element is transformed using M and the function
is recursively applied to the rest of the sequence. If the first element doesn’t satisfy
the search criterion, it is ignored and the function is recursively applied to the rest of
the sequence. In summary, the intended function f1 states that the final value of r is
~⋄(r, s@i..), a transformed value of the elements of s at positions i, E(i), E(E(i)), and so
on that satisfy the search criterion P .

An example loop that matches the Searching pattern is shown below. It finds a
maximum value of an array a starting at index i and stores it in r.

// [r, i := ~max(r, a, i), anything]

// where ~max(r, a, i) , i > a.length − 1 ? r : ~max(max(r, a[i]), a, i+1)
while (i < a.length) {
// [r, i := a[i] > r ? a[i] : r, i + 1]
if (a[i] > r) {

r = a[i];
}
i++;

}

There are many variations possible for the Searching pattern. In fact, most of the
variations mentioned for the Accumulating patterns are also possible for the Searching
patterns, e.g., unconditional selection, various manipulations, multiple acquisitions, and
multiple results. However, most interesting variations are those concerned with the
termination of the search. When searching an element in a collection, there are several
different ways to terminate the search, e.g., to terminate as soon as an element is found
or to continue to the last element of the collection. The first case is for finding the first
occurrence of a matching element and the second for finding the last occurrence. In the
pattern specification, this is somewhat implicitly modeled by the sequence “s@i..”. If
needed, however, we can model the termination choice explicitly. For example, the first
case can be modeled by the following new definition of ~⋄.

~⋄(e, 〈〉) , e

~⋄(e, h ⊢ t) , P (e, h) ? M(h) : ~⋄(e, t)

3.5. Selecting Pattern

This pattern provides a skeleton intended function for those loops that select some
elements of a collection and store the selected elements in the same or a different collection
(see Figure 2). The element type of the result collection is the same as that of the input
collection.
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Figure 2: Selecting pattern

3.5.1. Notation

The sequence notation introduced earlier is extended to specify the Selecting pattern.
A collection iterated by a loop is viewed logically as a sequence, and a sequence is now
modeled as a partial function from indices to elements. For example, a string sequence s
consisting of two elements, say “Hello” and “World”, is now viewed as a partial function
from integers to strings, 〈0 7→ “Hello”, 1 7→ “World”〉. We use the following notation to
express and manipulate a sequence as a partial function.

• s@i: i-th element of a sequence s, where i an abstract iterator of s denoting an
index; it’s short for s(i).

• s@I: a subsequence of a sequence s, consisting of elements at positions specified
by an ordered index set I. It is a sequence consisting of elements projected by the
index set I, e.g., 〈0 7→ 10, 1 7→ 20, 2 7→ 30〉@{0, 2} ≡ 〈0 7→ 10, 2 7→ 30〉

• dom: domain of a sequence, e.g., dom 〈0 7→ 10, 1 7→ 20〉 ≡ {0, 1}. The result is an
ordered set.

• ran: range of a sequence, e.g., ran 〈0 7→ 10, 1 7→ 20〉 ≡ {10, 20}. The result is an
ordered bag.

• ⊎: function overriding. The expression f1⊎f2 maps everything in the domain of f2
the same value as f2 does, and everything else in the domain of f1 to the same value
as f1 does, e.g., 〈0 7→ 10, 1 7→ 20〉 ⊎ 〈1 7→ 30, 2 7→ 40〉 ≡ 〈0 7→ 10, 1 7→ 30, 2 7→ 40〉.
If the domains of two functions are disjoint, it is the union of the two functions.

3.5.2. Pattern

The pattern is specified by referring to the input and the result collections (in and
out) along with their iterators (i and j) and the criterion for selecting elements (P )
(see below). The iterators are used to access and store the elements of collections. The
variable in denotes the collection whose elements are to be selected. Since its elements
are accessed in a certain order in a loop, it is viewed logically as a sequence, and its
elements are denoted by their positions in the sequence. For this, an abstract variable
i—an abstraction of the iterator to access the elements of the collection—is introduced,
and the notation in@i is used to denote the i-th element of the sequence in. Similarly
variables out and j are used to denote the result sequence and its iterator, respectively.

f1: [out@D, i, j := R, anything, anything]
where D and R are domain and range of ~⋄(in, out, i, j, 〈〉)
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while (C) {
f2: [out@j, i, j := P (in@i) ? in@i : out@j, E1(i), P (in@i) ? E2(j) : j]
...

}

The intended function of the loop body (f2) states that the loop body may change
three state variables, out, i and j. The variable out contains the selected elements, and
i and j are abstractions of the iterators to access the elements of in and out. P is a
predicate defined on the elements of the sequence in. It’s a function of the signature
T → Boolean, where T is the element type of in, and specifies the selection criterion. If
P (x) is true for an element x of in, x should be selected. The new value of out@j is the
current element of in (i.e., in@i) if the current element satisfies the selection criterion
(P (in@i)); otherwise, it’s the same as the old value. The iterators i and j advance to
the next elements, however, for j only if s@i is selected. Operationally, the intended
function states that if the element in in at position i satisfies the condition P , it will be
stored in out at position j; otherwise, the element of out at position j remains the same.

Now let’s examine the intended function of the whole loop (f1). The loop selects the
elements of in that satisfy the selection condition P and stores the selected elements in
out. The intended function f1 specifies this behavior by promoting the selection and
storing of individual elements to the whole sequences, as denoted by ~⋄. Remember that
the notation out@D denotes a subsequence of out indexed by an ordered index set D,
where D is the domain of ~⋄. The function ~⋄ determines the elements (of in) to be selected
along with their new indices (in out). It is defined by promoting the intended function
of the loop body specified at the element level to a sequence and is defined recursively
as follows.

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ in@i〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

The last argument (r) is an accumulator storing the index-value pairs of the selected
elements. The condition C is the loop termination condition and may be written in terms
of in, out, i and j. The three cases represent (1) when all iterations are completed, (2)
when the current element is selected as it satisfies the selection criterion, and (3) when
the current element is not selected as it doesn’t satisfy the selection criterion. The ⊎
symbol denotes function overloading. With this definition, ~⋄(in, out, i, j, 〈〉) denotes the
selected elements as a partial function from indices to values.

3.5.3. Example

The while loop below copies all positive elements of an array a starting at index i to
b starting at index j.

/∗ [b[j..j+n−1], i, j := ~⋄[i..a.length−1], anything, anything]
∗ where n is the number of positive values in array a starting at index i
∗ and ~⋄ is defined below.

∗ ~⋄(〈〉) , 〈〉

∗ ~⋄(h ⊢ t) , h > 0 ? h ⊢ ~⋄(t) : ~⋄(t) ∗/
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while (i < a.length) {
// [b[j], i, j := a[i] > 0 ? a[i] : b[j], i + 1, a[i] > 0 ? j + 1 : j]
if (a[i] > 0) {

b[j] = a[i];
j++;

}
i++;

}

3.5.4. Variations and Related Patterns

Like previous two patterns there are many variations possible for the Selecting pat-
tern. Most of the variations mentioned for the Accumulating pattern are also applicable
to this pattern, including various manipulations, multiple acquisitions and multiple re-
sults. Below we describe several noticeable variations, specific to the Selecting pattern.

• Selection: The intended function of the Selecting pattern has a general form of
[out@j, i, j := P (in@i) ? in@i : out@j, E1(i), E2(j, in@i)], and one possible varia-
tion is the case where the selection condition P is always true; that is, all elements
are selected. Since it occurs so frequently we documented it as a separate pattern
named Unconditionally Selecting [5].

• Transformation: The selected elements may be transformed before they are col-
lected. In fact, it is so common that it was documented and cataloged as a sepa-
rate pattern named Collecting pattern (see Section 3.6). The Selecting pattern is
a specialization of the Collecting pattern where the transformation is an identity
function.

• Storage: Instead of storing the selected elements to another collection, it is possible
to store them to the input collection, e.g., shifting elements [a[i−1], i := a[i], i+1].

3.6. Collecting Pattern

A loop is often used to collect certain elements of a collection. It picks elements
that satisfy a certain condition, transform them, and stores the results in the same
or a different collection. The Collecting pattern captures this use of loops. It is a
generalization of the Selecting pattern (see Section 3.5), and the element type of the
result collection may be different from that of the input collection.

3.6.1. Pattern

As in the Selecting pattern, the intended function of the loop is defined by referring
to the input and the result collections (in and out) along with their iterators (i and j),
the element selection criterion (P ), and the function to transform the selected elements
(M). In fact, the specification of this pattern is almost identical to that of the Selecting
pattern, and the only difference is the introduction of a transformation function denoted
by M .
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f1: [out@D, i, j := R, anything, anything]
where D and R are domain and range of ~⋄(in, out, i, j, 〈〉)

while (C) {
f2: [out@j, i, j := P (in@i) ? M(in@i) : out@j, E(i), P (in@i) ? E2(j) : j]
...

}

The intended function of the loop body (f2) states that the loop body may change
three state variables, out, i and j. The variable out contains the collected elements, and
i and j are abstractions of the iterators to access the elements of in and out. P is a
predicate defined on the elements of the sequence in. It’s a function of the signature
T → Boolean, where T is the element type of in, and specifies the selection criterion.
If P (x) is true for an element x of in, x should be collected. M is a function defined
on the elements of the sequence in with a signature T → R, where T and R are the
element type of in and out, respectively, It maps, or transforms, the selected elements to
possibly different values. The new value of out@j is the current element of in (i.e., in@i)
transformed using M if the current element satisfies the selection criterion (P (in@i));
otherwise, it’s the same as the old value. The iterators i and j advance to the next
elements, however, for j only if s@i is collected. Operationally, the intended function
states that if the element in in at position i satisfies the condition P , it will be stored in
out at position j after transformed using M ; otherwise, the element of out at position j

remains the same.
As expected, the intended function of the whole loop (f1) is defined by promoting

the selection, transformation and storing of individual elements to the whole sequences,
as denoted by ~⋄. The function ~⋄ gives the transformed values of the elements (of in) to
be collected along with their new indices (in out), and its definition is identical to that
of the Selecting pattern except for the use of a transformation function M .

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ M(in@i)〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

With the above definition, ~⋄(in, out, i, j, 〈〉) denotes the collected elements as a partial
function from indices to values, whose range (R) becomes the new value of out@D.

3.6.2. Example

The while loop below collects all positive elements of an array a starting at index i

by multiplying 2 to them and storing the results in an array b starting at index j. In
Section 4.2 we will show how the intended function of a similar loop can be derived by
applying the Collecting pattern.

/∗ [b[j..j+n−1], i, j := ~⋄[i..a.length−1], anything, anything]
∗ where n is the number of positive values in array a starting at index i
∗ and ~⋄ is defined below.

∗ ~⋄(〈〉) , 〈〉

∗ ~⋄(h ⊢ t) , h > 0 ? h ∗ 2 ⊢ ~⋄(t) : ~⋄(t) ∗/
while (i < a.length) {
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// [b[j], i, j := a[i] > 0 ? a[i] ∗2 : b[j], i + 1, a[i] > 0 ? j + 1 : j]
if (a[i] > 0) {

b[j] = a[i] ∗ 2;
j++;

}
i++;

}

3.6.3. Variations and Related Patterns

All the variations of the Selecting pattern are also applicable to the Collecting pat-
tern, for the Selecting pattern is a specialization of the Collection pattern in which the
transformation function is an identity function. As in the Selecting pattern, if the col-
lecting condition is always true, all elements are collected, and this is documented and
cataloged as a separate pattern named Unconditionally Collecting. There is a wide range
of transformations possible, e.g., collecting indices of the elements not the elements them-
selves, and due to the transformation, many interesting variations are possible along the
storage dimension. For example, a loop may have more than one result collection, e.g.,
element-wise sum and product of two arrays which can be accomplished by a loop body
with an intended function [sum[i], prod[i], i := a[i] + b[i], a[i] ∗ b[i], i+ 1].

3.7. Pattern Hierarchy and Composition

The most common use of loop control structures is to iterate over a certain sequence
of values and manipulate the values of the sequence, regardless of whether the values
are retrieved from data structures or created on-the-fly. A loop pattern is defined in
terms of the manipulation of individual values specified by the intended function of the
loop body. In particular, the manipulation of individual values is promoted to the whole
sequence to specify the intended function of the whole loop. Therefore, depending on how
we define the manipulation of individual values, we can have a wide variety of patterns
possibly at many different levels of abstraction. At the highest level of abstraction, the
intended function of the loop body may be written as [r, i := F (~v), E(~v)], where F and
E calculate new values of r and i, respectively, in terms of the initial values of variables
~v that may include r, i, and of course the sequence being iterated over, and the intended
function of the whole loop can be defined by promoting, or extending, F to the whole
sequence. For example, if the intended function of a loop body is [r := r + a[i] ∗ 2],
F is defined as F (r, a, i) , r + a[i] ∗ 2. At a lower level of abstraction, the function F

can be further decomposed into S(M(~v), ~v), where M is an abstraction of the individual
value manipulation and S is a storage function. This level of abstraction corresponds to
the way we examine a loop along the four analysis dimensions. For the same intended
function [r := r + a[i] ∗ 2], F is now refined to S(r,M(a, i)), where M(a, i) , a[i] ∗ 2
and S(r, x) , r + x. Each of M , F , and E can be further decomposed or refined, say to
introduce a condition to model a conditional manipulation, storage, or advancement as
done in some of our patterns.

There is one nice consequence of decomposing value manipulations and defining pat-
terns by promoting individual value manipulations to sequences. Patterns can be clas-
sified into a pattern hierarchy (see Figure 3). There exists at the root of the hierarchy
a pattern whose loop body has an intended function [r, i := F (~v), E(~v)]. It’s sort of a
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universal pattern applicable to any loop that iterates over a sequence of values, but it’s
less useful in practice because it’s so abstract; it doesn’t provide much help in under-
standing a loop or guiding derivation of a detailed, likely intended function of the loop.
A generalized pattern is applicable to a wide range of loops, but its specification is more
abstract and thus provides less help in deriving a detailed intended function. A special-
ized pattern, on the other hand, is more specific with limited applicability but provides
better guidance in deriving a detailed intended function. The pattern hierarchy is ex-
tensible in that one can easily define and add a new pattern by refining or specializing
the value manipulation function of an existing pattern. For example, we can introduce a
new sub-pattern of Accumulating, named Counting, to count the number of elements of
a collection that meet a certain condition (see Figure 3). For this, the intended function
of Accumulating, P (s@i) ? (r ⋄ s@i) : r, is refined to P (s@i) ? (r + 1) : r2. The
pattern hierarchy can also be used to find matching patterns for a loop by starting from
more general patterns moving down to more specific ones.

Our patterns are compositional in two different senses. A pattern can be decomposed
along the four, orthogonal dimensions of the loop analysis: value acquisition, value ma-
nipulation, loop termination, and result storage (see Section 3.1). Even though our
patterns are named along the value manipulation dimension, each dimension contributes
to the definition of a pattern and, in fact, produces new patterns or variations, typically
more specific ones, e.g., Index-based Accumulating. As a consequence, a new pattern
can be assembled by picking appropriate elements from the four analysis dimensions, one
from each dimension (see Section 4.1). We can also create composite patterns to derive
intended functions for loops that can change more than one non-local variable. For each
result variable an appropriate pattern is applied to determine its final value, and then all
the variables along with their final values are listed together in an intended function to
come up with an intended function of the whole loop (see Section 4.2 for an example).

2It is also possible to refine the intended function of Searching, P (r, s@i) ? M(s@i) : r, to
P (s@i) ? (r + 1) : r.
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4. Application of Patterns

In this section we first suggest a general process for applying all documented patterns
and their variations. We then apply two of our patterns to sample code. The following
four steps are recommended for applying a pattern to derive an intended function of a
loop.

1. Formulate an intended function of the loop body.

2. Find a matching pattern from the pattern catalog.

3. Unify intended functions of the code and the pattern.

4. Instantiate the intended function of the pattern.

The first step is to formulate and specify the behavior of the loop body, as a pattern
is specified in terms of the intended function of the loop body, not its code structure.
If the code of the loop body doesn’t contain any nested loops, its code function may
be systematically calculated using techniques like trace tables [2, 3]. Essentially, one
will need to identify and list all the state variables that are mutated by the code and
specify their new values typically in terms of their old values. If the loop body contains
other loops, however, the intended functions of the nested loops can be found first by
applying the patterns from the pattern catalog. In any case, the intended function or
code function of the loop body should document all the side effects produced by the loop
body, i.e., state changes caused by a single iteration of the loop. Note that it is possible
for a loop to have more than one input collection or output variable (see below).

Once the behavior of the loop body is formulated and specified in an intended func-
tion, the next step is to match the loop to one of the patterns documented in the catalog.
For this, it is suggested to examine the loop along the four analysis dimensions described
in Section 3.1: (a) how it acquires the values to manipulate, (b) what operation or ma-
nipulation it performs on the acquired values, (c) where and how the manipulated value
is stored, and (d) when it terminates the iteration. Most of the analyses, especially
acquisition, manipulation, and storage are likely to have been performed already and
documented in the intended function of the loop body. The loop body has an intended
function of the following general form:

[s1, s2, · · · , sn := M1(e, s1),M2(e, s2), . . . ,Mn(e, sn)]

where si is a state variable whose value may be changed in the loop body, e is the current
element of the collection being iterated over, Mi is a manipulation function defining the
new value of si usually in terms of its old value and the current element of the collection.
The state variable si is either a result variable or an iterator, and the current element
e is typically given in terms of an iterator. If a loop has more than one result variable,
one needs to find a pattern and apply it for each result variable; it is also possible for a
loop to have more than one input collection. To find a matching pattern, compare the
manipulation function, Mi, with those of the patterns in the catalog. For example, Mi

can be matched to the Accumulating pattern if it has the form P (e) ? e⋄ si : si, where si
is a result variable, P is a predicate defined on the elements of an input collection, ⋄ is
a binary (accumulation) function defined on a tuple of the result and an element of the
input collection (see Section 3.3 for the Accumulating pattern).
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Once a matching pattern is found, the next step is to define a mapping or correspon-
dence between variables, symbols, and expressions appearing in the intended functions
of the loop body of the code and the matched pattern. This mapping will allow one to
derive an intended function of the code from the skeletal intended function given by the
pattern.

The last step is to derive an intended function of the code by instantiating the skeletal
intended function of the pattern. For this, one needs to replace variables, symbols, and
expressions appearing in the skeletal intended function with the corresponding ones of
the code, given by the binding defined in the previous step.

4.1. Accumulating Pattern

In this subsection we illustrate in detail an application of the Accumulating pattern
using the example loop shown in Section 3.3, which is copied below.

while (i < a.length) {
if (a[i] > 0) {

sum = sum + a[i];
}
i++;

}

We first formulate the intended function of the loop body. The code function of the
loop body can be written straightforwardly; a[i] is added to sum only if it is positive, and
i is always incremented by 1. Thus, its code function is: [sum, i := a[i] > 0 ? sum+a[i] :
sum, i+ 1].

We next find a matching pattern. The loop body of the Accumulating pattern has
an intended function of the form [r, i := P (s@i) ? s@i ⋄ r : r, E(i)], where r is a result
variable, i is an iterator, P is a predicate defined on the elements of an input collection,
⋄ is a binary (accumulation) function defined on a tuple of the result and an element of
the input collection (see Section 3.3 for the Accumulating pattern). The structures of
both functions are identical. The intended function of the loop body matches that of the
Accumulating pattern with the binding {r 7→ sum, i 7→ i, e 7→ a[i], P (e) 7→ e > 0, e ⋄ r 7→
r + e, E(i) 7→ i + 1}. It is also easy to see that the loop has the following characteris-
tics; decision trees such as the ones shown in Figure 4 can be useful in identifying loop
characteristics.

• Acquisition: index-based (i, a[i]) and sequential (i+ 1)

• Manipulation: addition (+)

• Storage: scalar variable update (sum)

• Termination: when all elements are accessed (i < a.length)

We unify intended functions of the code and the matching pattern. We map terms
such as variables, symbols and expressions from the pattern to those of code, and the
result is summarized in Table 2.
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Figure 4: Decision trees for analyzing a loop

Table 2: Mapping of terms

Pattern Code
Intended function Term Term Intended function

s a

r sum

[r, i := P (s@i) ? i i [sum, i := a[i] > 0 ?
(r ⋄ s@i) : r, E(i)] P (x) x > 0 sum+ a[i] : sum, i+ 1]

x@i x[i]
[r, i := ~⋄(r, s@i..), anything] x ⋄ y x+ y

E(x) x+ 1
x@i.. x[i..a.length− 1]

Finally, we can now instantiate the skeletal intended function of the pattern using
the binding defined in the previous step (see Table 2).

[r, i := (r, s@i..), anything] ≡ [sum, i := ~⋄(sum, a[i..a.length− 1]), anything]

where is ~⋄ also instantiated as follows.

~⋄(v, 〈〉) , v

~⋄(v, h ⊢ t) , v > 0 ? ~⋄(v + h, t) : ~⋄(v, t)

Note that~⋄ denotes the sum of all positive elements of the given array plus the given value,
and thus it can be rewritten using a more familiar mathematical notation: ~⋄(sum, a[i..a.length]) ≡
sum+ Σj=i..a.length−1(a[j] > 0 ? a[j] : 0). Therefore, the derived intended function can
be rewritten as:

[r, i := sum+Σj=i..a.length−1(a[j] > 0 ? a[j] : 0), anything]

which matches the intention of the loop, i.e., calculating the sum of all positive numbers
stored in the array a starting at index i.
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4.2. Collecting Pattern

In this subsection we will analyze a code snippet taken from a Battleship game server
written in Java. Battleship is a guessing game played by two players on grids, usually
10× 10, of squares (see Figure 5). Each player has a fleet of ships and each ship occupies
a number of consecutive squares on the grid, arranged either horizontally or vertically.
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Figure 5: Battleship board

The code shown in Listing 2 is excerpted from a method that processes a ships
deployment message sent by a Battleship client, requesting to place a player’s ships
on the opponent’s board. The body of a deployment message is a string of the form
n1, s1, x1, y1, b1, ..., nm, sm, xm, ym, bm, where ni is the name of a ship, si is its size, xi

and yi are the coordinate of the starting square, bi is its direction, true for horizontal and
false for vertical. An example deployment message is: “Aircraft carrier, 5, 10, 1, false,
Battleship, 4, 2, 1, true, Frigate, 3, 2, 3, false, Submarine, 3, 3, 9, true, Minesweeper,
2, 4, 10, true”. The loop takes the body of a deployment message, given as a string
tokenizer named tokens of type StringTokenizer, and processes it by placing ships at
specified squares on a Battleship board named board (see Figure 6).

Let’s analyze the loop in isolation and derive its intended function. The loop has
an input variable, tokens, and two output variables, board and noError. The variable
tokens is an input collection, however, it can also be regarded as an output variable if one
cares about its final value; its state can be changed by a built-in iterator (nextT oken).
We will abstract from this specific implementation detail and use a pseudo variable i to
denote its iterator as we did in our patterns documentation. To find a matching pattern,
we first need to formulate the intended function of the loop body. Note that the loop
body make a call to the placeShip(ship, x, y, dir) method defined in the Board class. We
need to know its behavior, ideally documented in an intended function. Let’s assume its
behavior is specified as follows.

[result, this := placeable(this, ship, x, y, dir),

placeable(this, ship, x, y, dir) ? this⊕ (ship, dir) : this]

where pseudo variables result and this represents the return value and the receiver, and
placeable(b, s, x, y, d) is a predicate telling whether a ship s can be placed at a position
(x, y) of a board b horizontally or vertically (d). A ship can be placed on a board if
it doesn’t overlap with other ships. The ⊕ operator models placement of a ship on a
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Listing 2: Code from a Battleship game server

1 StringTokenizer tokens = new StringTokenizer(msgBody, ‘‘,’’);
2 boolean noError = true;
3 while (noError && tokens.hasMoreTokens()) {
4 try {
5 String name = tokens.nextToken();
6 int size = Integer.parseInt(tokens.nextToken());
7 int x = Integer.parseInt(tokens.nextToken());
8 int y = Integer.parseInt(tokens.nextToken());
9 boolean dir = Boolean.parseBoolean(tokens.nextToken());

10 Battleship ship = new Battleship(name, size);
11 noError = board.placeShip(ship, x, y, dir)
12 } catch (Exception e) {
13 noError = false;
14 }
15 }

n1 y1 d1 n2 s2 x2 y2s1 x1 d2tokens

board

Figure 6: Behavior of the loop

board; the result is the same as the given board except that the specified squares are
now occupied by the given ship. We now can formulate the intended function of the
loop body consisting of a try-catch statement. We will consider the try clause first.
All the variables except for noError and board are local variables and invisible in the
final state, and thus they shouldn’t appear in the intended function of the try clause as
shown below.

[noError, board, i := spl, spl ? board⊕ (s, x, y, d) : board, i+ 5]

where spl , placeable(board, s, x, y, d), s , new Battleship(n, l), n , tokens@i, l ,

tokens@(i + 1), x , tokens@(i + 2)τ , y , tokens@(i + 3)τ , and d , tokens@(i + 4)τ .
For string v, we use the notation vτ to model parsing v to the value of an appropriate
type (int or boolean). The intended function essentially states that tokens from tokens

are transformed to appropriate values (int, boolean, and Battleship) and the results are
stored in board. The intended function of the catch clause is [noError := false]. We
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combine both functions to come up with an intended function of the loop body.

[tokensOk ∧ placeable(this, ship, x, y, dir)→

noError, board, i := true, board⊕ (s, x, y, d), i+ 5

| otherwise → result, i := false, i+ δ]

(1)

where tokensOk is a predicate indicating the existence of four more tokens and their
well-formedness (no parsing error). δ is an offset in the range of 0 and 4; it is the offset of
the first token that is not well-formed, the offset of the last token if there exists less than
4 tokens in tokens, or 4 otherwise. Note that we use a conditional concurrent assignment,
a concurrent assignment that may have an optional condition, or guard, followed by an
→ symbol [2, 3]. It specifies a partial function that is defined only when the condition
holds.

Before we match the above intended function to a pattern, let’s examine the loop along
the four different analysis dimensions. We can easily see the following characteristics.

• Acquisition: built-in iterator of StringTokenizer (nextT oken())

• Manipulation: transformation to battleships for board and to true/false for noError

• Storage: scalar (noError) and collection (board)

• Termination: when all elements are accessed (hasMoreTokens()) or upon an error

As shown above, the code mutates two state variables, board and result, and each
can be matched to a possibly different pattern to find its final value. Let’s first consider
the main state variable board. From the intended function 1 above, we can extract those
parts that are concerned with the side-effect on board.

[board := tokensOk ∧ placeable(board, s, x, y, d) ? board⊕ (s, x, y, d) : board]

Structurally it can be matched to both the Accumulating and the Collecting patterns.
It depends on one’s view of a board, a single entity (accumulation) or an aggrega-
tion (collection) of ships. Since we have already shown an application of the Accu-
mulating pattern in the previous subsection, we will match it to the Collecting pat-
tern. In fact, this is a sensible decision, for we can rewrite the intended function as
[board@(x, y) := tokensOk... ? (s, d) : board@(x, y)] using an indexing notation; a board
is viewed abstractly as a map from x-y coordinates to ship-direction pairs. When it is
convenient, we will use this indexing notation and the map view below. The intended
function of the Collecting pattern is [out@D := R], where D and R are the domain and
the range of ~⋄(in, out, i, j, 〈〉), and ~⋄ is defined as follows (see Section 3.6).

~⋄(in, out, i, j, r) ,
r if ¬C(in, out, i, j)
~⋄(in, out, E1(i), E2(j), r ⊎ 〈j 7→ M(in@i)〉) if C(in, out, i, j) ∧ P (in@i)
~⋄(in, out, E1(i), j, r) otherwise

Remember that i and j are abstract iterators of in and out, respectively. The pattern’s
intended function can be instantiated to [board@D := R], where D and R are the domain
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and the range of ~⋄(tokens, board, i, 〈〉) and ~⋄ is defined below. Note that the iterator j
is dropped because it is unified to (x, y) calculated on the fly.

~⋄(tokens, board, i, r) ,
r if ¬(tokensOk ∧

placeable(board, s, x, y, d))
~⋄(tokens, board, i+ 5, r ⊎ 〈(x, y) 7→ (s, d)〉) otherwise

where s, x, y, d are defined as before; they are parsed from tokens using the iterator i.
Note that recursion terminates if current tokens are not well formed or the parsed ship
can’t be placed on the board.

We next consider the result variable, whose final value can be specified as [result :=
tokensOk∧placeable(this, s, x, y, d)], extracted from the intended function 1 above. The
intended function can be matched to the Searching and the Accumulating patterns,
e.g., searching for an erroneous situation or accumulating boolean values. In either
case, the pattern’s intended function can be straightforwardly instantiated to [result :=
~⋄(tokens, board, i)], where ~⋄ is defined recursively as follows; we overload the ~⋄ symbol
for calculating values of board and result.

~⋄(tokens, board, i) ,
true if i is invalid (i.e., no more token)
false if ¬(tokensOk ∧ placeable(board, s, x, y, d))
~⋄(tokens, board⊕ (s, x, y, d), i+ 5) otherwise

Now, the last step is to combine the two intended functions, and we have the combined
intended function, [board@D, result, i := R,~⋄(tokens, board, i), anything], where D and
R are the domain and the range of ~⋄(tokens, board, i, 〈〉). If one cares about the final
value of tokens, then the final value of i can be defined precisely by overloading ~⋄ as
done for result.

5. Evaluation

We performed a case study to evaluate our patterns, in particular, to determine their
applicability in real-world applications. We applied our patterns to source code of several
open source projects available from the Apache Software Foundation (http://www.apache.org).
We picked several target applications for our study to address the great diversity in soft-
ware applications, e.g., systems programming, business applications, scientific applica-
tions, and Web software. We restricted the implementation languages to Java and C,
two of the programming languages that we are most familiar with and that are also the
most popular in practice. Listed below are the target applications picked for our case
study.

• Chukwa 0.5: An open source data collection system for monitoring large distributed
systems including a toolkit for for displaying, monitoring and analyzing the col-
lected data [17]. It is written in Java and JavaScript.

• Commons Math 3.3: A library of lightweight, self-contained mathematics and
statistics components addressing the most common practical problems not imme-
diately available in the Java programming language [18].
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• HTTP Server 2.0.65: A popular, open-source HTTP server written in C [19].

• Jmeter 2.11: An application designed to test and measure performance of Web
applications written in Java [20].

• Syncope 1.2.0-M1: a framework and system for managing digital identities in
database applications and enterprise environments, implemented in Java EE [21].

We found total 2180 while loops in the source code of these applications, and among
these we pick 126 loops for our study (see Table 3). From each application we first
selected randomly source code files containing while loops and then picked one arbitrary
loop from each selected file.

Table 3: Number of sampled loops

Loops Files Samples
Chukwa 173 60 24
HTTP 1300 250 13
Jmeter 335 158 25
Math 348 164 55
Syncope 24 16 9
Total 2180 648 126

The initial plan for our study was to derive the intended functions of all the sampled
loops by following the step-by-step processes described in the applicable patterns, working
one loop at a time. However, we soon learned that many loops have similar flavors or
structures, and the processes of deriving their intended functions are almost identical.
Thus, for groups of similar loops we applied our patterns only to one or two representative
loops, and for the rest of loops we just identified applicable patterns unless there are any
interesting aspects on the pattern applications.

Table 4 summarizes the coverage of our patterns measured in the number of loops
that were successfully matched to our patterns and thus whose intended functions were
derived, or likely to be derivable, from the patterns. The column labeled “Mul” shows
the number of loops that were matched to more than one pattern, i.e., loops that have
more than one primary output variable, and the “Not” column shows loops that couldn’t
be matched to any of our patterns (see below for details). The result is very promising in
that 96% of loops were matched to our patterns, meaning that their intended functions
were, or could be, derived using the patterns. It’s also interesting to learn that the
distributions of matching patterns vary among applications (see Figure 7), but on average
the Collecting pattern occurs most commonly at 36%.

Below we describe some of observations, findings, and lessons learned from our case
study along with other interesting topics of discussion. There are several loops that
didn’t match any of our patterns. These are loops mainly written for non-functional
behavior. In Jmeter, for example, we found several loops written for clock, timing, and
concurrency using methods like System.currentTimeMillis() and Thread.sleep().
They don’t match any of our patterns, for our patterns are for functional aspects of
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Table 4: Statistics of matching patterns

Acc (%) Sea (%) Sel (%) Col (%) Mul (%) Not (%) Total
Chukwa 4 (17) 1 (4) 6 (25) 9 (38) 4 (17) 0 (0) 24
HTTP 4 (31) 2 (15) 2 (15) 5 (38) 0 (0) 0 (0) 13
Jmeter 3 (12) 1 (4) 11 (44) 3 (12) 4 (16) 3 (12) 25
Math 11 (20) 18 (33) 8 (15) 13 (24) 3 (5) 2 (4) 55
Syncope 2 (22) 1 (11) 0 (0) 6 (67) 0 (0) 0 (0) 9

Total
24 (19) 23 (18) 27 (21) 36 (29) 11 (9)

5 (4) 126
121 (96)
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Figure 7: Percentage of matching patterns: overall (left) and individual applications (right)

sequential programs. The two loops from the Commons Math package are concerned
about GUI operations calling GUI methods such as repaint(). In theory it’s possible
to model them as state changes, but in practice there is no benefit of doing so because
there is a better way of modeling user interfaces.

As a study has shown, the most common use of loops is to iterate over a certain
sequence of values, stored explicitly in data structures such as arrays [4]. We learned
that such loops are relatively easy to analyze in order to find matching patterns. More
difficult ones are those that generate values on the fly. In Commons Math, loops are
mostly used for performing mathematical calculations involving all sorts of numerical
operations. A significant number of loops iterate on numbers determined on the fly,
not over a stored sequence of numbers, and often it’s not straightforward to figure out
the sequence of numbers being iterated over. However, once the imaginary sequences
of numbers are identified and defined correctly, the applications of patterns are often
straightforward. For example, the following loop from the Commons Math package takes
two numbers a and b, and repeats the loop body an indefinite number of times.

while (a != b) {
final int delta = a − b;
b = Math.min(a, b);
a = Math.abs(delta);
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a ≫= Integer.numberOfTrailingZeros(a);
}

The next values of a and b are determined on the fly, i.e., min(a, b) and |a − b|≫,
where x≫ denotes a right shifting of x by the number of trailing zero bits. Abstractly,
the loop can be thought of taking two sequence of numbers, say ~a and ~b, determined by
the initial values of a and b, and iterate over them. If a and b are initially 10 and 7,
then ~a and ~b will be 〈10, 3, 1, 1〉 and 〈7, 7, 3, 1〉. And the final values of both a and b will
be 1 because the loop searches for a pair-wise equivalent value, which is always the last
element in the sequence.

There were cases that we have to change loop code a bit to apply our patterns.
In Jmeter, for example, there are many loops that call test oracle methods such as
assertEquals() that may throw an exception and thus terminate a loop abruptly. Op-
erationally they are similar to loops that contain an exit type of control statements such
as break and return statements. To match such a loop to one of our patterns, we first
had to slightly rewrite its code. As an example, consider the following loop taken from
Jmeter.

while ((sampler = controller.next()) != null) {
assertEquals(order[counter++], sampler.getName());

}

It can be rewritten to the following code by introducing a flag, say testOk, indicating
a test success or failure.

sampler = controller.next();
while (testOk && sampler != null) {

try {
assertEquals(order[counter++], sampler.getName());
sampler = controller.next();

} catch (AssertionError e) {
testOk = false;

}
}

Once it’s rewritten to get rid of an abrupt termination, we can write the intended
function of its loop body and then match it to the Searching pattern. Note that the loop
condition is also rewritten to make an expression side-effect free. This particular loop is
also interesting in that it takes two input sequences, one iterated with an index and the
other with an iterator, and the values are transformed from samplers to names.

It wasn’t uncommon to find loops that have multiple output variables, especially
secondary, flag types of variables. The final values of some of the output variables are
calculated differently using different manipulation functions; a common code pattern of
the loop body is to use if-then-else statements to calculate results differently or store
them in different state variables. For example, there was a loop that essentially copies
values from one collection to another but also counts the number of values copied. We
were able to handle such loops by matching them to multiple patterns, one for each
output variable, as recommended by the pattern catalog and shown in the example in
Section 4.2.
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As in the example in Section 4.2 we quickly learned that a loop can be matched to
different patterns depending on our view on the granularity of data. The same data can
be viewed as a scalar, composite, or collection; this is especially true for encapsulated
data with a well-defined application programming interface or a set of public operations.
For example, we found the following loop in our case study, where both mantissa and
exponent are int variables.

while ((mantissa & 0x0010000000000000L) == 0) {
exponent−−;
mantissa ≫= 1;

}

Are values “collected” into mantissa or “accumulated”? It really depends on our
intention of the code and our view of mantissa’s value. If an int value is viewed as
a sequence of bits, it collects constant bits (1’s); otherwise, it accumulates values by
multiplying by 2. Note that the selected pattern will also determine the form or structure
of the derived intended function, e.g., manipulating mantissa’s value as bits or an int

value. Another deciding factor would be the easiness of applying the matching pattern
and deriving an intended function from it.

Our case study showed the value of defining a pattern in terms of the intended func-
tions of the loop body, not its code structure. Many loops have several interdependent
state variables, local or global, that are used to perform complex computations and store
the results in intermediate states. Although we may need to trace these intermediate
state changes to calculate the code or intended function of the loop body, we don’t need
to worry about them when matching the loops to patterns and applying the patterns to
derive intended functions. All we care about is the state changes from the initial state
to the final state as stated in the intended functions. The real benefit is the modularity
that it supports. Even if the loop body is replaced with another code that is correct with
respect to the intended function of the original loop body, the derivation of an intended
function of the loop is still valid—and thus the derived intended function is correct. In
our case study, for example, it was common for loops to have nested loops. We first
figured out the intended functions of nested loops by applying our patterns. Then, the
derived intended functions of the nested loops were used in calculating those of the loop
bodies of the outer loops, enabling applications of our patterns for the outer loops in a
modular fashion.

An interesting lesson we learned is the importance of abstraction and the notation to
express it. One of the most difficult steps of applying our patterns is to formulate and
write the intended function of a loop body. The difficulty is due to not only the complexity
of the computation itself but also expressing it in a way suitable for manipulation. In fact,
sometimes the complexity of deriving a detailed, rigorously written intended function of
a loop depends heavily on expressing the computation of the loop body at an appropriate
abstraction level using an appropriate notation. Writing intended functions at the right
abstraction levels is difficult and requires skills and experiences; derivations of intended
functions themselves can often be done mechanically.

One weakness of our evaluation is missing measurements on the quality of derived
intended functions, e.g., whether they are readable, understandable, and usable in formal
treatments of programs. However, we would like to note that more than half of sampled
loops matched closely with our patterns and didn’t seem to require much effort in deriving
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their intended functions from the patterns. Nevertheless, our study shows that our
patterns are helpful in finding the intended functions of loops. As we became more
familiar with the use of the patterns, we also became to guess and determine the intention
of loops better and more easily, even without applying the patterns explicitly. In a sense,
the patterns provided us with a mental framework or tool for examining and analyzing
the loops, and the use of patterns improved our insights and analytical skills. We also
found a few common patterns of loops with specific purposes, e.g., traversing trees for
various reasons. It would be interesting to study whether they deserve to be documented
as sorts of domain and language-specific specializations of our patterns. They capture
knowledge in a specific domain, but their usefulness will be determined in part by their
generality and variability in order to be instantiated for a wide range of loops in the
domain.

6. Related Work

No published research work was found on deriving intended functions of loop control
structures systematically. It is perhaps partly because Cleanroom-style functional pro-
gram verification is not well-known. The only closely related work is Stavely’s hints on
how to write intended functions for while loops in isolation, without their initialization
[2, Section 4.4]. His hints include such suggestions as studying the sequence of values
stored in program variables as a loop iterates, generalizing the intended functions of an
initialized loop, and adapting the intended function of a similar loop. In a way our pat-
terns are a generalization and codification of the last suggestion, adapting the intended
function of a similar loop. A loop specification pattern is an abstraction of a collection
of similar loops that can be reused by adapting or instantiating to a specific situation or
loop.

Below we mention some noticeable work in three areas of broadly related research:
loop invariants, property specification patterns, and source code analysis. The amount
of research work done on a similar problem in Hoare logic—finding loop invariants—is
huge, spreading over several decades. There exists a rich set of techniques and tools,
including both static and dynamic approaches based on execution traces, preconditions,
postconditions, theorem proving, etc (see [15, Section 5]) and [22, Section 7]). In an
axiomatic approach, loop invariants play a cardinal role in the proofs of loop control
structures because full verification generally requires equipping each loop with a loop
invariant. They are also the biggest challenge to full automation of formal analysis and
verification of programs because they cannot be computed through simple rules. Finding
a sound and useful loop invariant usually requires a programmer’s invention relying on
skills and experiences. Furia et al classified loop invariants over a range of fundamen-
tal and important algorithms, including searching, sorting, and arithmetics [15]. They
identified two different dimensions for their classification: the role of the invariant with
respect to the postcondition (essential and bounding) and the transformation technique
that yields the invariant from the postcondition (constant relaxation, uncoupling, term
dropping, aging, and backward substitution) [23]. Their classification can be very useful
in understanding the loop invariant of an algorithm, however unlike our work it doesn’t
provide a reusable pattern that can be instantiated to derive an invariant for a loop. An
alternative to requiring a programmer to formulate a loop invariant is to automatically
infer one from code. Aponte et al presented an approach for automatically generating
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loop invariants over non-nested loops manipulating arrays [24]. In their approach, the
loop body is first translated into conditional concurrent assignments (similar to Dijkstra’s
guarded commands), which are then matched to code patterns through static analysis.
Each code pattern is associated with a local invariant, an invariant that refers only to
variables modified locally. Local invariants are composed to produce an inductive invari-
ant of the complete loop. They defined five categories of code patterns corresponding to
simple but frequently used loops over scalar and array variables, such as search, scalar
update, scalar integration, array mapping, and array exchange. Their patterns are very
specific and specified in terms of code structures so that corresponding local invariants
can be defined. The role of a local invariant is similar to that of the intended function of
the loop body in our approach; both are strengthened or promoted to cover the complete
loop. Furia and Meyer suggested to use not just the code of a loop but its postcondition
as the basis for invariant inference, as an invariant of a loop is a weakened form of its
postcondition [23]. Their algorithm mutates a postcondition using various heuristics to
find a loop invariant. Leino and Logozzo described a technique for automatically gener-
ating an essential ingredient of proof, loop invariants, and refine them on demand [25].
The idea is that when an automatic theorem prover fails a proof of a verification con-
dition, an abstract interpreter is invoked on the loops along with the program traces to
find stronger loop invariants that will allow the theorem prover to make more progress
toward a proof. It allows a gradual increase in the level of precision used by the abstract
interpreter and thus generation of loop invariants that are specific to a subset of a pro-
gram’s executions. Recent work has shown that it is possible to infer assertions such as
class invariants automatically from program executions. Ernst et al developed a system
called Daikon that can dynamically detect a likely program invariant, a property that
holds at a certain point or points in a program [26, 27, 28]. The system runs a program,
observes the values that the program computes to find properties that were true over
the observed executions. Interestingly, however, Polikarpova et al showed that tools like
Daikon can be used to strengthen programmer-written assertions, but cannot infer all
assertions that programmers write [29].

Since the software design pattern becomes popular and widely used, similar ideas
begin to be applied to formal requirement specifications of software systems. In partic-
ular, motivated by the inability, for non-experts, to express their requirements using the
property specification languages supported by formal verification tools, many researchers
have proposed or developed specification pattern systems to facilitate the construction
of formal specifications [30, 31, 32, 33, 34]. However, unlike our patterns for source code
level specifications, these patterns are mostly described in some forms of temporal logic
for specifying various types of system level properties by translating or writing formal
specifications from informal or natural language descriptions. The pioneering work on
applying the idea of software design patterns to formal specifications is that of Dwyer et
al [32]. They developed a set of property specification patterns for finite-state verification
like model checking. A property specification pattern is a generalized description of a
commonly occurring requirement on the permissible state or event sequences in a finite-
state model of a system. It describes the essential structure of some aspect of a system’s
behavior and provides expressions of this behavior in a range of common formalisms, in-
cluding quantified regular expressions and various temporal logics such as linear temporal
logic (LTL) and computation tree logic (CTL). Mondragon et al introduced composition
propositions to allow multiple events or conditions in specification patterns [35]. Konrad
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and Cheng defined real-time specification patterns as well as a structured English gram-
mar to facilitate the understanding of the meaning of a specification [34]. They developed
a stepwise process and a tool suite for deriving and instantiating system properties in
terms of their natural language representations [36]. Bid et al. also proposed specifi-
cation patterns to express real-time requirements for reactive systems [30]. There are
also specification patterns formulated in a probabilistic temporal logic for probabilistic
verification techniques to ensure software quality requirements [33].

The work on source code analysis is interesting, as some may be adapted to improve
our approach, e.g., to partially automate the derivation of the intended functions. The
automated and semi-automated analysis of source code has been a topic of research for
more than several decades [37]. A static loop analysis is a source code analysis technique
for automatically extracting, finding or deriving a wide range of useful information about
loop, such as loop iteration counts, code execution frequencies, infeasible paths, and loop
bounds. The derived information can be used for various purposes such as loop optimiza-
tions and worst-case execution time estimation. Several techniques have been proposed
for fully automating static analysis of loops at source code level, including pattern-based
approach, source code annotation, data flow analysis, abstract interpretation, program
slicing, and invariant analysis (e.g., [4, 38]). We believe that some of the derived infor-
mation from loop analysis be useful in our approach, e.g., data flow analysis can provide
data dependency information that can be utilized to define the basic structures of the
expressions appearing in intended functions.

7. Conclusion

We presented specification patterns to address the problem of formulating candidate,
or likely, specifications of loop control structures for formal analysis and verification of
programs. Any non-trivial program contains loop control structures such as while, for,
and do statements, and formal verification of the program requires to equip each loop with
a candidate specification. In functional program verification, a candidate specification
for a loop is an intended function that expresses the final values of variables as a function
of initial values. An intended function documents the net effect of a section of code on
data from entry and exit. A candidate intended function for a loop plays a crucial role in
formal verification of the loop because it becomes an induction hypothesis in an inductive
proof of the loop. However, formulating a likely intended function of a loop is one of the
biggest challenges in a correctness proof of the loop, mostly relying on one’s skills and
experiences because there is no simple rule to compute it.

Fortunately, many intended functions of loops exhibit certain common flavors or
characteristics. Knowing these flavors or characteristics could therefore provide help in
formulating likely intended functions of loops. Inspired by the work on software design
patterns, we identified these common flavors of intended functions and documented them
as reusable specification patterns, from which intended functions of loops can be derived
systematically. Loops are most commonly used to iterate over a certain sequence of
values and manipulate it, typically one value at a time. One distinguishing feature of our
patterns is to promote the intended function of the loop body, manipulating individual
values, to the whole sequence iterated over by a loop to define the intended function of
the whole loop. Our patterns include Accumulating, Searching, Selecting and Collecting
along with numerous variations.

36



Our specification patterns are compositional and hierarchical. A pattern can be de-
composed along the four, orthogonal dimensions of loop analysis: value acquisition, value
manipulation, loop termination, and result storage. As a consequence, a new pattern can
be assembled by selecting an appropriate combination of the elements from these dimen-
sions. Our patterns can also be classified into a pattern hierarchy. A generalized pattern
is applicable to a wide range of loops, but its specification is more abstract and thus
provides less help in deriving a detailed intended function during its application. A
specialized pattern, on the other hand, is more specific with limited applicability but
provides better guidance in deriving a detailed intended function. The pattern hierarchy
is extensible in that one can easily introduce a new pattern by refining or specializing
the value manipulation function of an existing pattern. The pattern hierarchy allows
one to match patterns, starting from more general patterns and moving down to more
specific ones. A case study indicates that our patterns are applicable to a wide range of
programs from systems programming to scientific and business applications.

There are several important contributions of our work. The four, orthogonal loop
analysis dimensions provide an excellent conceptual framework for examining loops sys-
tematically. They can be used not only for general understanding of loops but also for
composing new patterns and finding matching patterns for particular loops. Our pat-
tern catalog provides a set of reusable loop specifications that can be matched to and
instantiated to derive intended functions of loops systematically. Unlike previous work
on specification patterns, our patterns are for deriving source code-level specifications
for formal analysis and verification of programs; they provide a solution to the problem
of formulating candidate, or likely, specifications of loop control structures for various
formal treatments of code containing loops. Another uniqueness of our work is the idea
of promoting the manipulation of individual elements to the whole sequence to define a
pattern, resulting in a uniform pattern structure and facilitating an easy introduction of
new patterns.
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