Toward Unification of Explicit and Implicit
Invocation-Style Programming

Yoonsik Cheon

TR #15-98
December 2015

Keywords: application framework, control flow, explicit invocatioeyent-based programming, implicit
invocation.

1998 CR Categories:D.2.2 [Software Engineering] Design Tools and Techniques — Software libraries;
D.2.3 [Software Engineering] Coding Tools and Techniques — Object-oriented prograngmin.2.11
[Software Engineering] Software Architectures — Information hiding, patterns;2003 [Software Engi-
neering] Reusable Software — Reusable libraries; D.3?Boframming Languages] Language Constructs
and Features — Frameworks, patterns, procedures.

Department of Computer Science
The University of Texas at El Paso
500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Toward Unification of Explicit and Implicit
Invocation-Style Programming

Yoonsik Cheon
Department of Computer Science
The University of Texas at El Paso
El Paso, Texas, U.S.A.
ycheon@utep.edu

Abstract—Subprograms like procedures and methods can be This inversion of control is one key characteristic of anealy
invoked explicitly or implicitly. In implicit invocation, an event oriented application framework, and the framework ofteaypl
causes invocations of subprograms registered for the event ina role of the main program in coordinating and sequencing

Mixing these two styles is common in programming and often licati tiviti o1 H it is al t
unavoidable in developing software systems such as GUI apgpl application activities [2]. However, it is also not uncommo

cations and event-based control systems. However, mixedausf that the mixed use of two invocation styles complicates the
these two styles oftentimes complicates the programming ¢ic control flow of a program and produces code that is hard to

and thus produces unclean code — code that is hard to read, read and understand, and thus less reusable and maintainabl
understand, maintain, and reuse. We show, through a small lu g js phecause there exist two, opposite directions ofrobnt

realistic example, that the problem is not much on the fact tlat fl in th f licati de to the f K
two different styles are mixed but more on mixing them in an Ow In the program, from application code {o the framewor

unconstrained manner. We propose a few principles or guidates and vice versa. The former is stated explicitly and cerzeali
for blending them harmoniously and also describe a simple pof- with a single entry point. The later is stated implicitly ache-

of-concept framework for converting one style to the other ér centralized with no single entry point, and there are midsp
the unification. Our work enables one to blend the two differat ¢ it scattered and dispersed throughout the program, one fo
invocation styles harmoniously and in a properly constraired e .
manner to produce clean code. each event handler. Thus it is difficult to figure out the ollera
flow of control.
Keywords: application framework, control flow, explicitinvo- In this paper, we first illustrate the problem of mixing
cation, event-based programming, implicit invocation. the two method invocation styles using a small but realistic
programming example, a tic-tac-toe program. We claim that
the real problem is not much on mixing the two styles itself
The most common programming style in imperative larbut more on using them in an unconstrained or uncontrolled
guages including procedural and object-oriented progremmm manner. One key observation that we made, for example, is
languages is to call procedures or methods directly. In thisat local use of an invocation style should be encapsulated
style, a program explicitly specifies the flow of the controin that its use and effect shouldn’t be visible to or observ-
i.e., the order in which statements such as procedure oradetlable from outside. This is particularly true when intra- and
invocations are executed. Another popular programminig stynter-component coding styles are different. If a compdnen
is an implicit invocation style in which the flow of the progna is written in an event-based, implicit invocation styler fo
is not explicitly stated but determined by events such as usxample, its event handlers shouldn’t call methods outbide
actions, sensor outputs, and messages from other progtdmsdomponent, directly or indirectly. It's to support separat
The idea behind implicit invocation is that instead of inrak of concerns between intra- and inter-component styles by
a procedure directly, one can register an interest in antéyen separating them cleanly and modularly. Based on this and
associating a procedure with the event. When an event qccather observations, we then explore ways to blend the two
the runtime system invokes all of the procedures that hagr balifferent invocation styles harmoniously to produce sthech
registered for the event. It is the dominating programmirfglean code”, code that is easy to read and understand [3],
style in graphical user interfaces and other applicatitrag t which is the first step for code reuse and maintenance. We
are centered on performing certain actions in responsedio ugropose a few principles or guidelines for unifying the two
inputs and other events. invocation styles by converting one to the other. We also
It is common that programmers use these two styles togetldescribe a simple, proof-of-concept framework for coringrt
in a single application. In fact, it is unavoidable to mix us@vocation styles for the unification. An application of our
them in modern, framework-based application developmeguidelines and framework to the tic-tac-toe program shows
In a GUI application, for example, application code is adllea very promising and encouraging result. Use of invocation
implicitly from within the GUI framework, rather that the styles, especially implicit invocation, can be localizedda
application code calls framework code explicitly. Controéncapsulated properly. The key control flow of an applicatio
is inverted in that it is owned by the framework and thean be expressed apparently in the source code itself. h, sho
framework calls application code, not the other way arounpidicious use of the guidelines produces clean code.

I. INTRODUCTION

[1. Tic-TAC-TOE GAME—RUNNING EXAMPLE marked by the current player. The actual place marking igdon
We will use a tic-tac-toe game program as a runni %ythemakeMove() method defined in the T3Dialog class.

example to illustrate the problem and to describe our smiuti public void makeMove(Place place)
as well. Tic-tac-toe is a simple strategy game played by tivdboard.mark(place, currentPlayer());
players, X and O, who take turns marking the places irx&8 3| if (board.isWonBy(currentPlayer()])
grid (see Fig. 1). The player who succeeds first in marking endinWin();

three places in a horizontal, vertical, or diagonal row vilmes | } else if (board.isFull()){

game. The game ends in a tie if all nine places are marked endinDraw();

and no player has three marks in a row. 1 else{

changeTurn();

O's turn.

Note that themouseClicked() event handler is not called
directly from the application code. It will be invoked imgilily
by the GUI framework when a user clicks a mouse on the
>< board panel. Control is inverted in that application code
is called from within the framework, rather than it calls
Fig. 1. Screenshot of a tic-tac-toe program framework code [5]. This inversion of control is one key
characteristic of an object-oriented application framewvgsuch
Let's first write a Java program that allows two playeras the Java Swing GUI framework and is caused by implicit
to play the game through a graphical user interface usingraocation.
mouse; later we will extend it to support a computer play.
As can be guessed from Fig. 1, a player clicks a mouse on a _) _))
place in a board to mark it. Fig. 2 shows main classes of thel€t's spice up the tic-tac-toe program written in the preio

program along with their relationships. section by allowing one to play against a computer. For this
we introduce a few different move strategies for the compute

_ controller A move strategy means figuring out what a (c_:omputer) player
T3Dialog BoardPanel needs to do to win. Fig. 3 shows one possible extension to
board our design from the previous section, including several new
9 0.1 H 7 H
| Board S Place classes and their relationships.
. . . i Player
Fig. 2. Class diagram of a tic-tac-toe program MoveStrategy H Board ‘

The Board class is the main model class and is an abstrac-| TSStrategyDialog| | cOmpute,p|ayer|
tion of a tic-tac-toe board consisting 0&3 places that can
be marked by players. The BoardPanel class is a Ul class
displaying a board as a 2D grid as shown in Fig. 1.

It's quite natural to use an event-based, implicit invomati
style for our program, for players interact with it through
GUI including a mouse. In fact we have to, as we need t‘f
handle a mouse click event generated by the Java Swing G
framework [4]. Specifically we define the following mousé)

XQP

IIl. THE PROBLEM

| RandomStrateg)H SmartStrategy{

Fig. 3. Extending with strategies, new classes shown in gray

The primary change is the addition of the ComputerPlayer
ss as a subclass of the Player class to model a computer
ayer, a new concept introduced in our extension of the

event handler in the BoardPanel class. Srogram. As shown in the clas_s diagram, it uses the Strategy
esign pattern [6] to allow a different move strategy such as
public void mouseClicked(MouseEvent €) Random and Smart for a computer player. The Computer-
if (!controller.isGameOver()} Player class defines a method nammextMove() that returns
Place place = locatePlace(e.getX(), e.getY()); a place to be marked by a computer player; it is of course
if (place '=null && 'board.isMarked(place)) written in terms of a strategy method defined in a strategy
controller.makeMove(place); class that calculates the next move for the associated playe
} It's so far, so good for the extension, but now it's time to
1 make an important design decision. We need to integrate new
1 components such as a computer player and move strategies

into the main game playing logic, taking turns and marking
When a mouse is clicked on a board panel, the correspopthces. Remember that the main game logic is implemented
ing place of the board is located and, if it isn't marked yst, iin the makeMove() method of the T3Dialog class. We override

this method in the T3StrategyDialog, a new subclass added inThere are two, opposite directions of control flow in the
our extension, as follows main business logic of the program. It's confusing and makes

it hard to figure out the overall flow of control for the key
business logic, meaning that the code is less readable and
understandable. Differentiating two players also producele
that performs case analysis or type casting as apparent in
the second line of thenakeComputerMove() method. Such
code commonly appearing in abstract data types is understoo
} to be less extensible and reusable than object-oriented cod
} that utilizes polymorphism [7]. Yet another problem is code
} scattering. The code of an identical or similar functiotyali
determining the next place to mark, is scattered over nieltip
unrelated components, BoardPanel and ComputerPlayer. If a
computer player’s next move is defined in the ComputerPlayer
class, don't we expect a human player’s in the HumanPlayer
} class? In summary, the code suffers from an inappropriate

public void makeMove(Place place)
if (isPlayerTurn()){
super.makeMove(place);
if (lisGameOver()X
new Threadthis::makeComputerMove).start();

private void makeComputerMove(}
Place p = (ComputerPlayer) currentPlayer().nextMove();
super.makeMove(p);

. . . mixed use of implicit and explicit invocations. The codinfy o
The logic of making a move is extended so that every moyge b b no

b h | i< foll 4 b ter ol 'S if th e logic is complicated, resulting in code that is less afdel
y a human player is followed by a computer !oayers_l nderstandable, reusable, and maintainable. In the flfpw
human move is not a game ending move. Let's examine t

) . Ection we will refactor it to produce so-called “clean chde
code to see the details. Remember that the method is ca %‘ie that is easy to read and understand [3]

by a mouse event handler when a user click a board using a
mouse. The method first checks if it's a human player’s tdrn. | IV. OUR APPROACH
so, it proceeds as before by calling the overridden methibe; 0 \jixed use of explicit and implicit invocation styles of
erwise, it does nothing—i.e., the human player's move reflugrogramming is unavoidable in developing most modern,
is ignored because it's the computer's turn. However, alter compjicate software systems such as GUI applications and
overridden method invocation retumns, it makes a compui@fent-driven control systems. However, the problem deedri
player's move by calling themakeComputerMove() method jn the previous section is not much about the fact of mixireg th
in a new background thread, not to tie the Ul thread, if tho styles itself but more on mixing them in an undisciplined
game is not over yet. As expected, tmakeComputerMove() and unconstrained way, e.g., two different styles for thaesa
calls the overriddemakeMove() method by passing a placefynctionality and local use exposed to outside. Our apgrasac
obtained from the computer player. to constrain the mixed use of styles in such a way to produce
The extension is complete, and the program should réfean code. We propose a few guidelines for mixing the two
correctly by supporting a computer play. However, there iyles to have disciplined use and a simple framework for
a pOtential issue in its detailed design and COding. It Usg§ding according'y (See Section V for the framework)_
two different s_tylesz explicit and implici.t invocationsprf "« GL: Encapsulate styles. Local use of a style should be
the same fu_nctlonallt)_/ and WOrse, the mixed use_happens In encapsulated in that its use and effect shouldn’t be visible
the key business logic of_takmg tur_ns and marking _plac_e_s. to or observable from outside. This is particularly true
A human players move is coded in event-based, implicit \ hon intra- and inter-component invocation styles are
invocation whereas a computer players move is done N gigerent If a component is written in an event-based,
explicit invocation. There are several problems causedsy t ., jicit invocation style, for example, its event handlers
nonumforr_nny. As shown in Fig. 4, the nonuniformity becosmg shouldn't call methods outside the component, directly or
apparent in the control flow of the program; a dashed line indirectly.
denotes control flow originated from an implicit invocatioh « G2: Use the same style for the same, similar, or related

an event handler. functionality. Using a different invocation style in cod-
ing the same, similar, or related functionality results in
confusing and unclean code. Pick one and stick to it
throughout the program.

o G3: Avoid mixing styles at the same abstraction level.
Using both styles in a single component or at the same
abstraction level complicates the logic, producing confus
ing and unclean code. This guideline is crucial for higher-
level components or abstraction levels, such as systems
T o and system architectures. In practice, it is hard to achieve
This is an actual code pattern that we noticed in most Batpegrograms .

written by thirty some junior students in an object-oriehtdesign and this for lowest-level components such as classes, €.g.,

programming class. coding solely in implicit invocation.

Fig. 4. Directions of main control flow

As said earlier, the guidelines suggest to mix use styleabclass of the Player class, named HumanPlayer, andaeerri
in a more disciplined way, e.g., fixing the direction of mainhe nextMove() method, which is now promoted to the Player
control flow to one (explicit or implicit) and moving theclass. The method will essentially wait for a mouse click to
differences down to lower-level components and encapeglatobtain a human player’s next move.
there_. Our t_echnlcal approach for ach_|eV|ng_th|s is c_om_vgrt EventBroke{Place eventBroker;
one invocation style to the other by simulating or mimicking
it. Below we explain our approach in detail by applying it 1
and refactoring our tic-tac-toe program.

0public Place nextMove()
return eventBroker.consume();

A. Implicit to Explicit }

Our extended tic-tac-toe program in Section Il violates The EventBroker class is a framework class that we wrote
all three guidelines. A similar functionality—getting ogle 5, our approach and can serve as a synchronized, thread-saf
culating the next place to mark—is written in two differenffer petween a producer and a consumer (see Section V).
styles, the BoardPanel class is written in both implicit a”ﬁhenextMove() method simply calls theonsume() method of
explicit styles, and the implicit invocation in the Boardiea 5, event broker to retrieve the next place from the broker. If
class isn't encapsulated. Let’s.examlr?e _the Boarqun.ei;.clqhere is no place available, tieensume() method will suspend
A mouse event handlenouseClicked() is invoked implicitly he calling thread temporarily until a place becomes alatla
from within the Swing framework and it calls teakeMove() The BoardPanel class is a producer and produces a place when

method of the T3Dialog class explicitly. Although the sedon 4 hyman player click a mouse on it. Its mouse event handler
inter-class method invocation is done explicitly, it istiaied 5 rewritten as follows.

by an implicitly-invoked event handler and thus the implic
invocation is propagated to outside the BoardPanel classEventBroke(Place eventBroker =new EventBroke)();

crosses the class boundary and thus is observable frondeutsi

The implicit invocation is not encapsulated properly as weublic void mouseClicked(MouseEvent ¢)
observed two, opposite directions of control flow in Section | €ventBroker.produce(locatePlace(e.getX(), e.getY()))

component component
- —_

component component 4
<7 <

Fig. 5. From implicit invocation to explicit

As before it first calculates the board place corresponding
to the screen location on which a mouse is clicked, but then
it stores the place in the even broker for a consumer.

This completes our refactoring for converting implicit v
cation to explicit. As planned, implicit invocation is |dzed
and encapsulated in the BoardPanel class, and the rest of
the program use explicit invocation. All players are treate
equally and uniformly in an object-oriented way, producing

One way to fix the problem is to convert implicit invocatiorinore extensible code; for example, a new type of players, say
to explicit and to have a structure similar to the one showfhnetwork player, can be added easily with a minimal change
in Fig. 5. The top-level invocation is explicit while theto the existing code. Best of all, the overall, key controfie
component-level can be explicit, implicit or both, of coeyrs expressed apparently in the code itself, and the code is.clea
encgpsulated properly. For this, we let a hurr_1an player go Explicit to Implicit
provide his or her next move (see below for details) so that th
controller can call the next move method explicitly as daore f
a computer player. With this done, the main controller co
can be rewritten in the@lay() method as follows.

Another general solution is to convert explicit invocatton
@plicit. In our case, we can rewrite the code handling a com-
puter player's move to use event-based, implicit invocatla

an implicit invocation style, one writes an event handlebéo

public play() { invoked implicitly when an event occurs. Earlier we wrote th
while (lisGameOver()} following mouse event handler to process a human player’s
Place place = currentPlayer().nextMove(); move; it is slightly rewritten to check for the turn.

makeMove(place); public void mouseClicked(MouseEvent €)

} } if (controller.isGameOQOver() && controller.isPlayerTuph({
Place place = locatePlace(e.getX(), e.getY());

r a If (place !=null && !board.isMarked(place)X

Note that the current player can be either a computer @
an controller.makeMove(place);

human player. Both players are now treated uniformly in

object-oriented fashion relying on polymorphism. }
More interesting is coding a human player requiring ant

implicit-to-explicit invocation conversion. We define awe }

4

How to convert explicit invocation code to implicit? Inthe framework are two generic classes, EventBrfKeand
general, a custom event needs to be defined along with an edeventGeneratdil), that were used in the previous section.
generation and notification mechanism for it. In our case, we
need to (1) define a new event to represent a computer’s néxtEventBroker
move, (2) generate an instance of the new event every timeThe EventBroke{T) class provides a synchronized, thread-
when it is a computer’s turn, and (3) notify the generatedevesafe buffer between a producer and a consumer, both of which
to all event handlers registered an interested in the newtevare threads. It is a generic class to allow a custom event
The purpose of the new event is to invert the control flotype. It is for converting implicit invocation code to exgiti
by making themakeMove() method to be called by an eventinvocation. The idea is to let an event handler, rather than
handler. But, how to generate a new event? It should be ddneoking application code directly, to store an occurredrev
independently of the application code, and thus we canereat an event broker so as to be consumed by the application
a new background thread that checks for a computer’s turndode (see Fig. 6). An event handler becomes a producer
create a new event and notify it. We can write custom cod@éd stores occurred events in a buffer, and the application
doing this or better develop a reusable class. In fact, weenr@ode being originally called by the event handler becomes
such a reusable, generic class named EventGenerator thatonsumer and reads stored events from the buffer. One
generates events by calling a provided event creation rdeth@y role of an event broker is to prevent propagation of the
periodically (see Section V). Using the EventGenerdtpr inverted control caused by the implicit invocation of anmve
class, we can write implicit invocation code for a compwerhandler. As shown in Fig. 6, implicit invocation can't craas
move in the T3StrategyDialog class as follows. event broker and thus an event broker provides a boundary for

encapsulating implicit invocation; implicit invocatios hidden

EventGeneratqPlacg eventGen; inside a program module containing both an event handler

{ .
-) and its event broker. Thus the EventBroRer class enforces
eventGen ew EventGenerathPIace)(thls..nextP.Iace), the first guideline (G1), encapsulating invocation stylsse(
eventGen.addListener(place makeMove(place)); Section IV)

eventGen.start();

}

application <<implicit>>
private Place nextPlace(}
if (lisGameOver() && isComputerPlace())
produce
—_—— event handler.

return computerPlayer().nextMove();
}
Fig. 6. EventBroker class

application _EventBroker

return null ;

}

An event generator nameedventGen generates a new
place (event) whenever it is a computer's turn and notifiesTwo key operations of the EventBrok@) class are:

it to registered event handlers. It does this by calling a, yoid produce(T): stores a given event in the buffer.
helper method namedextPlace() that calls the computer's | T consume(): return the next event stored in the buffer.
Eexthve() tﬁetr:j%?_i;he event rt\gngler Tlegltsgemnt(;en Both methods are thread-safe and synchronized. If there
y using the addListener() method calls the ove() Oisbno event stored, for example, tlwensume() method will

metrtlgd, V\.’h'Ch rr‘]app_f_”s Whenevter a Inew PI?CG 'SI geﬂer?ﬁ]sugpend the calling thread temporarily until an event isesto
eventisen, 1.e., when It is a computer players turn. in short, %y the produce() method. Both methods are written using the
nextMove is invoked implicitly through a custom event SyStena;uarded suspension pattern [8]. The class can be certainly

provided by the EventGenera(aj class. improved by considering several different design choices,

. W_e.s.howed_ how to cppvert explicit mvoc_:atlon code t(?ncluding bounded versus unbounded buffer, lossy versus
implicit invocation by rewriting the code handling a comeut lossless buffer, waiting or suspension time, initial catyac

players move. The refactored code treats both players Y8F the buffer, and size of the buffer, some of which can be
formly in implicit invocation, thus conforming to guidekn g rameters ' ’

G2 (Use the same style for the same, similar or relat
functionality). However, the improvement ends there; théec B. EventGenerator

still violates guidelines G1 and G3. The EventGenerat¢F) class provides a custom event sys-

tem including an event generation and naotification mecimanis

It is generic to work with a custom event type. It generates an
In this section we describe a very simple framework writvent by calling a provided event creation method peridlgica

ten as a proof-of-concept to help converting explicit invoAnd if an event is generated successfully, the generatent eve

cation to implicit and vice versa. The key components @ delivered or notified to all event handlers registered an

V. SUPPORTINGFRAMEWORK

interest for the event. The class uses two generic intesfacebject-oriented design and programming class. The assign-
EventSourcé€T) and EventListendT), to implement the Ob- ments, Battleship game, require students to use both éxplic
server design pattern [6]. and implicit method invocations for the same functionatify
determining the next place to hit for two players. For one
player (human), the place is obtained through a graphieal us
interface using an event handler in an implicit invocatitybes

For the other player (computer), however, it is calculatgdb
voking a predefined strategy method directly. The prograims o
all thirty some students have a code pattern essentialljasim

to the one shown in Section Ill that complicates programming

The EventSourad) interface is to provide an eventgeneral-()g'c and resu_lts n code that is ha_rd to read, understand,
tor with a method that creates an event, called an evenianeat €US€: and maintain. A careful examination of the programs
method. The event creation method is used by the evél?towefd that t_he pro_blem was mamly caused t,’y mixing the
generator to check for an occurrence of an event periogiical‘WO dn‘ferent_ mvocatlon_styles Inan unconstrameq manner
the method is supposed to return null if no event occurs. Tﬁgsed_ on this o_b_servatlon, we PVOPOS_G‘?' a fevv_ principles or
EventListenef{T) interface specifies an event handler to pguidelines _for mixing the two styles JUd'C'OUSIy'_'f necass
notified for an event generated by an event generator. List®j COnverting one to the other. We also described a simple,
below are key operations of the EventGenerdiprclass. proof—of—co_n(_:ept framgwork_ for converting one stylg to the

other for mixing them in a single application. We believettha

* EventGenerator(EventSogv(c'l’e, long): create an event o guidelines along with the framework enable one to blend

g\?gr?':?otgrrig(]j?;alfl‘;es the given event source to crate a MR two different programming styles harmoniously and in a
. . . . roperly constrained fashion to produce clean code.
- addListener(EventListengF)): register the given eventp Tr;]erg are several contributio':]s that our work makes, in-

%ﬂjding the need for mixing two different invocation styles

The registered handler will be called when a new eveﬂ}diciously, a set of practical guidelines for mixing thetine
is generated successfully. :

tart(): start th or | back dth O{fdea of converting one style to the other, and a supporting
» start(): start the generator in a new background threa ramework for the conversion. However, the most important
« stop(): stop the generator.

contribution is the concept of localizing and encapsugatin

As shown in Section IV, the EventGenerdfDr class is method invocation styles. It is as important as, if not more
for converting explicit invocation code to implicit invoian than, data hiding and encapsulation. The idea is to support
(see Fig. 7). To convert an explicit method call frato separation of concerns between intra- and inter-component
B, one can provide an event generator with (1) a method j{@,ocation styles by separating them cleanly and in a medula
create a new event whea should callB and (2) an event \yay. It is especially crucial when intra- and inter-compaine
handler which isB in this case. The event generator callgoding styles are different. If a component is written in an
the provided event creation method periodically, and uponegent-based, implicit invocation style, for example, itemt
successful creation of an event it calls the event hand®r (handlers shouldn’t call methods outside the component, di-
thus mimicking an explicit call fron4 to B. rectly or indirectly; the inverted control caused by the licip
invocation shouldn’t cross the boundary of the componeme. T
notion of invocation encapsulation allows one to express th
key control flow of an application apparently in source code
itself to produce so-called clean code.

public interface EventSourc€l) {
T createEvent();

public interface EventListenefT) {
void eventOccurred(T event);
}

application application

REFERENCES

application application

createEve eventOccurred
< ———— EventGenerator—————

EventSource EventListener

[1] M. Shaw and D. GarlanSoftware Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

[2] M. Fayad and D. C. Schmidt, “Object-oriented applicativpameworks,”

Communications of ACM, vol. 40, no. 10, pp. 32-38, Oct. 1997.
Fig. 7. EventGenerator class [3] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship.

Prentice-Hall, 2008.
. . . [4] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Coldgva Sning, 2nd ed.
As a proof-of-concept implementation, the class can be im- greily, 2002.

proved by considering different design choices and pararset [5] R. E. Johnson and B. Foote, “Designing reusable cldsslesrnal of

such as multiple event sources, start and end time, fixeaydef,, gblg‘:ﬁ;?teg P:"églrrﬁ' Ing’Of\:ggojr-{ . dz, Jpp\'/nzszs‘idsgggr?eéi;zngg&

generation, and fixed-rate generation. Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[7] L. Cardelli and P. Wegner, “On understanding types, ddtstraction, and
VI. CONCLUSION polymorphism,”ACM Computing Surveys, vol. 17, no. 4, pp. 471-523,

Dec. 1985.
The work presented in this paper was initially motivated byg] D. Lea, Concurrent Programming in Java, 2nd ed. Addison-Wesley,

programming assignments done by students in a junior-level 2000.

