
Toward Unification of Explicit and Implicit
Invocation-Style Programming

Yoonsik Cheon

TR #15-98
December 2015

Keywords: application framework, control flow, explicit invocation,event-based programming, implicit
invocation.

1998 CR Categories:D.2.2 [Software Engineering] Design Tools and Techniques — Software libraries;
D.2.3 [Software Engineering] Coding Tools and Techniques — Object-oriented programming; D.2.11
[Software Engineering] Software Architectures — Information hiding, patterns; D.2.13 [Software Engi-
neering] Reusable Software — Reusable libraries; D.3.3 [Programming Languages] Language Constructs
and Features — Frameworks, patterns, procedures.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.



Toward Unification of Explicit and Implicit
Invocation-Style Programming

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu

Abstract—Subprograms like procedures and methods can be
invoked explicitly or implicitly. In implicit invocation, an event
causes invocations of subprograms registered for the event.
Mixing these two styles is common in programming and often
unavoidable in developing software systems such as GUI appli-
cations and event-based control systems. However, mixed use of
these two styles oftentimes complicates the programming logic
and thus produces unclean code – code that is hard to read,
understand, maintain, and reuse. We show, through a small but
realistic example, that the problem is not much on the fact that
two different styles are mixed but more on mixing them in an
unconstrained manner. We propose a few principles or guidelines
for blending them harmoniously and also describe a simple proof-
of-concept framework for converting one style to the other for
the unification. Our work enables one to blend the two different
invocation styles harmoniously and in a properly constrained
manner to produce clean code.

Keywords: application framework, control flow, explicit invo-
cation, event-based programming, implicit invocation.

I. I NTRODUCTION

The most common programming style in imperative lan-
guages including procedural and object-oriented programming
languages is to call procedures or methods directly. In this
style, a program explicitly specifies the flow of the control,
i.e., the order in which statements such as procedure or method
invocations are executed. Another popular programming style
is an implicit invocation style in which the flow of the program
is not explicitly stated but determined by events such as user
actions, sensor outputs, and messages from other programs [1].
The idea behind implicit invocation is that instead of invoking
a procedure directly, one can register an interest in an event by
associating a procedure with the event. When an event occurs,
the runtime system invokes all of the procedures that have been
registered for the event. It is the dominating programming
style in graphical user interfaces and other applications that
are centered on performing certain actions in response to user
inputs and other events.

It is common that programmers use these two styles together
in a single application. In fact, it is unavoidable to mix use
them in modern, framework-based application development.
In a GUI application, for example, application code is called
implicitly from within the GUI framework, rather that the
application code calls framework code explicitly. Control
is inverted in that it is owned by the framework and the
framework calls application code, not the other way around.

This inversion of control is one key characteristic of an object-
oriented application framework, and the framework often plays
the role of the main program in coordinating and sequencing
application activities [2]. However, it is also not uncommon
that the mixed use of two invocation styles complicates the
control flow of a program and produces code that is hard to
read and understand, and thus less reusable and maintainable.
This is because there exist two, opposite directions of control
flow in the program, from application code to the framework
and vice versa. The former is stated explicitly and centralized
with a single entry point. The later is stated implicitly andde-
centralized with no single entry point, and there are multiples
of it scattered and dispersed throughout the program, one for
each event handler. Thus it is difficult to figure out the overall
flow of control.

In this paper, we first illustrate the problem of mixing
the two method invocation styles using a small but realistic
programming example, a tic-tac-toe program. We claim that
the real problem is not much on mixing the two styles itself
but more on using them in an unconstrained or uncontrolled
manner. One key observation that we made, for example, is
that local use of an invocation style should be encapsulated
in that its use and effect shouldn’t be visible to or observ-
able from outside. This is particularly true when intra- and
inter-component coding styles are different. If a component
is written in an event-based, implicit invocation style, for
example, its event handlers shouldn’t call methods outsidethe
component, directly or indirectly. It’s to support separation
of concerns between intra- and inter-component styles by
separating them cleanly and modularly. Based on this and
other observations, we then explore ways to blend the two
different invocation styles harmoniously to produce so-called
“clean code”, code that is easy to read and understand [3],
which is the first step for code reuse and maintenance. We
propose a few principles or guidelines for unifying the two
invocation styles by converting one to the other. We also
describe a simple, proof-of-concept framework for converting
invocation styles for the unification. An application of our
guidelines and framework to the tic-tac-toe program shows
a very promising and encouraging result. Use of invocation
styles, especially implicit invocation, can be localized and
encapsulated properly. The key control flow of an application
can be expressed apparently in the source code itself. In short,
judicious use of the guidelines produces clean code.



II. T IC-TAC-TOE GAME—RUNNING EXAMPLE

We will use a tic-tac-toe game program as a running
example to illustrate the problem and to describe our solution
as well. Tic-tac-toe is a simple strategy game played by two
players, X and O, who take turns marking the places in a 3×3
grid (see Fig. 1). The player who succeeds first in marking
three places in a horizontal, vertical, or diagonal row winsthe
game. The game ends in a tie if all nine places are marked
and no player has three marks in a row.

Fig. 1. Screenshot of a tic-tac-toe program

Let’s first write a Java program that allows two players
to play the game through a graphical user interface using a
mouse; later we will extend it to support a computer play.
As can be guessed from Fig. 1, a player clicks a mouse on a
place in a board to mark it. Fig. 2 shows main classes of the
program along with their relationships.

0..1
Place

BoardPanel

Board

T3Dialog

9

controller

Player

board

Fig. 2. Class diagram of a tic-tac-toe program

The Board class is the main model class and is an abstrac-
tion of a tic-tac-toe board consisting of 3×3 places that can
be marked by players. The BoardPanel class is a UI class
displaying a board as a 2D grid as shown in Fig. 1.

It’s quite natural to use an event-based, implicit invocation
style for our program, for players interact with it through
GUI including a mouse. In fact we have to, as we need to
handle a mouse click event generated by the Java Swing GUI
framework [4]. Specifically we define the following mouse
event handler in the BoardPanel class.

public void mouseClicked(MouseEvent e){
if (!controller.isGameOver()){

Place place = locatePlace(e.getX(), e.getY());
if (place !=null && !board.isMarked(place)){

controller.makeMove(place);
}

}
}

When a mouse is clicked on a board panel, the correspond-
ing place of the board is located and, if it isn’t marked yet, is

marked by the current player. The actual place marking is done
by themakeMove() method defined in the T3Dialog class.

public void makeMove(Place place){
board.mark(place, currentPlayer());
if (board.isWonBy(currentPlayer())){

endInWin();
} else if (board.isFull()){

endInDraw();
} else{

changeTurn();
}

}

Note that themouseClicked() event handler is not called
directly from the application code. It will be invoked implicitly
by the GUI framework when a user clicks a mouse on the
board panel. Control is inverted in that application code
is called from within the framework, rather than it calls
framework code [5]. This inversion of control is one key
characteristic of an object-oriented application framework such
as the Java Swing GUI framework and is caused by implicit
invocation.

III. T HE PROBLEM

Let’s spice up the tic-tac-toe program written in the previous
section by allowing one to play against a computer. For this
we introduce a few different move strategies for the computer.
A move strategy means figuring out what a (computer) player
needs to do to win. Fig. 3 shows one possible extension to
our design from the previous section, including several new
classes and their relationships.

MoveStrategy

RandomStrategy

T3Dialog Player

T3StrategyDialog

SmartStrategy

Board

ComputerPlayer

Fig. 3. Extending with strategies, new classes shown in gray

The primary change is the addition of the ComputerPlayer
class as a subclass of the Player class to model a computer
player, a new concept introduced in our extension of the
program. As shown in the class diagram, it uses the Strategy
design pattern [6] to allow a different move strategy such as
Random and Smart for a computer player. The Computer-
Player class defines a method namednextMove() that returns
a place to be marked by a computer player; it is of course
written in terms of a strategy method defined in a strategy
class that calculates the next move for the associated player.

It’s so far, so good for the extension, but now it’s time to
make an important design decision. We need to integrate new
components such as a computer player and move strategies
into the main game playing logic, taking turns and marking
places. Remember that the main game logic is implemented
in themakeMove() method of the T3Dialog class. We override

2



this method in the T3StrategyDialog, a new subclass added in
our extension, as follows1.

public void makeMove(Place place){
if (isPlayerTurn()){

super.makeMove(place);
if (!isGameOver()){

new Thread(this::makeComputerMove).start();
}

}
}

private void makeComputerMove(){
Place p = (ComputerPlayer) currentPlayer().nextMove();
super.makeMove(p);

}

The logic of making a move is extended so that every move
by a human player is followed by a computer player’s if the
human move is not a game ending move. Let’s examine the
code to see the details. Remember that the method is called
by a mouse event handler when a user click a board using a
mouse. The method first checks if it’s a human player’s turn. If
so, it proceeds as before by calling the overridden method; oth-
erwise, it does nothing—i.e., the human player’s move request
is ignored because it’s the computer’s turn. However, afterthe
overridden method invocation returns, it makes a computer
player’s move by calling themakeComputerMove() method
in a new background thread, not to tie the UI thread, if the
game is not over yet. As expected, themakeComputerMove()
calls the overriddenmakeMove() method by passing a place
obtained from the computer player.

The extension is complete, and the program should run
correctly by supporting a computer play. However, there is
a potential issue in its detailed design and coding. It uses
two different styles, explicit and implicit invocations, for
the same functionality and worse, the mixed use happens in
the key business logic of taking turns and marking places.
A human player’s move is coded in event-based, implicit
invocation whereas a computer player’s move is done in
explicit invocation. There are several problems caused by this
nonuniformity. As shown in Fig. 4, the nonuniformity becomes
apparent in the control flow of the program; a dashed line
denotes control flow originated from an implicit invocationof
an event handler.

getting place to mark
for human playermain

game
playing

logic getting place to mark
for computer player

<<implict>>

Fig. 4. Directions of main control flow

1This is an actual code pattern that we noticed in most Battleship programs
written by thirty some junior students in an object-oriented design and
programming class.

There are two, opposite directions of control flow in the
main business logic of the program. It’s confusing and makes
it hard to figure out the overall flow of control for the key
business logic, meaning that the code is less readable and
understandable. Differentiating two players also produces code
that performs case analysis or type casting as apparent in
the second line of themakeComputerMove() method. Such
code commonly appearing in abstract data types is understood
to be less extensible and reusable than object-oriented code
that utilizes polymorphism [7]. Yet another problem is code
scattering. The code of an identical or similar functionality,
determining the next place to mark, is scattered over multiple,
unrelated components, BoardPanel and ComputerPlayer. If a
computer player’s next move is defined in the ComputerPlayer
class, don’t we expect a human player’s in the HumanPlayer
class? In summary, the code suffers from an inappropriate
mixed use of implicit and explicit invocations. The coding of
the logic is complicated, resulting in code that is less readable,
understandable, reusable, and maintainable. In the following
section we will refactor it to produce so-called “clean code”,
code that is easy to read and understand [3].

IV. OUR APPROACH

Mixed use of explicit and implicit invocation styles of
programming is unavoidable in developing most modern,
complicate software systems such as GUI applications and
event-driven control systems. However, the problem described
in the previous section is not much about the fact of mixing the
two styles itself but more on mixing them in an undisciplined
and unconstrained way, e.g., two different styles for the same
functionality and local use exposed to outside. Our approach is
to constrain the mixed use of styles in such a way to produce
clean code. We propose a few guidelines for mixing the two
styles to have disciplined use and a simple framework for
coding accordingly (see Section V for the framework).

• G1: Encapsulate styles. Local use of a style should be
encapsulated in that its use and effect shouldn’t be visible
to or observable from outside. This is particularly true
when intra- and inter-component invocation styles are
different. If a component is written in an event-based,
implicit invocation style, for example, its event handlers
shouldn’t call methods outside the component, directly or
indirectly.

• G2: Use the same style for the same, similar, or related
functionality. Using a different invocation style in cod-
ing the same, similar, or related functionality results in
confusing and unclean code. Pick one and stick to it
throughout the program.

• G3: Avoid mixing styles at the same abstraction level.
Using both styles in a single component or at the same
abstraction level complicates the logic, producing confus-
ing and unclean code. This guideline is crucial for higher-
level components or abstraction levels, such as systems
and system architectures. In practice, it is hard to achieve
this for lowest-level components such as classes, e.g.,
coding solely in implicit invocation.

3



As said earlier, the guidelines suggest to mix use styles
in a more disciplined way, e.g., fixing the direction of main
control flow to one (explicit or implicit) and moving the
differences down to lower-level components and encapsulating
there. Our technical approach for achieving this is converting
one invocation style to the other by simulating or mimicking
it. Below we explain our approach in detail by applying it to
and refactoring our tic-tac-toe program.

A. Implicit to Explicit

Our extended tic-tac-toe program in Section III violates
all three guidelines. A similar functionality—getting or cal-
culating the next place to mark—is written in two different
styles, the BoardPanel class is written in both implicit and
explicit styles, and the implicit invocation in the BoardPanel
class isn’t encapsulated. Let’s examine the BoardPanel class.
A mouse event handlermouseClicked() is invoked implicitly
from within the Swing framework and it calls themakeMove()
method of the T3Dialog class explicitly. Although the second,
inter-class method invocation is done explicitly, it is initiated
by an implicitly-invoked event handler and thus the implicit
invocation is propagated to outside the BoardPanel class; it
crosses the class boundary and thus is observable from outside.
The implicit invocation is not encapsulated properly as we
observed two, opposite directions of control flow in SectionIII.

component 1 component 2

component 3 component 4

Fig. 5. From implicit invocation to explicit

One way to fix the problem is to convert implicit invocation
to explicit and to have a structure similar to the one shown
in Fig. 5. The top-level invocation is explicit while the
component-level can be explicit, implicit or both, of course,
encapsulated properly. For this, we let a human player to
provide his or her next move (see below for details) so that the
controller can call the next move method explicitly as done for
a computer player. With this done, the main controller code
can be rewritten in theplay() method as follows.

public play() {
while (!isGameOver()){

Place place = currentPlayer().nextMove();
makeMove(place);

}
}

Note that the current player can be either a computer or a
human player. Both players are now treated uniformly in an
object-oriented fashion relying on polymorphism.

More interesting is coding a human player requiring an
implicit-to-explicit invocation conversion. We define a new

subclass of the Player class, named HumanPlayer, and override
the nextMove() method, which is now promoted to the Player
class. The method will essentially wait for a mouse click to
obtain a human player’s next move.

EventBroker〈Place〉 eventBroker;

public Place nextMove(){
return eventBroker.consume();

}

The EventBroker class is a framework class that we wrote
for our approach and can serve as a synchronized, thread-safe
buffer between a producer and a consumer (see Section V).
ThenextMove() method simply calls theconsume() method of
an event broker to retrieve the next place from the broker. If
there is no place available, theconsume() method will suspend
the calling thread temporarily until a place becomes available.
The BoardPanel class is a producer and produces a place when
a human player click a mouse on it. Its mouse event handler
is rewritten as follows.

EventBroker〈Place〉 eventBroker =new EventBroker〈〉();

public void mouseClicked(MouseEvent e){
eventBroker.produce(locatePlace(e.getX(), e.getY()))

}

As before it first calculates the board place corresponding
to the screen location on which a mouse is clicked, but then
it stores the place in the even broker for a consumer.

This completes our refactoring for converting implicit invo-
cation to explicit. As planned, implicit invocation is localized
and encapsulated in the BoardPanel class, and the rest of
the program use explicit invocation. All players are treated
equally and uniformly in an object-oriented way, producing
more extensible code; for example, a new type of players, say
a network player, can be added easily with a minimal change
to the existing code. Best of all, the overall, key control flow is
expressed apparently in the code itself, and the code is clean.

B. Explicit to Implicit

Another general solution is to convert explicit invocationto
implicit. In our case, we can rewrite the code handling a com-
puter player’s move to use event-based, implicit invocation. In
an implicit invocation style, one writes an event handler tobe
invoked implicitly when an event occurs. Earlier we wrote the
following mouse event handler to process a human player’s
move; it is slightly rewritten to check for the turn.

public void mouseClicked(MouseEvent e){
if (!controller.isGameOver() && controller.isPlayerTurn()) {

Place place = locatePlace(e.getX(), e.getY());
if (place !=null && !board.isMarked(place)){

controller.makeMove(place);
}

}
}

4



How to convert explicit invocation code to implicit? In
general, a custom event needs to be defined along with an event
generation and notification mechanism for it. In our case, we
need to (1) define a new event to represent a computer’s next
move, (2) generate an instance of the new event every time
when it is a computer’s turn, and (3) notify the generated event
to all event handlers registered an interested in the new event.
The purpose of the new event is to invert the control flow
by making themakeMove() method to be called by an event
handler. But, how to generate a new event? It should be done
independently of the application code, and thus we can create
a new background thread that checks for a computer’s turn to
create a new event and notify it. We can write custom code
doing this or better develop a reusable class. In fact, we wrote
such a reusable, generic class named EventGenerator that
generates events by calling a provided event creation method
periodically (see Section V). Using the EventGenerator〈T〉
class, we can write implicit invocation code for a computer’s
move in the T3StrategyDialog class as follows.

EventGenerator〈Place〉 eventGen;
{

eventGen =new EventGenerator〈Place〉(this::nextPlace);
eventGen.addListener(place→ makeMove(place));
eventGen.start();

}

private Place nextPlace(){
if (!isGameOver() && isComputerPlace()){

return computerPlayer().nextMove();
}
return null ;

}

An event generator namedeventGen generates a new
place (event) whenever it is a computer’s turn and notifies
it to registered event handlers. It does this by calling a
helper method namednextPlace() that calls the computer’s
nextMove() method. The event handler registered toeventGen
by using the addListener() method calls themakeMove()
method, which happens whenever a new place is generated by
eventGen, i.e., when it is a computer player’s turn. In short, the
nextMove is invoked implicitly through a custom event system
provided by the EventGenerator〈T〉 class.

We showed how to convert explicit invocation code to
implicit invocation by rewriting the code handling a computer
player’s move. The refactored code treats both players uni-
formly in implicit invocation, thus conforming to guideline
G2 (Use the same style for the same, similar or related
functionality). However, the improvement ends there; the code
still violates guidelines G1 and G3.

V. SUPPORTINGFRAMEWORK

In this section we describe a very simple framework writ-
ten as a proof-of-concept to help converting explicit invo-
cation to implicit and vice versa. The key components of

the framework are two generic classes, EventBroker〈T〉 and
EventGenerator〈T〉, that were used in the previous section.

A. EventBroker

The EventBroker〈T〉 class provides a synchronized, thread-
safe buffer between a producer and a consumer, both of which
are threads. It is a generic class to allow a custom event
type. It is for converting implicit invocation code to explicit
invocation. The idea is to let an event handler, rather than
invoking application code directly, to store an occurred event
in an event broker so as to be consumed by the application
code (see Fig. 6). An event handler becomes a producer
and stores occurred events in a buffer, and the application
code being originally called by the event handler becomes
a consumer and reads stored events from the buffer. One
key role of an event broker is to prevent propagation of the
inverted control caused by the implicit invocation of an event
handler. As shown in Fig. 6, implicit invocation can’t crossan
event broker and thus an event broker provides a boundary for
encapsulating implicit invocation; implicit invocation is hidden
inside a program module containing both an event handler
and its event broker. Thus the EventBroker〈T〉 class enforces
the first guideline (G1), encapsulating invocation styles (see
Section IV).

event handlerapplication
code

consume

<<implicit>>

application
code

EventBroker event handler
produce

Fig. 6. EventBroker class

Two key operations of the EventBroker〈T〉 class are:

• void produce(T): stores a given event in the buffer.
• T consume(): return the next event stored in the buffer.

Both methods are thread-safe and synchronized. If there
is no event stored, for example, theconsume() method will
suspend the calling thread temporarily until an event is stored
by theproduce() method. Both methods are written using the
guarded suspension pattern [8]. The class can be certainly
improved by considering several different design choices,
including bounded versus unbounded buffer, lossy versus
lossless buffer, waiting or suspension time, initial capacity
of the buffer, and size of the buffer, some of which can be
parameters.

B. EventGenerator

The EventGenerator〈T〉 class provides a custom event sys-
tem including an event generation and notification mechanism.
It is generic to work with a custom event type. It generates an
event by calling a provided event creation method periodically.
And if an event is generated successfully, the generated event
is delivered or notified to all event handlers registered an

5



interest for the event. The class uses two generic interfaces,
EventSource〈T〉 and EventListener〈T〉, to implement the Ob-
server design pattern [6].

public interface EventSource〈T〉 {
T createEvent();

}
public interface EventListener〈T〉 {

void eventOccurred(T event);
}

The EventSource〈T〉 interface is to provide an event genera-
tor with a method that creates an event, called an event creation
method. The event creation method is used by the event
generator to check for an occurrence of an event periodically;
the method is supposed to return null if no event occurs. The
EventListener〈T〉 interface specifies an event handler to be
notified for an event generated by an event generator. Listed
below are key operations of the EventGenerator〈T〉 class.

• EventGenerator(EventSource〈T〉, long): create an event
generator that uses the given event source to crate a new
event periodically.

• addListener(EventListener〈T〉): register the given event
handler for an interested in the events to be generated.
The registered handler will be called when a new event
is generated successfully.

• start(): start the generator in a new background thread.
• stop(): stop the generator.

As shown in Section IV, the EventGenerator〈T〉 class is
for converting explicit invocation code to implicit invocation
(see Fig. 7). To convert an explicit method call fromA to
B, one can provide an event generator with (1) a method to
create a new event whenA should callB and (2) an event
handler which isB in this case. The event generator calls
the provided event creation method periodically, and upon a
successful creation of an event it calls the event handler (B),
thus mimicking an explicit call fromA to B.

application
code A

application
code A

EventGenerator

application
code B

EventListener

application
code B

EventSource

createEvent eventOccurred

Fig. 7. EventGenerator class

As a proof-of-concept implementation, the class can be im-
proved by considering different design choices and parameters,
such as multiple event sources, start and end time, fixed-delay
generation, and fixed-rate generation.

VI. CONCLUSION

The work presented in this paper was initially motivated by
programming assignments done by students in a junior-level

object-oriented design and programming class. The assign-
ments, Battleship game, require students to use both explicit
and implicit method invocations for the same functionalityof
determining the next place to hit for two players. For one
player (human), the place is obtained through a graphical user
interface using an event handler in an implicit invocation style.
For the other player (computer), however, it is calculated by in-
voking a predefined strategy method directly. The programs of
all thirty some students have a code pattern essentially similar
to the one shown in Section III that complicates programming
logic and results in code that is hard to read, understand,
reuse, and maintain. A careful examination of the programs
showed that the problem was mainly caused by mixing the
two different invocation styles in an unconstrained manner.
Based on this observation, we proposed a few principles or
guidelines for mixing the two styles judiciously, if necessary,
by converting one to the other. We also described a simple,
proof-of-concept framework for converting one style to the
other for mixing them in a single application. We believe that
our guidelines along with the framework enable one to blend
the two different programming styles harmoniously and in a
properly constrained fashion to produce clean code.

There are several contributions that our work makes, in-
cluding the need for mixing two different invocation styles
judiciously, a set of practical guidelines for mixing them,the
idea of converting one style to the other, and a supporting
framework for the conversion. However, the most important
contribution is the concept of localizing and encapsulating
method invocation styles. It is as important as, if not more
than, data hiding and encapsulation. The idea is to support
separation of concerns between intra- and inter-component
invocation styles by separating them cleanly and in a modular
way. It is especially crucial when intra- and inter-component
coding styles are different. If a component is written in an
event-based, implicit invocation style, for example, its event
handlers shouldn’t call methods outside the component, di-
rectly or indirectly; the inverted control caused by the implicit
invocation shouldn’t cross the boundary of the component. The
notion of invocation encapsulation allows one to express the
key control flow of an application apparently in source code
itself to produce so-called clean code.

REFERENCES

[1] M. Shaw and D. Garlan,Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

[2] M. Fayad and D. C. Schmidt, “Object-oriented application frameworks,”
Communications of ACM, vol. 40, no. 10, pp. 32–38, Oct. 1997.

[3] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship.
Prentice-Hall, 2008.

[4] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole,Java Swing, 2nd ed.
O’Reilly, 2002.

[5] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, vol. 1, no. 2, pp. 22–35, June/July 1988.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[7] L. Cardelli and P. Wegner, “On understanding types, dataabstraction, and
polymorphism,”ACM Computing Surveys, vol. 17, no. 4, pp. 471–523,
Dec. 1985.

[8] D. Lea, Concurrent Programming in Java, 2nd ed. Addison-Wesley,
2000.

6


