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Abstract—NumConSol is an interval-based numerical con- test suite—one derived from a formal specification—is said
straint and optimization solver to find a global optimum of a to be more effective in detecting faults than manually aéat
function. It is written in Python. In this document, we specly - 5ne We think that the Z notation is a good fit for specifying
the NumConSol solver in Z, a formal specification language bsed the solver because it is based on the standard mathematical
on sets and predicates. The aim is to provide a solid foundain A ; . ;
for restructuring and refactoring the current implementation Notation used in axiomatic set theory, lambda calculus, and
of the NumConSol solver as well as facilitating its future first-order predicate logic. The Z notation is very concisd a
improvements. The formal specification also allows us to d&m  flexible.

R‘g&etﬁgzcgg’gﬁfﬁgf for the solver, e.g., generating tesases |5 gection Il below we first provide the background knowl-

' edge needed to understand the NumConSol solver, including
interval computations and global optimization algorithrirvs
Section Il we develop Z specifications of the NumConSol

Many real-life situations require to make a decision basedlver, focusing on those program modules that showed most
on the best values for a set of parameters—e.g., when st@entiaults and bugs recently. In Section IV we describe our
try to find a fit between two sets of data or among a set approach for systematically generating test cases from the
observations to a model. These situations in which we seghecifications written in Section Ill. In Section V we cormu
a maximum or minimum fit can be modeled as optimizatiothis document with a concluding remark.
problems. There are multiple flavors of optimization protde
It can be unconstrained, in which we only have a function Il. BACKGROUND
whose parameters we seek to optimize. It can also be conAn unconstrained global optimization probleis defined
strained, with a minimum contained within the search spae8: minyex f(x), wheref : R" — R is an objective function.
delimited by a set of constraints. To solve an optimization problem, we usearch algorithms

We have developed an interval-based continuous optimiZEiere are two types of search algorithms. The filstal
tion solver named NumConSol [1]. It implements a globalearch starts on an initial guess of the parameter values.
optimization algorithm, a search algorithm that focuses drhis search type attempts to improve the guessed value by
finding optimal values for a set of parameters in a probleriteratively generating new point guesses until it cannad fin
with a guarantee that there are no other values that cart resubn improvement. On the right circumstances, these algosith
a better fit. The work on the NumConSol solver began in 201@nverge quickly to a solution, but can only guarantee that
Its development was unstructured in that new program maiheir solution is the best solution in the neighborhood & th
ules were introduced impromptu on a need basis to suppimitial guess. In contrast, global searchalgorithm considers
new features and functionalities without following a sfieci the entire search space instead of just a single point. The
set of development guidelines. This type of development s¢rategy is to iteratively reduce the search space untérieg
prone to design and programming errors. Even after significaates a sub-space with a size smaller than a certain threshold
refactoring of code in early 2016, many problems still keephis narrow sub-space contains the solution candidatéoablo
appearing unpredictably. Some faults were detected ody afsearch is exhaustive, as it covers the entire search sphee. T
manual examinations of long lists of execution logs. Itisgi advantage of this search type is that these algorithms can
consuming and requires a lot of manual efforts to uncovguarantee that their solutions are the global optimumsethe
faults and identify their causes. The process isn't refid@ta is no better value in the entire search space. This guarantee

The NumConSol solver is designed on a strong mathematémes at a cost in performance, as the operations that eccoun
cal foundation. Thus, we belive that its behavior can belyicefor the entire domain are more computationally-intensive.
captured and specified in a formal specification languageOne of the most well-known exhaustive search algorithms
like Z [2] [3] to provide a solid foundation for improving is a branch-and- boundB&B) algorithm [4]. This algorithm
its implementation. Based on its formal specification, famplements a divide-and-conquer approach. It iterativaily
example, the solver may be redesigned and its source code miags the search space into smaller sub-spaces, evaluhéng
be restructured or refactored. It is also possible to geéaeréikelihood of each sub-space to contain the global solution
a suite of test cases from the specification. In fact, suchMany B&B solvers, such as GlobSol [5] and IbexOpt [6] use

I. INTRODUCTION



a class of B&B algorithms known asterval branch-bound C. Branch and Prune
(IB&B) algorithms. These algorithm uggerval computations Interval branch-and-bound (IB&B) algorithms use interval

to mF’de' the _search space and to compute_the bounds Onégﬁ‘uputations to model the search space and obtain the bounds
s_olu'uon candlda_tes as well (see _below for mterva_l COMPUL3, the optimum. IB&B algorithms can be improved by adding
tions). Through interval computations, IB&B algorithmsnca, contractor thaprunesthe infeasible regions of each sub-
guarantee the global optimality of their solutions. space. This new algorithm is known &sanch-and-prune

A. Interval Computations (B&P). The NumConSol solver uses a B&P algorithm with

An interval % = [x, %] is the set of all real numberssuch additional constraint heuristics [10].
thatx; < x <X [7]. We denote the set of all such intervalslas
it's the universe of intervals. Aox X is a Cartesian product
of intervals, e.g.X = X; X X2 X ... X X, € I". In interval The NumConSol solver is an interval constraint and opti-
computations, real arithmetic operations are extendedott w mization solver written in Python (see Section Ill). Its ilep
with intervals, and each arithmetic operatore {+, —, x, <~} mentation consists of several program modules, including:

D. NumConSol Implementation

satisfies the following property. « Branch and prune algorithm
« Speculation with B&P grafting
{xay | xexyey} Cxay « Interval arithmetic

« HC4 contractor
« Abstract syntax trees with attributes for HC4
AST evaluation and differentiation

Likewise, it is possible to extend a real-valued functicio
an interval functiorf. The most basic extension is the natural
extension, achieved by systematically extending each ef th *

operators of their symbolic expressions to interval argtim  Its initial code was written impromptu with few prior plan-
In general, interval extensions of real-valued functionsuge ning. It had a negative impact on the quality of the code, and
that: several program modules were stricken with numerous faults
The most error-prone modules are the interval arithmetid-mo
vXel"e {f(x) | xe X} C f(X) ule, the AST evaluation module, and the AST differentiation

) . . ) ) module. In particular, many faults were detected in thetlast

Figure 1 is a graphical representation of the interval evalj,qjes; some were hard to find, requiring manual inspestion
uation of a function. More details about interval analysisic long lists of execution logs. Once detected, however,ynan
be found in [8]. of these faults were simple enough to correct. We believe tha

the lack of rigorous design and testing causes the prevalenc
3.5 4 of easy-to-fix but hard-to-find faults and errors.

In the next section, we specify the behavior of the three most
fault-stricken program modules to provide a formal basis fo
their redesign and code refactoring as wells as future featu
improvements.

IIl. FORMAL SPECIFICATIONS

Software developers use formal methods to specify, de-
sign and test software. The use of formal methods increases
the quality of the software due to specifications written in
mathematic-based notations. In this section, we speciéy th
following program modules of the NumConSol solver.

Fig. 1. Interval evaluation of a function

B. Interval Contractors

Constraints limit the search space of a problem. By using
interval analysis and the constraints of a problem, it issjiids :
to reduce the search space. An interval contractor attetapts ° AST eyaluatl(.)n.module
reduce the size of the search space by iterating through thé AST differentiation module
constraints of the problem and discarding those portions ofWe use the Z notation to write our specifications. The
the search space that violate the constraints. The Num@on&ohotation is a formal specification language based on set
solver uses HC4 [9], a popular interval contractor thatcstrutheory and mathematical logic [2] [3]. Our Z specifications
tures the expressions of the constraintsattsibute treesin are abstract in that they abstract away from programming
which each non-terminal node is a function or operator, dind #nguage-specific concepts and constructs such as Pytten da
leaves are either variables or constants. These attribess t types, functions, and classes. The key responsiblitiesaofi e
use inherited and synthesized attributes used for evaliatProgram module are identified and formulated as operations
and contraction. In NumConSol, these attribute trees drean axiomatic style. For example, the following Z axiorati
represented as abstract syntax trees (see Section 11l).  definition specifies the interval additior-) operation.

« Interval arithmetic module
« AST model module



_+ _: Interval x Interval — Interval « Bisection(bisec): two intervals splitting an interval at its

middle point

All of these operations are defined as Z functions that either
take intervals or returns intervals. The definitions of sashe
these operations are shown below; the rest can be found in

The declaration above the horizontal line states that + isffe appendix. Some operations are specified in terms of the
binary infix operation from a pair of Interval to an Intervalpounds of an interval and others in terms of the values.

Yi,j : Interval e
(i+j)b=ilb+j.lb
(i+]).ub=i.ub+j.ub

It is a total function. Z uses different arrow symbols to
denote different types of functions, e.g., totab), partial
(-»), injective (—), and relation{>). The predicate below
the horizontal line expresses the constraint upon the bbjec
introduced in the declaration. It states that the loweréupp
bounds of the interval + j is the sum of the lower/upper
bounds ofi andj. An interval has a lower boundb) and

a upper boundub) (see Section IlI-A) for the definition of
Interval).

A. Interval Arithmetic Module

The Interval Arithmetic module implements the interval
arithmetic described in Section II-A. An interval is modele
as a set of real numbergajued between two bounddk{ and
ub).

__Interval
b:R
ub: R
values: PR

b <ub
values= {x: R | Ib < x A x < ub}

_€_:R < Interval

VXx:R,i:Intervale X € i & X € i.values

O_: F, Interval — Interval
Vs: [, Intervale
Os= [min{i : se i.lb}, max{i : sei.ub}]
—N_:Interval x Interval - Interval
Vi,j : Interval | i.valuesn j.values# () o
(inj).values= i.valuesnj.values
wid : Interval — R

Vi : Intervale wid i = i.ub—i.lb

bisect: Interval — Interval x Interval

Vi : Interval e
bisect i= ([i.lb, mid i}, [mid i,i.ub])

There are a few things to note. The intersectioh ¢pera-

tion is a partial function. It is defined only for pairs of imials

In Z, an open box called schemalefines a composite type
one with a variety of different components or attributesaih
also be used to define an operation. The predicate part of
schema states that the lower boulty) €hould be less than or
equal to the upper boundilf). Thus, an empty interval can't
be modeled. Thevaluesattribute is a derived attribute in the
sense that it is defined by the two bounds. This attribute malgla
it easy to specify some interval operations (see below).

We also define a helper function to construct an interval.
is a partial function defined ofx,y) pairs, wherex <'y. In
the definition, theu-notation, called thelefinite description
denotes a unique object that satisfies the specified camstrai

[L,] : R x R + Interval

VX, y:R|x<ye
[X,y] = (ni:Interval|ilb=xAi.ub=y)

We define operations to support interval computation
including the following.
Inclusion (€): membership test
Hull (O): interval enclosing a set of intervals
Intersection(N): intersection of two intervals
Width (wid): size of an interval
Mid point (mid): middle of an interval
Mignitude (mig): minimum absolute value of an interval
Magnitude(mag: maximum absolute value of an interval

S

'that have a common set of values. This is mainly because
n empty interval is not modeled. Tlhsectoperation states

licitly that the middle point is included in the two (pli

intervals. Being able to be precise about this kind of bownda
values is one benefit of using formal specifications.

We also need to promote real arithmetic operations such as

ddition (+), subtraction (-), multiplicationx(), division (=),
nd power {) to intervals. For this, we define a higher-order
nction (7) that takes a real operation and returns an interval
version; e.g.;+ denotes the interval addition operation.

__: (R xR -+ R) — (Interval x Interval  Interval)

Vo:R xR -+ R,i,j: Interval e
let s== {x:i.valuesy: j.valuese xoy} e
id] = [mins, maxs|

Itis also possible to define the interval arithmetic opersi

explicitly. For example, the addition operatior-)( can be
defined as follows.

_+_: Interval x Interval — Interval

Vi,j : Interval e
(i +j).Ib = min{x: i.valuesy : j.valuese x + y}
(i+]).ub=max{x:i.valuesy: j.valuese x + y}

Similarly, we promote real mathematical functions such



as natural logarithm, natural exponent, sine, cosine,eang B. Abstract Syntax Tree (AST) Module

secant, cosecant, and cotangent to intervals by defining therhe Apstract Syntax Trees (AST) module is to represent
following higher-order function. the problems to be solved—mathematical expressions to be

“_: (R - R) — (Interval + Interval) evaluated_to obtain t_he _interval range of the objective. A
mathematical expression is modeled asabstract syntax tree

Vi :R -+ R,i:Intervale (AST), a tree representation of the abstract syntactic strectur

let s== {x:i.valuese f x} o of program source code (see Figure 2). An expression may
fi = [mins maxs| consists of different kinds of subexpressions represeated

Another responsibility of the Interval module is to modeﬁ]Incferent node types, including:

the search domains of the problems to be solvedimerval « constant leaf node containing a number.
boxrepresents the search domain of a problem by specifying & Vvariable leaf node containing a variable. .
variable’s domain represented as an interval (see Sedtiéh | * binary operationnone-leaf node denoting a binary arith-
for variables). An interval box is naturally modeled as a  Metic operation such as addition and multiplication.

mapping from variable names to intervals. « unary operation none-leaf node denoting a unary arith-
metic operation such as prefix minus.
[Name¢ « function none-leaf node denoting a unary mathematical
Box== Name-+ Interval function such asog andsin.

We define a few operations to manipulate interval boxes.Since an AST has a recursive structure, we model it using Z
A box can be updated to add a new variable or change @€ types. A free type introduce a new data type by defining
existing one. The intersection of two boxes can be obtainé@nstants and constructor functions.

as another box. OPR ::= plus| minus| times| divide | power

update: Boxx Namex Interval — Box FUN ::= In | exp| sin| cos| tan | sec| csc| cot
Vb:Boxn:Namei: Interval e AST ::= const(R))

updaib,n,i) =b® {n— i} | var{Name)

| unary((OPRx AST))

_Np_: Boxx Box—+ Box | binary{(OPRx AST x AST)
Vb,c:Box|bnsce | fun{FUN x AST)

bnc={n:dombndomcen+— bnncn} The first two free type definitions introduce two seBPR

and FUN) and distinct constants for all the arithmetic op-

_Ms _: Box< Box erations and mathematical functions supported by the Num-

ConSol solver. The last free type definition introduces a new
set AST by defining a set ofconstructor functions Each
constructor function likeconstis an injective function whose
target is the seAST. It would be instructive to represent the

In the definition of theupdate function, the @ symbol €xpression of Figure Zin(3x) +y?, in Z.
denotes relational overriding; e.d.,® g is a relation that
agrees withf everywhere outside the domain gfout agrees
with g where g is defined. The box intersectiomy) is a
partial function. It's defined only when the two boxes have
common variables and all such variables’ interval inteises C. AST Evaluation Module
are defined; see the appendix for defined on a pair of The AST Evaluation module implements an algorithm for
intervals. evaluating an expression represented as an AST. We specify

the algorithm as a recursive functiaf, that takes an AST and
° an interval box and returns an interval. Recall that an vier
box is a mapping from variable names to intervals, spedfyin
@ ° variables’ search domains (see Section IlI-A). Two bastesa
for leaf nodes are specified below.

0 e £ : ASTx Box-+ Interval

VXx:R, b:Boxe
E(const xb) = [x, X]
Vn:Nameb:Box| ne dombe
Fig. 2. Abstract syntax tree fain(3x) + y2 Evarnb)=bn

Vb, c: Boxe
bNs c< (3n: Namee n € dombN domec)
A (Vn:dom bNndomcebnnscn)

binary(plus
fun(sin, binary(times const3, var x)),
binary(power, var y, const2))




When the AST is a constant, the result is an interval
consisting of only the constant. The lower bound of the wakr
is equal to its upper bound. For a variable, the result is the
variable’s interval taken from the interval box. It's a pait
function, and the box is sort of an evaluation environment to
provide a value for a variable.

When the AST is a unary minus operation, the result is
calculated recursively by first evaluating the operand &ed t
applying the interval version of the minus operation)(
Recall that— denotes a promotion of the real minus)(
operation to intervals (see Section IlI-A).

Va:AST b: Boxe

E(unary(minusa), b) = —&(a, b)

The evaluations of binary operations and mathematical

Va:AST, n: Namee
D(unary(minus a), n) = unary(minus D(a, n))

Vap,as : AST, n: Namee
D(binary(plus ai, a2),n) =
binary(plus D(a;, ), D(ay, n))

D : ASTx Name— AST

Va:AST n: Namee

D(fun(sin,a), n) =
binary(times fun(cos a),

D(a,n))

IV. USING FORMAL SPECIFICATIONS

functions are defined recursively in a similar fashion.

Va:AST b: Boxe
binary(plus a;,ay),b) =
binary|

E( &(ar,b) +&(ag, b)
&( b) —
E(binary,

&(
&(

(2

minus a;, az),b) = £(ay, 5(a2,b)
timesay, az),b) = (a1, b) x £(az, b)
divide a;,az2),b) = (a1, b) ~ E(az, b)
power ay,a;),b) = £(ar,b) S(az,b)

binary
binary|

=2 22 =

Va:AST b: Boxe

E(fun(In,a),b) = In (£(a, b))
E(fun(exp a), b) = exp (£(a, b))
E(fun(sin, a), b) = sin (£(a, b))
&(fun(cos a), b) = cos (E(a, b))
E(fun(tan, a),b) = tan (£(a, b))
E(fun(seca), b) = sec (£(a, b))
&(fun(csca), b) = csc (E(a, b))
E(fun(cot, a), b) = cot (£(a, b))

D. AST Differentiation Module

A formal specification describes system properties, from
which one can systematically specify, develop, and verify
systems [11]. The precision of a formal specification lamgua
like Z forces one to express requirements and design desisio
in an unambiguous way, thus exposing unclear points in a
specification and avoiding misconceptions. A formal speci-
fication is useful not only in the early phases of software
development but also in the later development phases such
as testing and maintenance. In fact, one motivation of our
work is to provide a formal basis for refactoring and restruc
turing of the current NumConSol implementation as wells as
its future improvements. Formalizing the NumConSol solver
allowed us to uncover hidden assumptions (e.g., honempty
intervals and partial operations) and fine boundaries, (gpjt
intervals), which caused subtle and hard-to-find bugs in our
code. They were documented explicitly and concisely in our
specifications. The use of Z also let us to be explicit aboait th
signature (parameters and return types) of operationghngi
another common source of subtle bugs in a dynamically-typed
language like Python.

This module is responsible for generating the partial @eriv Another motivation of our work is to provide a solid foun-
tive of an expression. Partial derivatives are used in uariodation for automatically testing the NumConSol solver. The
modules of the NumConSol solver, such as variable selectiosrrent, manual testing is not only tedious and time conegmi
for node bisection and certain types of interval contractobut also error-prone. It's simply not effective for regiess
We specify the behavior of this module as a functidn,that testing; it isn’'t able to provide a safety net for frequentdeo
takes an AST and a variable name and returns an AST. Tiedactoring and improvements of the solver. The ultimatal go
function is defined recursively based on the structure of tiie to automate tests significantly from test case generation
argument AST. The bases are of course the leaf node typ@stest execution. However, a practical, short-term godbis

constant and variable.

automate test execution using a popular testing framevikek |

PHPUnIt [12]. The first step toward this goal is to generate

D : ASTx Name— AST

vx:RR,n: Namee D(const xn) = const0

test cases systematically from formal specifications &mifh
Z[13] [14] [15]. Itis said that test cases generated fronmfak

¥Y'm,n: Namee
m= n = D(var m n) = constl
m# n = D(var m n) = const0

specifications are more effective that manually generated,o
and formal specifications can also be turned into test aacle
to determine test outcomes [16] [17]. We created a test plan
to test the NumConSol modules. Our test plan uses several

_For all none-leaf node types, the function is defined recustack-box testing techniques, including equivalenceitbamt
sively by first ca_lc_ulatmg the partial derivatives of theeopnds ing, boundary value analysis, and grammar-based techmique
and then combining them. Below we show one representatje] [19] [20]. Below we describe several sample test cases

definition for each node type; the complete definition of thg jllustrate our approach for generating test cases from Z
function is found in the appendix.

specifications.



1) Equivalence partitioning:This technique, also known value analysis, in which test cases are designed to include
as equivalence classes techniquiivides the input data of a representatives of boundary values in a range. This teabniq
program into partitions of equivalent data (equivalenessbs) works very well for testing the Interval Arithmetic module
from which test cases can be derived. Test cases are creatduaeicause every interval has clearly defined boundaries, i.e.
such a way to cover each partition at least once. This tedenidower and upper bounds. For the interval inclusion opematio
works for all our program modules. To partition the inputadatx € i, wherex is a real number and is an interval, for
into equivalence classes, we look at the specification of arample, we can identify six boundary values foii.lb — §,
operation. In principle, if two different input values proak i.lb, i.lb+4, i.ub—4§, i.ub, andi.ub+ 4, whereé is a threshold
the same output value, they belong to the same equivalenedue specifying the accuracy of real numbers. We can also
class; otherwise, they belong to different equivalencesda. define the boundary values of the intersection of two inisfva
For example, the inclusione] operation of the Interval say for testing the interval intersection)(operation.

Arithmetic module has a specificatior,c i < x € i.values 3) Grammar-based techniquesthe use of AST in the
wherex : R andi : Interval (see Section IlI-A). Thus, we NumConSol solver and its formalization using the Z free
can define two equivalence classggx,i) | x € i} and type poses an interesting opportunity for generating test
{(x,i) | x € i}. A sample test suite covering all equivalenceases systematically for program modules such as the AST
classes if (5, [1, 10]) — true, (0, [1, 10]) — false}, where the Evaluation module and the AST Differentiation module that
last element of a test case is the expected output. manipulate ASTs. Our test plan for testing these modules is

If an operation is partial, we also need to introduce agrammar-based testing. A grammar-based technique geserat
equivalence class for invalid data to perform negativertgst test cases based on grammar rules [17] [20]. A valid test
testing unexpected behavior. In the Interval Arithmeticdmo case is a sentence derived from the grammar rules. In our
ule, there are several such operations, including inteswal case, the grammar rules are the Z free type definitions, and
struction (_, _]) and interval intersectiom). For example, the sentences (test cases) are ASTs. Since grammar-based test-
intersection operation has a constrdinalues j.values# () data generation allows one to explore the grammar rules and
in its definition, as shown below. grammatical patterns more systematically, it will be geiier

- . . more effective than manual test-data generation.
Vi,j : Interval | i.valuesn j.valuess () o

(i Nj).values= i.valuesn j.values V. CONCLUSION

Thus, a negative equivalence class for the intersectione specified in Z the behavior of several NumConSol
operation is{(i,j) | i.valuesj.values= ()}, wherei andj are program modules, those modules stricken with faults and bug
intervals. And a sample test case to cover this equivaldase c NumConSol is an interval-based numerical constraint and
is ([1,10], [20,30]) — L, whereL denotes an implementation-optimization solver to find a global optimum of a function. It
specific way of indicating an error situation, e.g., retagna i written in Python. By writing formal specifications we weer
special error value or throwing an exception. able to uncover many hidden assumptions and fine boundary

It isn't often straightforward to determine whether an epef@ses, which oftentimes lead to subtle faults and bugs teat a
ation is total or partial. As an example, consider the hm) ( hard to detect. The use of Z also allows us to document ex-
operation of the Interval Arithmetic module, whose defaniti Plicitly the signature of operations (parameter types atdrn

is copied below. types). We also created a test plan to test the NumConSol
program modules. The key of our test plan is to generate
0_: F, Interval — Interval test cases systematically from the formal specificationhef

vs:F, Interval e modules using a combination of several black box testing
techniques such as equivalence partitioning, boundanyeval

analysis, and grammar-based techniques. We expect that our
According to its signature, it's a total functior). How- formal specifications be useful in redesigning and refaugor

ever, note that its domain &, a non-empty finite powerset.the NumConSol solver as well as improving its functionediti

F, is a short-hand notation foF (finite powerset) with Our future work is to carry out such tasks by utilizing the

an implicit constraint of being not empty. Thus, the abovi®rmal specifications.

definition can be re-written onormalizedto:

Os= [min{i : sei.lb}, max{i : sei.ub}]
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APPENDIX

A. Interval Arithmetic

__Interval
b:R
ub: R
values: PR

b <ub
values= {x: R | Ib < x A x < ub}

L, -] : R x R -+ Interval
VX y:R|x<ye

[X,y] = (ni:Interval|ilb=xAi.ub=Yy)
—€_:R + Interval

Vx:R,i:Intervale X € i & x € i.values

O_: F, Interval — Interval

Vs: T, Interval e

Os= [min{i : se i.lb}, max{i : sei.ub}]

_N_: Interval x Interval + Interval

Vi,j:Interval|in:je

(inj).values= i.valuesnj.values

—_N9 _: Interval <~ Interval

Vi,j : Interval e

i N7 j < i.valuesnj.values# ()

wid : Interval - R

Vi : Intervale wid i = i.ub—i.lb

mid : Interval — R

Vi : Intervale mid i = (i.ub+i.lb)/2

mig : Interval - R

Vi : Interval e mig i = min{Vx : i.valuese| X |}

mag: Interval - R

Vi : Interval e mag i= max{Vx: i.valuese| x | }

bisect: Interval — Interval x Interval
Vi: Intervale
bisect i= ([i.lb, mid i, [mid i, i.ub])
__: (R xR -+ R) — (Interval x Interval - Interval)

Vo:R xR -+ R,i,j: Interval e
let s== {x:i.valuesy: j.valuese xoy} e
5] = [mins, max g

—_: (R -+ R) — (Interval + Interval)

Vf:R-» R,i:Intervale
let s== {x:i.valuese f X}

fi = [mins maxs|

[Namé
Box== Name- Interval
update: Box x Namex Interval — Box
Vb:Box n: Namei : Interval e
updatdb,n,i)=b® {n+— i}
_Np—: Boxx Box-+ Box

Vb,c: Box|bn;ce

bnc={n:dombndomcen— bnncn}



_N9 _: Box+ Box

Vb, c: Boxe
b, c< (3In: Namee n € dombN dom c)
A (Yn:dombnNdomcebnn;cn)

B. Abstract Syntax Tree (AST)

OPR ::= plus| minus| times| divide| power
FUN ::=In | exp| sin| cos| tan| sec| csc| cot

AST ::= const(R))
| var{Name)
| unary(OPRx AST)
| binary(OPRx ASTx AST))
| fun{FUN x AST)

C. AST Evaluation

£ : AST x Box-+ Interval

x:R, b:Boxe

E(const xb) = [x,X]
Vn:Nameb:Box| ne dombe

E(varnb)=bn
Va:AST b: Boxe

E(unary(minusa), b) = —&(a, b)
Va:AST b: Boxe

E(binary(plus a;, a2),b) = £(a1,b) + &

E(binary(minus a;, az),b) = E(ay, b) —

,b)

E(binary(divide a;, a2),b) = E(a1, b) ~ E(az
Va AST, b : Boxe

fun exp a) ) =exp (€

D. AST Differentiation

D : ASTx Name— AST

vx:RR,n: Namee D(const xn) = const0
¥Y'm,n: Namee
m=n = D(var m n) = constl
m# n = D(var m n) = consto0
Va:AST n: Namee
D(unary(minusa), n) =
unary(minus D(a, n)

( (a2

( g (am b)
E(binary(timesa;, az),b) = £(a1,b) x E(az, b)

(

(

£(binary(power ay, az), b) = £(ay, b) * & (as, b)

Vap,as : AST n: Namee
D(binary(plus a;,a2),n) =
binary(plus D(a, n), D(az, n))
D(binary(minusa;,az),n) =
binary(minus D(a;, n), D(az, n))
D(binary(timesa;, az),n) =
binary(plus
binary(times a;, D(az, n)),
binary(times az, D(a1, n)))
Vx:R,n: Namee
D(binary(divide a;, az),n) =
binary(minus
binary(divide D(ay, n), az2),
binary(divide,
binary(timesa;, D(az, n)),
binary(power, az, const2)))
D(binary(power, a;,a3),n) =
binary(plus
binary(times
binary(times ag,
binary(power, a;,
binary(minus az, constl))),
D(ala n))?
binary(times
binary(times
fun(ln, a;),
binary(power, a;, a2)),
D(ay,1)))
Va:AST n: Namee
D(fun(In, a), n) = binary(divide, D(a, n), a)
D(fun(exp a), n) = binary(timesa, D(a, n))
D(fun(sin, a), n) = binary(times fun(cos a), D(a, n))
D(fun(cos a),n) =
unary(minus binary(times fun(sin, a), D(a, n)))
D(fun(tan,a), n) =
binary(times
binary(power, fun(sec a), const2),
D(a,n)))



