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Abstract—NumConSol is an interval-based numerical con-
straint and optimization solver to find a global optimum of a
function. It is written in Python. In this document, we specify
the NumConSol solver in Z, a formal specification language based
on sets and predicates. The aim is to provide a solid foundation
for restructuring and refactoring the current implementat ion
of the NumConSol solver as well as facilitating its future
improvements. The formal specification also allows us to design
more effective testing for the solver, e.g., generating test cases
from the specification.

I. I NTRODUCTION

Many real-life situations require to make a decision based
on the best values for a set of parameters—e.g., when scientists
try to find a fit between two sets of data or among a set of
observations to a model. These situations in which we seek
a maximum or minimum fit can be modeled as optimization
problems. There are multiple flavors of optimization problems.
It can be unconstrained, in which we only have a function
whose parameters we seek to optimize. It can also be con-
strained, with a minimum contained within the search space
delimited by a set of constraints.

We have developed an interval-based continuous optimiza-
tion solver named NumConSol [1]. It implements a global
optimization algorithm, a search algorithm that focuses on
finding optimal values for a set of parameters in a problem,
with a guarantee that there are no other values that can result in
a better fit. The work on the NumConSol solver began in 2012.
Its development was unstructured in that new program mod-
ules were introduced impromptu on a need basis to support
new features and functionalities without following a specific
set of development guidelines. This type of development is
prone to design and programming errors. Even after significant
refactoring of code in early 2016, many problems still keep
appearing unpredictably. Some faults were detected only after
manual examinations of long lists of execution logs. It is time
consuming and requires a lot of manual efforts to uncover
faults and identify their causes. The process isn’t repeatable.

The NumConSol solver is designed on a strong mathemati-
cal foundation. Thus, we belive that its behavior can be nicely
captured and specified in a formal specification language
like Z [2] [3] to provide a solid foundation for improving
its implementation. Based on its formal specification, for
example, the solver may be redesigned and its source code may
be restructured or refactored. It is also possible to generate
a suite of test cases from the specification. In fact, such a

test suite—one derived from a formal specification—is said
to be more effective in detecting faults than manually created
one. We think that the Z notation is a good fit for specifying
the solver because it is based on the standard mathematical
notation used in axiomatic set theory, lambda calculus, and
first-order predicate logic. The Z notation is very concise and
flexible.

In Section II below we first provide the background knowl-
edge needed to understand the NumConSol solver, including
interval computations and global optimization algorithms. In
Section III we develop Z specifications of the NumConSol
solver, focusing on those program modules that showed most
faults and bugs recently. In Section IV we describe our
approach for systematically generating test cases from the
specifications written in Section III. In Section V we conclude
this document with a concluding remark.

II. BACKGROUND

An unconstrained global optimization problemis defined
as:minx∈X f (x), wheref : Rn → R is an objective function.
To solve an optimization problem, we usesearch algorithms.
There are two types of search algorithms. The first,local
search, starts on an initial guess of the parameter values.
This search type attempts to improve the guessed value by
iteratively generating new point guesses until it cannot find
an improvement. On the right circumstances, these algorithms
converge quickly to a solution, but can only guarantee that
their solution is the best solution in the neighborhood of the
initial guess. In contrast, aglobal searchalgorithm considers
the entire search space instead of just a single point. The
strategy is to iteratively reduce the search space until it gener-
ates a sub-space with a size smaller than a certain threshold.
This narrow sub-space contains the solution candidate. Global
search is exhaustive, as it covers the entire search space. The
advantage of this search type is that these algorithms can
guarantee that their solutions are the global optimums: there
is no better value in the entire search space. This guarantee
comes at a cost in performance, as the operations that account
for the entire domain are more computationally-intensive.

One of the most well-known exhaustive search algorithms
is a branch-and- bound(B&B) algorithm [4]. This algorithm
implements a divide-and-conquer approach. It iterativelydi-
vides the search space into smaller sub-spaces, evaluatingthe
likelihood of each sub-space to contain the global solution.
Many B&B solvers, such as GlobSol [5] and IbexOpt [6] use



a class of B&B algorithms known asinterval branch-bound
(IB&B) algorithms. These algorithm useinterval computations
to model the search space and to compute the bounds on the
solution candidates as well (see below for interval computa-
tions). Through interval computations, IB&B algorithms can
guarantee the global optimality of their solutions.

A. Interval Computations

An interval xxxiii =
[

xi , xi
]

is the set of all real numbersx such
thatxi ≤ x ≤ xi [7]. We denote the set of all such intervals asI;
it’s the universe of intervals. Abox XXX is a Cartesian product
of intervals, e.g.,XXX = xxx1 × xxx2 × . . . × xxxnnn ∈ I

n. In interval
computations, real arithmetic operations are extended to work
with intervals, and each arithmetic operator⊲⊳ ∈ {+,−,×,÷}
satisfies the following property.

{x ⊲⊳ y | x ∈ xxx, y ∈ yyy} ⊆ xxx ⊲⊳ yyy

Likewise, it is possible to extend a real-valued functionf to
an interval functionfff . The most basic extension is the natural
extension, achieved by systematically extending each of the
operators of their symbolic expressions to interval arithmetic.
In general, interval extensions of real-valued functions ensure
that:

∀XXX ∈ I
n • {f (x) | x ∈ XXX} ⊆ fff (XXX)

Figure 1 is a graphical representation of the interval eval-
uation of a function. More details about interval analysis can
be found in [8].
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Fig. 1. Interval evaluation of a function

B. Interval Contractors

Constraints limit the search space of a problem. By using
interval analysis and the constraints of a problem, it is possible
to reduce the search space. An interval contractor attemptsto
reduce the size of the search space by iterating through the
constraints of the problem and discarding those portions of
the search space that violate the constraints. The NumConSol
solver uses HC4 [9], a popular interval contractor that struc-
tures the expressions of the constraints asattribute treesin
which each non-terminal node is a function or operator, and all
leaves are either variables or constants. These attribute trees
use inherited and synthesized attributes used for evaluation
and contraction. In NumConSol, these attribute trees are
represented as abstract syntax trees (see Section III).

C. Branch and Prune

Interval branch-and-bound (IB&B) algorithms use interval
computations to model the search space and obtain the bounds
on the optimum. IB&B algorithms can be improved by adding
a contractor thatprunes the infeasible regions of each sub-
space. This new algorithm is known asbranch-and-prune
(B&P). The NumConSol solver uses a B&P algorithm with
additional constraint heuristics [10].

D. NumConSol Implementation

The NumConSol solver is an interval constraint and opti-
mization solver written in Python (see Section III). Its imple-
mentation consists of several program modules, including:

• Branch and prune algorithm
• Speculation with B&P grafting
• Interval arithmetic
• HC4 contractor
• Abstract syntax trees with attributes for HC4
• AST evaluation and differentiation

Its initial code was written impromptu with few prior plan-
ning. It had a negative impact on the quality of the code, and
several program modules were stricken with numerous faults.
The most error-prone modules are the interval arithmetic mod-
ule, the AST evaluation module, and the AST differentiation
module. In particular, many faults were detected in the lasttwo
modules; some were hard to find, requiring manual inspections
of long lists of execution logs. Once detected, however, many
of these faults were simple enough to correct. We believe that
the lack of rigorous design and testing causes the prevalence
of easy-to-fix but hard-to-find faults and errors.

In the next section, we specify the behavior of the three most
fault-stricken program modules to provide a formal basis for
their redesign and code refactoring as wells as future feature
improvements.

III. F ORMAL SPECIFICATIONS

Software developers use formal methods to specify, de-
sign and test software. The use of formal methods increases
the quality of the software due to specifications written in
mathematic-based notations. In this section, we specify the
following program modules of the NumConSol solver.

• Interval arithmetic module
• AST model module
• AST evaluation module
• AST differentiation module

We use the Z notation to write our specifications. The
Z notation is a formal specification language based on set
theory and mathematical logic [2] [3]. Our Z specifications
are abstract in that they abstract away from programming
language-specific concepts and constructs such as Python data
types, functions, and classes. The key responsiblities of each
program module are identified and formulated as operations
in an axiomatic style. For example, the following Z axiomatic
definition specifies the interval addition (+) operation.
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+ : Interval× Interval→ Interval

∀ i, j : Interval •
(i + j).lb = i.lb + j.lb
(i + j).ub= i.ub+ j.ub

The declaration above the horizontal line states that + is a
binary infix operation from a pair of Interval to an Interval.
It is a total function. Z uses different arrow symbols to
denote different types of functions, e.g., total (→), partial
( 7→), injective (֌), and relation(↔). The predicate below
the horizontal line expresses the constraint upon the object
introduced in the declaration. It states that the lower/upper
bounds of the intervali + j is the sum of the lower/upper
bounds of i and j. An interval has a lower bound (lb) and
a upper bound (ub) (see Section III-A) for the definition of
Interval).

A. Interval Arithmetic Module

The Interval Arithmetic module implements the interval
arithmetic described in Section II-A. An interval is modeled
as a set of real numbers (values) between two bounds (lb and
ub).

Interval
lb : R
ub : R
values: PR

lb ≤ ub
values= {x : R | lb ≤ x ∧ x ≤ ub}

In Z, an open box called aschemadefines a composite type,
one with a variety of different components or attributes; itcan
also be used to define an operation. The predicate part of the
schema states that the lower bound (lb) should be less than or
equal to the upper bound (ub). Thus, an empty interval can’t
be modeled. Thevaluesattribute is a derived attribute in the
sense that it is defined by the two bounds. This attribute makes
it easy to specify some interval operations (see below).

We also define a helper function to construct an interval. It
is a partial function defined on(x, y) pairs, wherex ≤ y. In
the definition, theµ-notation, called thedefinite description,
denotes a unique object that satisfies the specified constraint.

[ , ] : R× R 7→ Interval

∀ x, y : R | x ≤ y •
[x, y] = (µ i : Interval | i.lb = x ∧ i.ub= y)

We define operations to support interval computations,
including the following.

• Inclusion (∈): membership test
• Hull (�): interval enclosing a set of intervals
• Intersection(∩): intersection of two intervals
• Width (wid): size of an interval
• Mid point (mid): middle of an interval
• Mignitude (mig): minimum absolute value of an interval
• Magnitude(mag): maximum absolute value of an interval

• Bisection(bisect): two intervals splitting an interval at its
middle point

All of these operations are defined as Z functions that either
take intervals or returns intervals. The definitions of someof
these operations are shown below; the rest can be found in
the appendix. Some operations are specified in terms of the
bounds of an interval and others in terms of the values.

∈ : R ↔ Interval

∀ x : R, i : Interval • x ∈ i ⇔ x ∈ i.values

� : F1 Interval→ Interval

∀ s : F1 Interval •
�s= [min{i : s • i.lb},max{i : s • i.ub}]

∩ : Interval× Interval 7→ Interval

∀ i, j : Interval | i.values∩ j.values6= ∅ •
(i ∩ j).values= i.values∩ j.values

wid : Interval→ R

∀ i : Interval • wid i = i.ub− i.lb

bisect: Interval→ Interval× Interval

∀ i : Interval •
bisect i= ([i.lb,mid i], [mid i, i.ub])

There are a few things to note. The intersection (∩) opera-
tion is a partial function. It is defined only for pairs of intervals
that have a common set of values. This is mainly because
an empty interval is not modeled. Thebisectoperation states
explicitly that the middle point is included in the two (split)
intervals. Being able to be precise about this kind of boundary
values is one benefit of using formal specifications.

We also need to promote real arithmetic operations such as
addition (+), subtraction (-), multiplication (×), division (÷),
and power (̂ ) to intervals. For this, we define a higher-order
function (̄ ) that takes a real operation and returns an interval
version; e.g.,̄+ denotes the interval addition operation.

¯ : (R× R 7→ R) → (Interval× Interval 7→ Interval)

∀ ⋄ : R× R 7→ R, i, j : Interval •
let s== {x : i.values, y : j.values• x ⋄ y} •

i ⋄̄ j = [min s,max s]

It is also possible to define the interval arithmetic operations
explicitly. For example, the addition operation (+̄) can be
defined as follows.

+̄ : Interval× Interval→ Interval

∀ i, j : Interval •
(i +̄ j).lb = min{x : i.values, y : j.values• x+ y}
(i +̄ j).ub= max{x : i.values, y : j.values• x+ y}

Similarly, we promote real mathematical functions such
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as natural logarithm, natural exponent, sine, cosine, tangent,
secant, cosecant, and cotangent to intervals by defining the
following higher-order function.

¯ : (R 7→ R) → (Interval 7→ Interval)

∀ f : R 7→ R, i : Interval •
let s== {x : i.values• f x} •

f̄ i = [min s,max s]

Another responsibility of the Interval module is to model
the search domains of the problems to be solved. Aninterval
boxrepresents the search domain of a problem by specifying a
variable’s domain represented as an interval (see Section III-B
for variables). An interval box is naturally modeled as a
mapping from variable names to intervals.

[Name]
Box== Name 7→ Interval

We define a few operations to manipulate interval boxes.
A box can be updated to add a new variable or change an
existing one. The intersection of two boxes can be obtained
as another box.

update: Box× Name× Interval→ Box

∀ b : Box, n : Name, i : Interval •
updat(b, n, i) = b⊕ {n 7→ i}

∩b : Box× Box 7→ Box

∀ b, c : Box | b∩? c •
b∩ c = {n : domb∩ dom c • n 7→ b n∩ c n}

∩? : Box↔ Box

∀ b, c : Box•
b∩? c ⇔ (∃ n : Name• n ∈ domb∩ dom c)
∧ (∀ n : dom b∩ dom c • b n∩? c n)

In the definition of theupdate function, the⊕ symbol
denotes relational overriding; e.g.,f ⊕ g is a relation that
agrees withf everywhere outside the domain ofg but agrees
with g where g is defined. The box intersection (∩b) is a
partial function. It’s defined only when the two boxes have
common variables and all such variables’ interval intersections
are defined; see the appendix for∩? defined on a pair of
intervals.

sin

x

y 2

+

^

×

3

Fig. 2. Abstract syntax tree forsin(3x) + y2

B. Abstract Syntax Tree (AST) Module

The Abstract Syntax Trees (AST) module is to represent
the problems to be solved—mathematical expressions to be
evaluated to obtain the interval range of the objective. A
mathematical expression is modeled as anabstract syntax tree
(AST), a tree representation of the abstract syntactic structure
of program source code (see Figure 2). An expression may
consists of different kinds of subexpressions representedas
different node types, including:

• constant: leaf node containing a number.
• variable: leaf node containing a variable.
• binary operation: none-leaf node denoting a binary arith-

metic operation such as addition and multiplication.
• unary operation: none-leaf node denoting a unary arith-

metic operation such as prefix minus.
• function: none-leaf node denoting a unary mathematical

function such aslog and sin.
Since an AST has a recursive structure, we model it using Z

free types. A free type introduce a new data type by defining
constants and constructor functions.

OPR ::= plus | minus| times| divide | power

FUN ::= ln | exp| sin | cos| tan | sec| csc| cot

AST ::= const〈〈R〉〉
| var〈〈Name〉〉
| unary〈〈OPR× AST〉〉
| binary〈〈OPR× AST× AST〉〉
| fun〈〈FUN × AST〉〉

The first two free type definitions introduce two sets (OPR
and FUN) and distinct constants for all the arithmetic op-
erations and mathematical functions supported by the Num-
ConSol solver. The last free type definition introduces a new
set AST by defining a set ofconstructor functions. Each
constructor function likeconst is an injective function whose
target is the setAST. It would be instructive to represent the
expression of Figure 2,sin(3x) + y2, in Z.

binary(plus,
fun(sin, binary(times, const3, var x)),
binary(power, var y, const2))

C. AST Evaluation Module

The AST Evaluation module implements an algorithm for
evaluating an expression represented as an AST. We specify
the algorithm as a recursive function,E , that takes an AST and
an interval box and returns an interval. Recall that an interval
box is a mapping from variable names to intervals, specifying
variables’ search domains (see Section III-A). Two basis cases
for leaf nodes are specified below.

E : AST× Box 7→ Interval

∀ x : R, b : Box•
E(const x, b) = [x, x]

∀ n : Name, b : Box | n ∈ domb •
E(var n, b) = b n
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When the AST is a constant, the result is an interval
consisting of only the constant. The lower bound of the interval
is equal to its upper bound. For a variable, the result is the
variable’s interval taken from the interval box. It’s a partial
function, and the box is sort of an evaluation environment to
provide a value for a variable.

When the AST is a unary minus operation, the result is
calculated recursively by first evaluating the operand and then
applying the interval version of the minus operation (−̄).
Recall that −̄ denotes a promotion of the real minus (−)
operation to intervals (see Section III-A).

∀ a : AST, b : Box•
E(unary(minus, a), b) = −̄E(a, b)

The evaluations of binary operations and mathematical
functions are defined recursively in a similar fashion.

∀ a : AST, b : Box•
E(binary(plus, a1, a2), b) = E(a1, b) +̄ E(a2, b)
E(binary(minus, a1, a2), b) = E(a1, b) −̄ E(a2, b)
E(binary(times, a1, a2), b) = E(a1, b) ×̄ E(a2, b)
E(binary(divide, a1, a2), b) = E(a1, b) ÷̄ E(a2, b)
E(binary(power, a1, a2), b) = E(a1, b) ⊼ E(a2, b)

∀ a : AST, b : Box•
E(fun(ln, a), b) = l̄n (E(a, b))
E(fun(exp, a), b) = ¯exp (E(a, b))
E(fun(sin, a), b) = ¯sin (E(a, b))
E(fun(cos, a), b) = ¯cos (E(a, b))
E(fun(tan, a), b) = ¯tan (E(a, b))
E(fun(sec, a), b) = ¯sec (E(a, b))
E(fun(csc, a), b) = ¯csc (E(a, b))
E(fun(cot, a), b) = ¯cot (E(a, b))

D. AST Differentiation Module

This module is responsible for generating the partial deriva-
tive of an expression. Partial derivatives are used in various
modules of the NumConSol solver, such as variable selection
for node bisection and certain types of interval contractors.
We specify the behavior of this module as a function,D, that
takes an AST and a variable name and returns an AST. The
function is defined recursively based on the structure of the
argument AST. The bases are of course the leaf node types:
constant and variable.

D : AST× Name→ AST

∀ x : R, n : Name• D(const x, n) = const0
∀m, n : Name•

m= n ⇒ D(var m, n) = const1
m 6= n ⇒ D(var m, n) = const0

For all none-leaf node types, the function is defined recur-
sively by first calculating the partial derivatives of the operands
and then combining them. Below we show one representative
definition for each node type; the complete definition of the
function is found in the appendix.

∀ a : AST, n : Name•
D(unary(minus, a), n) = unary(minus,D(a, n))

∀ a1, a2 : AST, n : Name•
D(binary(plus, a1, a2), n) =

binary(plus,D(a1, n),D(a2, n))

D : AST× Name→ AST

∀ a : AST, n : Name•
D(fun(sin, a), n) =

binary(times, fun(cos, a),D(a, n))

IV. U SING FORMAL SPECIFICATIONS

A formal specification describes system properties, from
which one can systematically specify, develop, and verify
systems [11]. The precision of a formal specification language
like Z forces one to express requirements and design decisions
in an unambiguous way, thus exposing unclear points in a
specification and avoiding misconceptions. A formal speci-
fication is useful not only in the early phases of software
development but also in the later development phases such
as testing and maintenance. In fact, one motivation of our
work is to provide a formal basis for refactoring and restruc-
turing of the current NumConSol implementation as wells as
its future improvements. Formalizing the NumConSol solver
allowed us to uncover hidden assumptions (e.g., nonempty
intervals and partial operations) and fine boundaries (e.g., split
intervals), which caused subtle and hard-to-find bugs in our
code. They were documented explicitly and concisely in our
specifications. The use of Z also let us to be explicit about the
signature (parameters and return types) of operations, which is
another common source of subtle bugs in a dynamically-typed
language like Python.

Another motivation of our work is to provide a solid foun-
dation for automatically testing the NumConSol solver. The
current, manual testing is not only tedious and time consuming
but also error-prone. It’s simply not effective for regression
testing; it isn’t able to provide a safety net for frequent code
refactoring and improvements of the solver. The ultimate goal
is to automate tests significantly from test case generation
to test execution. However, a practical, short-term goal isto
automate test execution using a popular testing framework like
PHPUnit [12]. The first step toward this goal is to generate
test cases systematically from formal specifications written in
Z [13] [14] [15]. It is said that test cases generated from formal
specifications are more effective that manually generated ones,
and formal specifications can also be turned into test oracles
to determine test outcomes [16] [17]. We created a test plan
to test the NumConSol modules. Our test plan uses several
black-box testing techniques, including equivalence partition-
ing, boundary value analysis, and grammar-based techniques
[18] [19] [20]. Below we describe several sample test cases
to illustrate our approach for generating test cases from Z
specifications.
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1) Equivalence partitioning:This technique, also known
as equivalence classes technique, divides the input data of a
program into partitions of equivalent data (equivalence classes)
from which test cases can be derived. Test cases are created in
such a way to cover each partition at least once. This technique
works for all our program modules. To partition the input data
into equivalence classes, we look at the specification of an
operation. In principle, if two different input values produce
the same output value, they belong to the same equivalence
class; otherwise, they belong to different equivalence classes.
For example, the inclusion (∈) operation of the Interval
Arithmetic module has a specification,x ∈ i ⇔ x ∈ i.values,
where x : R and i : Interval (see Section III-A). Thus, we
can define two equivalence classes:{(x, i) | x ∈ i} and
{(x, i) | x 6∈ i}. A sample test suite covering all equivalence
classes is{(5, [1, 10]) 7→ true, (0, [1, 10]) 7→ false}, where the
last element of a test case is the expected output.

If an operation is partial, we also need to introduce an
equivalence class for invalid data to perform negative testing—
testing unexpected behavior. In the Interval Arithmetic mod-
ule, there are several such operations, including intervalcon-
struction ([ , ]) and interval intersection (∩). For example, the
intersection operation has a constrainti.values∩ j.values6= ∅
in its definition, as shown below.

∀ i, j : Interval | i.values∩ j.values6= ∅ •
(i ∩ j).values= i.values∩ j.values

Thus, a negative equivalence class for the intersection
operation is{(i, j) | i.values∩ j.values= ∅}, wherei and j are
intervals. And a sample test case to cover this equivalence class
is ([1, 10], [20, 30]) 7→ ⊥, where⊥ denotes an implementation-
specific way of indicating an error situation, e.g., returning a
special error value or throwing an exception.

It isn’t often straightforward to determine whether an oper-
ation is total or partial. As an example, consider the hull (�)
operation of the Interval Arithmetic module, whose definition
is copied below.

� : F1 Interval→ Interval

∀ s : F1 Interval •
�s= [min{i : s • i.lb},max{i : s • i.ub}]

According to its signature, it’s a total function (→). How-
ever, note that its domain isF1, a non-empty finite powerset.
F1 is a short-hand notation forF (finite powerset) with
an implicit constraint of being not empty. Thus, the above
definition can be re-written ornormalizedto:

� : F Interval 7→ Interval

∀ s : F Interval | #s> 0 •
�s= [min{i : s • i.lb},max{i : s • i.ub}]

It is now clear that the operation is partial (7→). Its definition
has an explicitly-written constraint,#s> 0, in the quantifier.

2) Boundary value analysis:One way to improve the ef-
fectiveness of equivalence partitioning is to perform boundary

value analysis, in which test cases are designed to include
representatives of boundary values in a range. This technique
works very well for testing the Interval Arithmetic module
because every interval has clearly defined boundaries, i.e.,
lower and upper bounds. For the interval inclusion operation,
x ∈ i, where x is a real number andi is an interval, for
example, we can identify six boundary values forx: i.lb − δ,
i.lb, i.lb+δ, i.ub−δ, i.ub, andi.ub+δ, whereδ is a threshold
value specifying the accuracy of real numbers. We can also
define the boundary values of the intersection of two intervals,
say for testing the interval intersection (∪) operation.

3) Grammar-based techniques:The use of AST in the
NumConSol solver and its formalization using the Z free
type poses an interesting opportunity for generating test
cases systematically for program modules such as the AST
Evaluation module and the AST Differentiation module that
manipulate ASTs. Our test plan for testing these modules is
grammar-based testing. A grammar-based technique generates
test cases based on grammar rules [17] [20]. A valid test
case is a sentence derived from the grammar rules. In our
case, the grammar rules are the Z free type definitions, and
sentences (test cases) are ASTs. Since grammar-based test-
data generation allows one to explore the grammar rules and
grammatical patterns more systematically, it will be generally
more effective than manual test-data generation.

V. CONCLUSION

We specified in Z the behavior of several NumConSol
program modules, those modules stricken with faults and bugs.
NumConSol is an interval-based numerical constraint and
optimization solver to find a global optimum of a function. It
is written in Python. By writing formal specifications we were
able to uncover many hidden assumptions and fine boundary
cases, which oftentimes lead to subtle faults and bugs that are
hard to detect. The use of Z also allows us to document ex-
plicitly the signature of operations (parameter types and return
types). We also created a test plan to test the NumConSol
program modules. The key of our test plan is to generate
test cases systematically from the formal specifications ofthe
modules using a combination of several black box testing
techniques such as equivalence partitioning, boundary value
analysis, and grammar-based techniques. We expect that our
formal specifications be useful in redesigning and refactoring
the NumConSol solver as well as improving its functionalities.
Our future work is to carry out such tasks by utilizing the
formal specifications.
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APPENDIX

A. Interval Arithmetic

Interval
lb : R
ub : R
values: PR

lb ≤ ub
values= {x : R | lb ≤ x ∧ x ≤ ub}

[ , ] : R× R 7→ Interval

∀ x, y : R | x ≤ y •
[x, y] = (µ i : Interval | i.lb = x ∧ i.ub= y)

∈ : R ↔ Interval

∀ x : R, i : Interval • x ∈ i ⇔ x ∈ i.values

� : F1 Interval→ Interval

∀ s : F1 Interval •
�s= [min{i : s • i.lb},max{i : s • i.ub}]

∩ : Interval× Interval 7→ Interval

∀ i, j : Interval | i ∩? j •
(i ∩ j).values= i.values∩ j.values

∩? : Interval↔ Interval

∀ i, j : Interval •
i ∩? j ⇔ i.values∩ j.values6= ∅

wid : Interval→ R

∀ i : Interval • wid i = i.ub− i.lb

mid : Interval→ R

∀ i : Interval • mid i = (i.ub+ i.lb)/2

mig : Interval→ R

∀ i : Interval • mig i = min{∀ x : i.values•| x |}

mag: Interval→ R

∀ i : Interval • mag i= max{∀ x : i.values•| x |}

bisect: Interval→ Interval× Interval

∀ i : Interval •
bisect i= ([i.lb,mid i], [mid i, i.ub])

¯ : (R× R 7→ R) → (Interval× Interval 7→ Interval)

∀ ⋄ : R× R 7→ R, i, j : Interval •
let s== {x : i.values, y : j.values• x ⋄ y} •

i ⋄̄ j = [min s,max s]

¯ : (R 7→ R) → (Interval 7→ Interval)

∀ f : R 7→ R, i : Interval •
let s== {x : i.values• f x} •

f̄ i = [min s,max s]

[Name]
Box== Name 7→ Interval

update: Box× Name× Interval→ Box

∀ b : Box, n : Name, i : Interval •
update(b, n, i) = b⊕ {n 7→ i}

∩b : Box× Box 7→ Box

∀ b, c : Box | b∩? c •
b∩ c = {n : domb∩ dom c • n 7→ b n∩ c n}
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∩? : Box↔ Box

∀ b, c : Box•
b∩? c ⇔ (∃ n : Name• n ∈ domb∩ dom c)
∧ (∀ n : domb∩ dom c • b n∩? c n)

B. Abstract Syntax Tree (AST)

OPR ::= plus | minus| times| divide | power

FUN ::= ln | exp| sin | cos| tan | sec| csc| cot

AST ::= const〈〈R〉〉
| var〈〈Name〉〉
| unary〈〈OPR× AST〉〉
| binary〈〈OPR× AST× AST〉〉
| fun〈〈FUN × AST〉〉

C. AST Evaluation

E : AST× Box 7→ Interval

∀ x : R, b : Box•
E(const x, b) = [x, x]

∀ n : Name, b : Box | n ∈ domb •
E(var n, b) = b n

∀ a : AST, b : Box•
E(unary(minus, a), b) = −̄E(a, b)

∀ a : AST, b : Box•
E(binary(plus, a1, a2), b) = E(a1, b) +̄ E(a2, b)
E(binary(minus, a1, a2), b) = E(a1, b) −̄ E(a2, b)
E(binary(times, a1, a2), b) = E(a1, b) ×̄ E(a2, b)
E(binary(divide, a1, a2), b) = E(a1, b) ÷̄ E(a2, b)
E(binary(power, a1, a2), b) = E(a1, b) ⊼ E(a2, b)

∀ a : AST, b : Box•
E(fun(ln, a), b) = l̄n (E(a, b))
E(fun(exp, a), b) = ¯exp (E(a, b))
E(fun(sin, a), b) = ¯sin (E(a, b))
E(fun(cos, a), b) = ¯cos (E(a, b))
E(fun(tan, a), b) = ¯tan (E(a, b))
E(fun(sec, a), b) = ¯sec (E(a, b))
E(fun(csc, a), b) = ¯csc (E(a, b))
E(fun(cot, a), b) = ¯cot (E(a, b))

D. AST Differentiation

D : AST× Name→ AST

∀ x : R, n : Name• D(const x, n) = const0
∀m, n : Name•

m= n ⇒ D(var m, n) = const1
m 6= n ⇒ D(var m, n) = const0

∀ a : AST, n : Name•
D(unary(minus, a), n) =

unary(minus,D(a, n))

∀ a1, a2 : AST, n : Name•
D(binary(plus, a1, a2), n) =

binary(plus,D(a1, n),D(a2, n))
D(binary(minus, a1, a2), n) =

binary(minus,D(a1, n),D(a2, n))
D(binary(times, a1, a2), n) =

binary(plus,
binary(times, a1,D(a2, n)),
binary(times, a2,D(a1, n)))

∀ x : R, n : Name•
D(binary(divide, a1, a2), n) =

binary(minus,
binary(divide,D(a1, n), a2),
binary(divide,

binary(times, a1,D(a2, n)),
binary(power, a2, const2)))

D(binary(power, a1, a2), n) =
binary(plus,

binary(times,
binary(times, a2,

binary(power, a1,
binary(minus, a2, const1))),

D(a1, n)),
binary(times,

binary(times,
fun(ln, a1),
binary(power, a1, a2)),

D(a2, n)))
∀ a : AST, n : Name•
D(fun(ln, a), n) = binary(divide,D(a, n), a)
D(fun(exp, a), n) = binary(times, a,D(a, n))
D(fun(sin, a), n) = binary(times, fun(cos, a),D(a, n))
D(fun(cos, a), n) =

unary(minus, binary(times, fun(sin, a),D(a, n)))
D(fun(tan, a), n) =

binary(times,
binary(power, fun(sec, a), const2),
D(a, n)))
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