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Abstract. Android is becoming a platform for mobile health-care devices and apps. 

However, there are many challenges in developing soft real-time, health-care apps 

for non-dedicated mobile devices like smartphones and tablets. In this paper, we 

share our experiences in developing the HifoCap app, a mobile app for receiving 

electroencephalogram (EEG) wave samples from a wearable device, visualizing the 

received EEG samples, and transmitting them to a cloud storage server. The app is 

network and data-intensive. We describe the challenges we faced while developing 
the HifoCap app—e.g., ensuring the soft real-time requirement in the presence of 

uncertainty on the Android platform—along with our solutions to them. We measure 

both the time and space efficiency of our app and evaluate the effectiveness of our 
solutions quantitatively. We believe our solutions to be applicable to other soft real-

time apps targeted for non-dedicated Android devices. 

Keywords. electroencephalogram (EEG), health-care app, space and time 
efficiency, wearable devices, Android, HifoCap 

1. Introduction 

Advances in mobile devices as well as their software platformse.g., faster processors, 

bigger storage, larger screen, smaller batteries, various sensors, and open-source 

operating systemshave paved the way for the development of a flood of medical 

mobile devices and apps [1]. One can measure one’s own blood pressure, use a portable 

ultrasound, or spit on a diagnostic kit for sexually transmitted diseases and shortly have 

the results on one’s smartphone screen. This became possible by connecting to one’s 

smartphone or tablet various types of sensors and other medical accessories, e.g., blood 

pressure monitors and glucose meters. We also have seen a big surge in the adoption of 

Android-based medical devices and apps because they allow the ability to provide cost 

effective medical care to patients outside the hospital [1]. However, due to the inherent 

nature of the Android operating system, there are many interesting challenges in using 

Android as a platform for mobile medical devices and applications. For example, 

Android cannot be qualified to be used in real-time environments [2], and thus one 

unique challenge is to meet the soft real-time requirement of some of the medical apps 

by making the performance of the apps more efficient and predictable. 

An electroencephalogram (EEG) is a medical test, typically performed in a doctor’s 

office or at a hospital, to detect abnormalities related to electrical activities of the brain. 
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With the electrodes placed along the scalp, the test measures voltage fluctuations 

resulting from ionic current within the neurons of the brain [3]. Normal electrical activity 

in the brain makes a recognizable pattern, and thus one can look for abnormal patterns 

that indicate seizures and other problems such as sleep disorders and changes in behavior 

(see Figure 1).  

 

 
 

Figure 1. EEG showing epileptic seizure  

 

In this paper, we share our experiences of developing a wearable system called 

HifoCap for automatic detection of scalp high-frequency oscillations (HFOs), EEG 

waves with frequencies in a specific range (see Section 2). The HifoCap system consists 

of a wearable device hidden inside a cap, an app running on a mobile device like a 

smartphone, and a cloud storage server. The cap senses cortical signals and transmits 

them to the app. The app analyzes and visualizes the received EEG waves before 

transmitting them to the cloud server for further off-line analyses. The focus of this paper 

is on the development of the HifoCap app targeted for non-dedicated Android devices. 

The app is data-intensive and offers soft real-time performance. It may miss some 

deadlines without incurring in unacceptable performance degradation. We describe the 

technical challenges for developing the app and our solutions to them. The main 

challenge is to assure soft real-time by supporting the required time and space 

performance. Our discussion focuses on performance optimization and avoids non-

technical aspects such as compliance with the U.S. Food and Drug Administration (FDA) 

and other regulatory standards. 

The rest of this paper is structured as follows. In Section 2 below we provide a quick 

overview of the HifoCap system and its components. In Section 3 we summarize the key 

requirements of the HifoCap app. We also identify the challenges of developing soft real-

time apps on non-dedicated Android devices. In Section 4 and 5, we first propose our 

solutions to the challenges and then evaluate the effectiveness of our proposed solutions 

by measuring both the time and space efficiency of our app. In Section 6 we conclude 

this paper with a concluding remark. 

2. The HifoCap System 

An EEG test has been traditionally used for research related to neurophysiology and for 

diagnosing brain disorders such as epilepsy [4]. The standard empirical classification of 

EEG waves includes delta, theta, alpha, beta, and gamma waves, all below a 100 Hz 

threshold, and the common practice does not consider waves above 100 Hz to be useful 

and tends to focus on the beta range of 16 to 31 Hz and ranges below it. However, 

recently waves with frequencies on the upper gamma range and above, referred to as 

high-frequency oscillations (70 to 500 Hz), ripples (80 to less than 250 Hz), and fast 

ripples (250 to 600 Hz), have received a great deal of attention from the research 

community to detect pathological brain activity and to understand cognitive processes as 

well [5] [6].  
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While the amplitude of scalp high-frequency oscillations (HFOs) has been found 

smaller than the amplitude of intracranial HFOs, non-invasive detection of HFOs could 

increase their use as biomarkers for clinical applications and research. However, due to 

their low signal levels in relation to other EEG signal components and their potential 

false positives when using only spectral analysis for detection, HFOs must be detected 

through a combination of time domain analysis, spectral analysis, and visual inspection. 

Additionally, HFOs are not continuously present in EEG recordings but appear as short 

sequences of a few to several high-frequency cycles added over signals in the lower 

frequency ranges. Thus, detecting HFOs is a time-consuming and potentially error-prone 

task that could be substantially improved through signal processing with machine 

learning techniques to remove irrelevant data. 
 

 
 

Figure 2. HifoCap system 

    

We have been developing HifoCap, a wearable system for automatic detection of 

scalp HFOs (see Figure 2). It performs very high dynamic range processing of EEG 

signals in the time-frequency domain or time-scale (wavelet) domain. A HifoCap device 

hidden inside a cap senses cortical signals and processes them with an embedded system. 

The main processing steps include amplification, filtering, and HFO detection. EEG 

waves containing HFOs are transmitted to a smartphone or tablet wirelessly using a 

personal area network protocol such as Bluetooth. An app running on the smartphone 

receives EEG waves for recording, time stamping, logging, plotting, and transmitting 

wirelessly to a cloud storage server. The cloud server stores EEG waves and supports 

multiple types of off-line analyses.  

Developing the HifoCap system is a research and engineering challenge requiring 

interdisciplinary work on wearable hardware-software codesign, health data analyses, 

and human factors and ergonomics. However, we believe that recent advances in digital 

components, mobile/wearable computing, cloud computing, and big data analysis 

present an unprecedented opportunity to realize such a system. The benefits of the 

HifoCap system are immediate and far-reaching, both economically and socially. In 

addition to cost and convenience for the end user, a very important advantage of our 

wearable system design is enabling detection of HFOs while the user is away from 

clinical settings and perhaps just going about his or her usual daily routines. The long-

term impact of a system like HifoCap is enormous, considering the fact that epilepsy 

affects about 50 million people in the world–over three million people in the U.S.–and it 

limits their ability to lead a happy, productive life. The system will enable epilepsy 
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research and treatment by providing a means to analyze brain activity with massive field 

recordings, as opposed to the currently available recordings obtained in a clinical setting 

while the patient is in an absolute motionless position. 

3. Requirements and Challenges 

The platform for the HifoCap app is non-dedicated Android devices such as smartphones 

and tablets with wireless network capabilities such as Bluetooth and Internet access. The 

key requirements for the app include (see Figure 3). 
 

• To configure and control the HifoCap device for sampling EEG signals. 

• To receive EEG signal samples from the HifoCap device and log, time stamp, 

record, plot, and transmit the samples to the HifoCap server. 

• To track daily activities of the user. 
 

 

 
 

Figure 3. Use case diagram 

 

As medical technology is getting more pervasive, there is a need to interface with a 

variety of protocols such as Bluetooth and Wi-Fi for data transfer. All communications 

between the app and other components of the HifoCap system are to be done wirelessly. 

Bluetooth—which can wirelessly connect devices together—is used for sending control 

signals to the device and for receiving EEG samples from the device. Wireless Internet 

technology such as Wi-Fi and a cellular data network is to be used to transmit EEG 

samples to the storage server. 

The HifoCap system is a soft real-time system, though not safety-critical. A soft 

real-time system may miss some deadlines, but eventually, performance will degrade if 

too many deadlines are missed. The live EEG plotting requires EEG samples to be 

streamed from the HifoCap device and then rendered on the display in real-time. Control 

commands from the app to the device must be processed within a deterministic deadline. 

In addition, the app must be able to run continually without being interrupted, for a 

typical recording session lasts 20~30 minutes. The app cannot be suspended, killed, or 

switched to another app. It must be secure from interruptions while running. For multiple 

recordings, the app must be operational for long periods of continuous usage without any 

restart or crashes. The app is data-intensive in that it needs to transmit a large volume of 
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EEG samples and process them in near real-time. It devotes most of its processing time 

to network I/O and manipulation of the data. Each 20~30 minutes recording session 

produces about 2 GB of EEG samples, and at its maximum sampling rate it requires 0.96 

Mbps data transfer rate between the device and the app (see Section 3.1). 

3.1.  Data Model 

A HifoCap device consists of 24 electrodes, small metal discs with thin wires, to record 

the electrical signals of the brain and send them to the HifoCap app. Each signal recorded 

from an electrode is digitized into a 16-bit integer value. The HifoCap device supports a 

wide range of sampling rates from 250 to 2500 samples per second. The class diagram 

in Figure 4 defines three key data entities and their relationships. 

 

 
 

Figure 4. Data model 

 

An EEG recording is a sequence of EEG samples of one EEG time series. It is the 

unit of storing and transmitting EEG samples to the server, containing metadata such as 

patient ID, start time, sampling rate (in samples per second), duration (in seconds), 

resolution (in bytes per channel), and conversion factor (from sample values to 

microvolts). An EEG sample is a set of EEG readings, one per channel, read together at 

a specific time. An EEG reading gives the channel and the electrical signal read at the 

channel. The signal strength is specified in microvolts (µV). A typical recording 

configuration consists of 24 channels and 2500 samples per second. 

3.2.  Challenges 

There are many challenges in developing the HifoCap app on the Android platform. One 

challenge like other mobile app developments today is the diversity of devices and 

platforms [7]. There is a multitude of devices, ranging from watches to smartphones, and 

to tablets, each with different screen sizes, operating systems, and other characteristics 

and capabilities. It is a real challenge to be able to create an app that would run smoothly 

across devices and platforms. However, the most unique and interesting challenge for 

the HifoCap app is to ensure the soft real-time requirement on non-dedicated Android 

devices where uncertainty and unpredictability are the norms, not the exception. 
 

• During execution, the app may face several interruptions like incoming calls, text 

messages, and various notifications.  

• While the app is running, another app may be launched by the user or the Android 

operating system. 

• There may be many background services running concurrently with the app. 

EEG Recording

patient ID

start time

sampling rate (r)

# of cgannels (c)

duration (d)

resolution

conversion factor

EEG Sample

EEG Reading

cgannel

value
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• The app doesn’t even have full control of its own life cycle. It may be killed, 

suspended, or deprioritized by the Android system relative to other apps and 

services.  

• When the available memory is low, the Android garbage collection is initiated 

automatically, potentially slowing down the app. 

• The network signal strength may become weak causing network coverage outage. 
 

All of the above also affect the performance of the app. As a data and network-

intensive app, the HifoCap app has to process a large volume of data, e.g., 2500 samples 

per second at the highest sampling rate, requiring 0.96 Mbps data transfer rate between 

the HifoCap device and the app. It is well-known that the performance can be degraded 

severely under certain conditions such as low battery, bad network coverage, and low 

available memory. Thus, identifying the app’s performance bottlenecks and addressing 

them is critical to the success of the app [8]. Minimizing the garbage collection execution 

time is also important because garbage collection in general results in poor performance 

of the app and the overall slowdown of the system; the app may be suspended during 

garbage collection. The battery consumption is also an important concern, and the 

challenge is to design a well-performing app which runs on a minimum of power 

consumption. As mentioned in the previous section, a typical EEG recording session 

lasts 20~30 minutes and the app should support multiple, continuous sessions. The 

above-mentioned factors also affect the long and continuous operation of the app. In 

particular, the app may be killed, suspended, or deprioritized relative to other apps and 

services. For example, the smartphone or tablet can go to sleep by turning off the screen 

or a user may accidently launch another app causing the HifoCap app to be paused, 

stopped or even destroyed. It is not straightforward to design an app to run and operate 

efficiently for a long period of time. As the HifoCap app needs to be continually running, 

there is no room for memory leaks or anomalies that may lead to a crash. One non-

technical challenge is that there is no HifoCap device available. It is to be developed by 

a separate, hardware team.  

4. Design and Implementation 

In order to address the challenges mentioned in the previous section and to meet the 

performance requirement as well, we came up with several different solutions including: 

 

• Reduce potential interruptions.  

• Minimize garbage collection time. 

• Minimize network and I/O time.  

• Visualize samples selectively. 

• Design a light-weight UI. 

• Create a HifoCap device emulator. 

 

As described previously, an app may face different interruptions like incoming calls, 

text messages, and notifications, and it can be suspended or even killed by the Android 

operating system. We can reduce these potential interruptions and disruptions by 

temporarily disabling other apps, background services, and any hardware features not 

required by the HifoCap app before starting EEG recording sessions and enabling or 

restoring them when the recording sessions end. It may be even suggested to remove 
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non-relevant apps that could take up a significant processing time. The goal is to ensure 

a sort of singular control of the device by the app, thus approximating a single-tasking 

environment, so that it can be continually active. Ideally, the app shouldn’t be forced to 

terminate a recording session due to unrelated external interruptions. 

The Android garbage collection is unpredictable in that it can be initiated at any time 

during the execution of an app to automatically manage the memory used by the app. In 

general, garbage collection has a negative impact on the response time and the stability 

of an app, and it can be optimized in such a way that its impact on the app’s response 

time or CPU usage is reduced and minimized. There are many performance tips for 

minimizing garbage collection execution time, e.g., avoiding creation and destruction of 

unnecessary objects and managing some of the required memory by using object pooling 

and sharing to support a large number of little objects efficiently [8] [9] [12]. The use of 

managed object pools will definitely reduce the defragmentation of memory and the 

pileup of unreferenced objects that force garbage collection. 

The HifoCap app is network and I/O-intensive in that a large volume of data must 

be received at 0.96 Mbps and about 2GB of EEG samples must be transmitted to the 

server periodically, e.g., at the end of each recording session. Network and I/O operations 

are significantly slow and expensive compared to computation. The standard technique 

for improving I/O performance is to use buffering. We use buffers to accumulate and 

temporarily store EEG samples before transmitting them to the network or I/O system 

(in the case of writes) or before providing them to the consumers (in the case of reads). 

By buffering the EEG samples, we can reduce the number of I/O operations and improve 

the overall performance significantly. 

The HifoCap app is a data-intensive, soft real-time app in that it has to process a 

large volume of EEG samples in near real-time, e.g., 2500 samples per second at the 

highest sampling rate with each sample consisting of 24 EEG readings, one for each 

channel. We doubt that most Android devices will be able to decode and visualize EEG 

samples at that rate. In fact, the screen refresh rate of most Android devices is 60 Hz; the Android 

system refreshes the screen at most 60 times per second. Our approach is to visualize EEG 

samples selectively, to select 1 out of every n samples. This reduces the execution time 

needed for visualizing samples as well as decoding them, as samples can be dumped to 

a file in the raw data format for later uploading to the server.  

The design of UI can be a determining factor in meeting the soft real-time 

requirement. The app visualizes EEG samples by plotting them lively to allow for live 

monitoring of real-time EEG samples. It might be time and memory-intensive to update 

the displayed graphs in real-time as EEG samples are received. The standard UI design 

pattern for Android is to use multiple activities and multiple views. An activity is a unit 

of Android programs responsible for a single screen. If an app consists of two screens, 

the standard approach is to create two activities, each launched separately and having a 

separate life cycle. However, this approach incurs significant heap and context switching 

overhead because each activity is a separate task. For more efficient and responsive UI, 

we can create a light-weight UI consisting of a single activity but multiple views. The 

performance of a UI is also affected by its layout, and a common rule of thumb when 

choosing layouts is to select a combination that results in the smallest number of nested 

layout views. The performance is generally better if one flattens the layout or making it 

shallow and wide, rather than narrow and deep. 

We created an app to emulate the HifoCap device to be constructed by the hardware 

team. The emulator app running on another Android device mimics the HifoCap device 

by generating EEG samples and sending the generated samples to the HifoCap app 
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through a Bluetooth connection. It also accepts and responds to control commands from 

the HifoCap app to configure itself and manage recording sessions. The emulator app 

lets us test our code as if interacting with a real device. It is a key tool to test various 

conditions and situations that are difficult or impossible to duplicate with a real device. 

It also allows us to perform various experiments to meet the app performance and soft 

real-time requirements. 

4.1.  Design 

In addition to the requirements and the challenges discussed earlier, we also consider 

extensibility and flexibility to be important in the design of the HifoCap app. We need 

to provide for change while minimizing impact to existing components because of 

several reasons, including: 
 

• To integrate easily with other components of the HifoCap system, such as the 

HifoCap device and the HifoCap cloud server, that are developed by different 

teams. The interfaces and communication protocols need to be worked out and 

are likely to evolve or be refined as the development progresses.  

• To facilitate a variety of experiments and feasibility studies. To address standard 

requirements and constraints from the domain of mobile health devices and apps, 

we plan to perform various types of experiments and feasibility studies especially 

on the performance and stability of the app. For example, there will be feasibility 

studies for additional features such as real-time analysis of EEG samples. 

• To support an iterative development. We will develop the app incrementally in 

small steps to receive feedback early and frequently from users and reviewers 

with expertise in biomedical engineering and healthcare delivery. 

 

 
 

Figure 5. Class diagram 

 

Figure 5 shows main classes of the HifoCap app along with their relationships such 

as associations and inheritance relationships. As shown, our design uses a layered 

architecture consisting of three layers: the user interface layer, the functional core layer, 

and the storage and network layer. The UI layer interacts with the user and provides three 

different ways for visualizing sampled EEG signals (see Section 4.2 for sample 

screenshots). It obtains EEG samples from the functional core layer through the 

DisplayListener interface. The functional core layer is responsible for managing the EEG 

sampling and recording sessions by configuring the HifoCap device and starting and 

stopping the sessions. The key class is the HifoCapService class which sends appropriate 
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messages to and receives incoming messages from the device through the storage and 

network layer. It is an Android service, an application component that doesn’t have a 

user interface and performs long-running operations typically in the background. The 

storage and network layer is responsible for communicating with the HifoCap device, 

storing received EEG samples temporarily in a local storage, and uploading them to the 

cloud storage server periodically. The BTNetworkAdapter class from the network layer 

is fully responsible for networking and communicating with the device. It encapsulates 

network details such as protocols, message formats, and endianness from the rest of the 

system. The class consists of two active classes, each with its own thread, to send and 

receive messages asynchronously. Upon receiving EEG samples, the class passes them 

without decoding to the FileManager class so as to store and upload them to the server. 

If a received sample needs to be visualized or analyzed, it is passed to the HifoCapService 

class in the functional core layer via the MessageListener interface. 

It would be instructive to see how our design meets the extensibility requirement. 

We assign different responsibilities to different layers and modules and separate them 

cleanly. We apply the principles of the strictly layered architecture, especially no 

dependency from a lower layer to an upper layer. To define module boundaries cleanly 

and remove unnecessary dependencies among modules, we use Java interfaces, the 

Observer pattern [10], and other well-known design principles such as the dependency 

inversion principle [11] demanding to depend upon abstraction, not on concretions. 

Lower-layer modules, for example, communicate with upper-layer modules only through 

well-defined interfaces such as DisplayListener and MessageListener. It is also the case 

for reporting errors and other status information to the UI layer. We also use the Strategy 

pattern [10] for extension in two different places, displaying EEG samples (EEGDisplay) 

and uploading EEG samples to the cloud server (FileUpLoader). Although the class 

diagram doesn’t show the details, the performance was an important driving force for 

our design to meet the soft real-time requirement. The UI consists of a single activity 

class, HifoCapActivity, in pursuit of a lightweight UI. We use multithreading making 

several classes such as HifoCapService, FileManager, MessageWriter, and 

MessageReader active in that they have their own threads of control, and this improves 

both the performance and the responsiveness of the app (see Section 5). 

4.2. Implementation 

Figure 6 shows sample screenshots of the HifoCap app. As shown in the first screenshot, 

the steps for connecting the HifoCap device are the same as those for other Bluetooth 

devices. Once the device is connected, one can configure it by setting options such as 

channels and sampling frequency and then tapping the Configure button. Once 

configured, the device can be instructed to sample and transmit EEG signals by tapping 

the Start button. As shown, samples can be displayed in a few different ways, and the 

display rate can be changed dynamically. 

The implementation of the HifoCap app consists of 2569 lines of Java source code, 

not including various XML resources such as layouts, menus, values, and styles. It 

consists of 9 interfaces, 72 classes (including 36 anonymous classes), 2 enums, and 386 

methods; the named classes include 17 nested classes. The implementation is mostly a 

direct translation of its design. However, one implementation-level refinement was to 

get rid of record-like model classes such as EEGRecording, EEGSample, and 

EEGReading from the functional core layer. The use of these classes requires, for each 

decoded EEG sample, to create one instance of the EEGSample class and up to 24 
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instances of the EEGReading class. It would make our app memory-hungry by creating 

millions of little objects and forcing a garbage collection every few seconds (see Section 

5). It would have a huge negative impact on the performance and stability of the app. 

Allocating memory is always more expensive than not allocating. We instead used short 

arrays to store decoded samples; each EEG reading is a 16-bit integer.  
 

 

Figure 6. Sample screenshots 

 

In the detailed design and implementation, we used well-known design principles 

such as SOLID principles [11] and design patterns [10] judiciously. For example, we 

introduced interfaces to clearly define module boundaries and be explicit about the 

required/provided interfaces of modules, and all interfaces have only a few methods. The 

guiding principle was the interface segregation principle stating that “many client-

specific interfaces are better than one general-purpose interface” [11]. However, we 

limited the total number of interfaces by carefully selecting the places to introduce 

interfaces because they might have a negative impact on the performance, e.g., the 

overhead of dynamic method dispatch in the presence of multiple concrete classes. 

Uploading EEG samples to the cloud server is an important functionality, however, there 

was a concern in its implementation. The server was being developed and configured by 

another team, and its details including the platform and protocols were not known. We 

used the Strategy design pattern [10] by defining an interface FileUploader declaring an 

upload(FileInfo) method. This method is called by the FileManager class when the EEG 

samples, temporarily stored in a local file, meet the uploading criteria, e.g., file size. With 

this framework in place, we were able to test our design and implementation by creating 

an example concrete strategy, DropBoxUploader, to upload EEG samples to Dropbox. 

Throughout our implementation, we also paid special attention to the performance and 

efficiency of our app by using several profiling tools (see Section 5). As discussed before, 

we wrote a HifoCap emulator, an Android app consisting of 708 lines of Java source 

code. It was invaluable not only for testing our app but also for performing various 

performance-related experiments. One side benefit was capturing and documenting 

explicitly all the assumptions that we made about the HifoCap device including 

communication protocols in a single place, the DeviceProfile class, which is shared 

between the app and the emulator. The emulator also confirmed quickly that the 

Bluetooth Low Energy protocol doesn’t provide an adequate data transfer rate for us; we 

initially considered its use for its considerably reduced power consumption especially on 

the HifoCap device. 
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5. Evaluation 

We measured the time and space efficiency of our app to evaluate quantitatively the 

effectiveness of our approach. It wasn’t straightforward to measure the execution time in 

the presence of multithreading and a multicore processor, and thus we measured different 

types of execution times such as displaying, processing, and I/O separately. The 

smartphone for the HifoCap app has a 1.5GHz octa-core processor with 2GB RAM and 

16GB internal storage and has Android 5.1. The smartphone for the emulator runs 

Android 6.0.1 and has a 2.15GHz/1.6GHz quad-core processor with 4GB RAM and 

32GB internal storage. Below we first show some of the evaluations that we performed 

for the execution time efficiency.  

To compare the impact of buffering in transmitting EEG samples over Bluetooth, 

we measured the execution time needed to receive and process 10,000 EEG signal 

samples at different sampling rates and averaged 1,000 measurements. The processing 

time doesn’t include the display time used by the UI thread (see below). We also 

measured the numbers of read operations and the numbers of bytes read per read 

operation, which might affect the execution time. The measurements are summarized in 

Table 1. For the buffered I/O, we used the default buffer size of the Android OS. 
 

Table 1. Unbuffered and buffered I/O, where SR: sampling rate (samples/sec); TT: total time (msec), 

RT: I/O time (msec), NR: # of read calls, NB: # of bytes read per read call. 

SR 
Unbuffered Buffered 

TT RT NR NB TT RT NR NB 

250 53105 53097 7010 72 48770 48755 713 674 

500 30121 29988 5381 96 27643 27502 714 680 

1000 17522 17480 3552 140 15710 15669 713 688 

1500 12804 12791 2342 172 10843 10829 711 698 

2000 10127 10105 1493 207 7843 7822 689 714 

2500 8650 8636 1215 245 5812 5797 564 868 

Avg. 22055 22016 3499 155 19437 19396 684 720 

 

An immediate observation is that most of the execution times (TT; 99.73%~99.97%) 

are spent on reading incoming messages (RT) for both the unbuffered and the buffered 

I/O, meaning that the app is I/O intensive. The average number of bytes read per I/O 

operation (NB) is 155 for the unbuffered and 720 for the buffered. As a result, there are 

significant differences in the numbers of read operations (NR) needed between the two, 

on average 3499 vs. 684 calls, as depicted in Figure 7. These differences translate to the 

overall and I/O performance improvements (TT and RT; 8%~33%) of the buffered I/O 

as depicted in Figure 8. However, there are two interesting points to note. First, as shown 

in the graph, the overall performance improvements are the same as those of I/O 

improvements. Second, even if there are significant differences in the numbers of read 

operations at lower sampling rates, 250-1000, the performance gains are relatively small 

compared to those of higher sampling rates (1500-2500). The gains in the numbers of 

read operations might be compensated by the blocked I/O operations waiting for the 

buffer to be filled up. Another finding is that if the emulator doesn’t use buffering, the 

result is similar to the unbuffered case, therefore it’s essential for the HifoCap device to 

use buffered I/O to transmit EEG signal samples. 

We measured the execution time required by the UI thread to display EEG samples. 

For this, we measured the time needed to display 10,000 EEG signal samples at the 

highest sampling rate (2500) for all 24 channels and averaged them over 1000 

measurements (see Table 2).  
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Figure 7. Number of read operations Figure 8. Performance gains of buffered I/O 

 

Table 2. Display time 

Type 
Execution Time (msec) 

Display (D) Proc (P) % (D/P) 

Table 232 5909 4 

Bar graph 2243 5843 28 

Line graph 4028 5917 41 

 

As expected, the table display that displays samples in a table has the least overhead 

while the line graph display has the most overhead at 41%. This indicates that selective 

display is more effective for graph displays. Indeed, for the graph displays the 

performance gains are incomparable. We believe that the main contributing factors to 

these improvements are dynamic memory allocation and garbage collection (see below). 

Prior to this measurement we also expected selective decodingdecoding only those 

samples that need to be displayedto have a similar performance gain. However, it 

wasn’t the case because, as shown earlier, more than 99% of processing time was used 

by I/O to receive EEG samples and less than 1% for decoding them. The app is I/O 

intensive, not computation intensive.  

We measured the effect of getting rid of model classes such as EEGSample and 

EEGReading in our implementation. These are record-like classes with no significant 

behavior. Our motivation was to reduce the garbage collection execution time; they 

would produce a huge number of little objects rapidly because each EEG sample needs 

one instance of EEGSample and 24 instances of EEGReading. We measured the 

execution time required for processing 10,000 EEG signal samples at 2500 samples per 

second for all 24 channels and averaged 1000 measurements. The results are shown in 

Table 3. The first column is the decoding rate, the number of samples decoded per second. 

The improvements are consistent at average 10.5%, which is significant considering that 

only two classes are removed.  
 

Table 3. Object vs. array 

Decoding 

rate 

Execution time (msec) 

Object short [] Gain (%) 

0.25 7330 6429 12 

0.5 7282 6505 11 

1 7277 6677 8 

2 7266 6448 11 

4 7327 6524 11 

all 7297 6542 10 
 

Table 4. Dynamic memory allocation 

Memory Allocation (%)  

I/O 

Thread 

UI 

Thread 

GC 

Interval 

96% 4% 3m11s 
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We also examined the space efficiency of our app. Memory allocation is an 

important factor that affects the performance of an app on Android because it may trigger 

garbage collection. We used profiling tools to study the memory allocation pattern of our 

app. We observed the memory allocation of our app while sampling EEG signals at 2500 

samples per second for all 24 channels and displaying 1 sample per second.  We learned 

that two threads allocate most memory: the I/O thread responsible for receiving and 

decoding incoming messages from the emulator and the UI thread (see Table 4).  

 

  

Figure 9. Memory allocation when displaying one 

sample per second (top) and every sample (bottom) 

Figure 10. Memory allocation with managed 

object pools 

 

An interesting finding is that the memory consumption pattern changes radically 

depending on the number of samples displayed per second (see Figure 9). When one 

sample is displayed per second, memory consumption increases in a linear fashion with 

an average garbage collection interval of 3 minutes and 11 seconds. However, when 

every sample is displayed, it becomes very dynamic and lively. It not only forces garbage 

collection at every few seconds but also make the UI thread consume more memory (UI: 

96% and I/O: 4%). The app becomes display-intensive. This confirms that it was indeed 

a good idea to visualize samples selectively. 

Recall that one of our solutions to the challenges is to minimize garbage collection 

execution time. As described above we learned that the I/O thread (BTNetworkAdapter) 

is responsible for most of the dynamically allocated memory. It was no surprise because 

it creates large numbers of objects: (a) byte arrays to dump raw samples asynchronously 

to a local file and (b) short arrays for decoding and displaying samples selectively. We 

reduced the number of object creations and destructions by managing the required 

memory for these two cases; we used object pooling and sharing to support a large 

number of little objects efficiently by applying the Flyweight design pattern [1]. As 

depicted in Figure 10, sharing objects through the use of managed object pools produced 

an astonishing result. The dynamic memory allocation is almost unnoticeable when one 

sample is displayed per second (top graph), requiring no garbage collection over a long 

period of time; the line is flat and, though not shown, it also changed the memory 

allocation pattern completely to 0% for I/O and 98% for UI. It also reduced the number 

of garbage collections to 60% when every sample is displayed (bottom). After this 

optimization, the app became display-intensive from a memory usage point of view.  

We also applied a similar technique to the UI thread to optimize its dynamic memory 

use. We avoided dynamic creation of display-related objects and, if possible, reused them. 

For this, we often had to introduce subclasses of the UI framework classes to make their 

instances reusable by providing mutation methods. However, there was a serious 
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obstacle in the use of managed object pools for UI. The Android standard and open-

source UI classes were responsible for most of the memory allocation (95% in size; see 

Figure 11), and their methods were called indirectly by our code and their internal 

structures were not accessible. Unless these UI framework classes are rewritten, which 

would be a daunting task, the use of object pools will have a limited impact on the 

memory efficiency. 

 

 

Figure 11. Memory allocation by UI (Thread1) 

 

The primary use of our app is to record and visualize EEG signals in a near real-time 

fashion. To test this, we measured the time needed to transmit EEG samples from the 

emulator to the app’s device and then to display them on the screen. We called it a delay 

time. It includes the transmission time, processing time, and display time, and in a sense 

is a response time that a user perceives. For this measurement, we generated EEG 

samples at the maximum sampling rate (2500) for all 24 channels and displayed all 

samples without dropping any. On the emulator, we time-stamped every 10,000th sample, 

that we called a tracer bullet sample, just before transmission. On the app, upon 

displaying a received sample we checked if it was a tracer bullet. We time-stamped each 

tracer bullet sample right after displaying it and calculated its delay time. The delay times 

of all measured tracer bullet samples were in the range of 32~233 milliseconds with an 

average delay of 92 milliseconds. This is good and acceptable for our app. In fact, we 

can see it visually using the tabular display on the app; the emulator and the app display 

EEG samples almost simultaneously. We were also able to run our app for many hours 

without any problems. However, we noticed that the smartphone running the emulator 

gets somewhat hot after a few hours, perhaps because of a high data transfer rate. It would 

be a concern to the HifoCap device if it is indeed caused by a high data transfer rate.  

6. Conclusion 

The hardware capability and available sensors on mobile devices such as smartphones 

and tablets enable use cases that were previously unimaginable, e.g., various types of 

wearable mobile health devices and apps. We have been developing one such an app on 

the Android platform, the HifoCap app to receive electroencephalogram (EEG) signal 

samples from a wearable device hidden in a cap, to visualize the received samples, and 

to transmit them to a cloud storage server for off-line analyses. We identified many 

interesting challenges in developing a data-intensive, soft real-time app on non-dedicated 

Android devices such as smartphones and tablets. We grouped these challenges by their 

causes, including interruptions (such as incoming calls, text messages, and notifications), 



15 

 

no control on an app’s lifecycle, unpredictable garbage collection, high network 

bandwidth utilization, long and continuous running, and network coverage outage. We 

proposed possible solutions to some of these challenges—e.g., reducing potential 

interruptions, minimizing the garbage collection execution time, minimizing the network 

and I/O time, selective visualization, and light-weight UI—and implemented them in our 

app. We measured the time and space efficiency of our app and evaluated the 

effectiveness of our proposed solutions quantitatively. All our solutions were effective 

and obtained performance gains in the range of 8%-257%, and object pooling nearly 

eliminated the need for garbage collection in typical use of the app. The app was able to 

receive and visualize EEG samples in near real-time; the average delay time between 

EEG sampling on the device and visualization on the app is 92 milliseconds. We believe 

that our proposed solutions are applicable to other soft real-time apps targeted for non-

dedicated Android devices. However, one remark is that one has to pay special attention 

to performance throughout the development, especially during coding. It isn’t 

uncommon to learn that one simple, innocent line, e.g., using ByteBuffer.wrap to decode 

samples, costs one dearly. 
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