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Abstract—JML is a formal behavioral interface specification 

language for Java to document Java program modules such as 

classes and interfaces. When composing JML specifications, 

one frequently writes assertions involving a collection of 

values. In this paper we propose to use Java 8 streams for 

writing more concise and cleaner assertions on a collection. The 

use of streams in JML can be minimal and non-invasive in the 

conventional style of writing assertions. It can also be holistic 

to write all assertions in the abstract state defined by streams. 

We perform a small case study to illustrate our approach and 

show its effectiveness as well. We then summarize our findings 

and the lessons that we learned from the case study. 

 
Keywords—assertions, formal specifications, lambda notation, 

stream, Java, JML. 

I. INTRODUCTION 

 Java 8 supports functional-style programming by introducing 

lambda expressions and a stream application program interface 

(API) [11]. A lambda expression is a block of code with 

parameters that can be passed around so that it can be executed 

later. A stream is an immutable sequence of elements, providing 

a variety of so-called higher-order operations such as filter, 

map, and reduce that take lambda expressions as arguments. 

The underlying idea is to convert a collection to a stream, 

process the elements potentially in parallel, and then gather the 

results into a collection. Elements are processed by pipelining 

stream operations. One key benefit of using streams is the 

internalization of iterations. The code is completely unaware of 

the iteration logic in the background. 

 The Java Modeling Language (JML) is a behavioral interface 

specification language for Java to formally specify the behavior 

of Java classes and interfaces [7] [1]. In JML, the behavior of a 

Java class is specified by writing class invariants and pre and 

post-conditions for the methods exported by the class. In 

designing an object-oriented program, a class relationship 

called an association plays an important role. It defines the 

internal structure of an object. An object is associated with other 

objects and collaborate with them to perform a task collectively 

by sending messages. In writing JML specifications, thus, it is 

crucial to manipulate a collection of objects effectively. In JML, 

one can write assertions on a collection of objects using 

quantified expressions like \forall and \exists. The JML 

quantifiers, however, are similar to external iterations in that 

one has to use quantified variables to iterate over a collection of 

objects. The current JML doesn't provide a notation for internal 

iteration over collections. 

 In this paper we propose to use the Java Stream API in JML. 

The aim is to write more concise and cleaner assertions at a 

higher level of abstraction. We explore several different ways 

of using streams in writing JML specifications. However, the 

underlying idea is the same and is to convert a collection to a 

stream and write assertions using various stream operations. 

The conversion can be done either explicitly or implicitly by 

defining an abstraction function. An abstraction function 

specifies a mapping from concrete program states to abstract 

specification states. The style of writing assertions can be 

minimalistic and non-invasive. One can mix stream assertions 

with those written in the conventional style. The assertion style 

can also be holistic in that one writes all assertions in terms of 

abstract streams, not concrete collections.  For this, one uses 

model fields, specification-only fields introduced for writing 

JML specifications functions [4]. We explain our approach by 

applying it to a Battleship game application, a well-known 

guessing game for two players (see Section III). We show a 

series of example JML assertions to illustrate many interesting 

aspects of using streams in JML. We also point out interesting 

technical questions and future research directions to better 

support the use of streams in JML.  

 In Section II below we provide a quick overview of JML and 

Java 8 Stream API. In Section III we describe the Battleship 

game briefly along with its design expressed in a class diagram. 

In Section IV we illustrate our approach by writing many JML 

assertions involving the many ends of 1-to-many associations 

in the Battleship application. In Section V we describe some of 

the lessons that we learned along with possible improvements 

or extensions to JML to help the use of streams.  In Section VI 

we provide a concluding remark. 

II. BACKGROUND 

A.  JML 

 The Java Modeling Languge (JML) is a behavioral interface 

specification language for Java to formally specify the behavior 

of Java classes and interfaces [7]. JML provides a wide range 

of tools from static analysis to runtime checking and interactive 
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verification [1]. In JML, the behavior of a Java class is specified 

by writing class invariants and pre and postconditions for the 

methods exported by the class. Listing 1 shows an example 

JML specification concerned with a game played by two 

players. As shown, JML specifications are written as special 

comments in Java source code, either after //@ or between /*@ 

and @*/. The keyword spec_public indicates that private fields 

players and active are treated as public for a specification 

purpose. They can be used in publicly-visible specifications 

such as public class invariants. One unique feature of JML 

compared with other specification languages like Z and VDM-

SL is that JML assertions are written in the Java expression 

syntax with a few JML-specific extensions like universal and 

existential quantifiers. The first invariant constrains the length 

of the players array to 2 and the value of the active field to be a 

legal index of players. The next two invariants assert that the 

elements of players are distinct and not a null value. A JML-

specific operator ==> denotes logical implication. A method 

specification precedes the declaration of the specified method. 

The requires clause specifies the precondition, the assignable 

clause specifies the frame condition, and the ensures clause 

specifies the postcondition. The keyword \old in a postcondition 

denotes the pre-state value of an expression. It is most 

commonly used in the specification of a mutation method such 

as the changeTurn() method that changes the state of an object. 

  

Listing 1. Example JML specification 
 

public class Game { 

  private /*@ spec_public @*/ Player[] players; 

  private /*@ spec_public @*/ int active; 

     

  /*@ public invariant players.length == 2 && 

     @   0 <= active && active < players.length; @*/ 

     

 /*@ public invariant (\forall int i; 0 <= i && i < players.length;  

    @   players[i] != null);  @*/ 

     

/*@ public invariant (\forall int i, j; 0 <= i && i < players.length 

   @    && 0 <= j && j < players.length;  

     @    i != j ==> players[i] != player[j]);  @*/    

     

  /*@ requires true; 

     @ assignable active; 

     @ ensures active != \old(active); 

     @ ensures_redundantly 

     @    active == \old(active + 1) % players.length); @*/ 

  public void changeTurn() { ... } 

} 

 

B.  Java 8 Streams 

 Java 8 enables functional-style programming by providing 

lambda expressions and a stream API [11]. A lambda 

expression is a block of code with parameters that can be passed 

around so that it can be executed later. A stream is an immutable 

sequence of elements, providing a variety of so-called higher-

order operations that take lambda expressions as arguments. 

The stream API allows one to work with a sequence of elements 

possibly in parallel without worrying about how the elements 

are stored or accessed. To perform a computation, stream 

operations are composed into a stream pipeline. A stream 

pipeline consists of a source, zero or more intermediate 

operations and a terminal operation. Streams are most often 

lazy in that computation on the source data is only performed 

when the terminal operation is initiated, and source elements 

are consumed only as needed. A few key features of Java 

Stream API include: 

 

• Functional-style operations: A variety of higher-order 

operations are provided, including filter, map, and 

reduce (also called fold in functional languages). 

• Lazy construction: A stream is constructed lazily in that 

its elements are computed when a user demands it. This 

is contrary to a collection whose elements are computed 

before they become parts of the collection. A collection 

is constructed eagerly.  

• Concurrency: Many parallel operations are provided to 

process the elements contained in a stream, while 

completely abstracting out the low level multithreading 

logic. 

• Pipeline: The API is based on the idea of converting a 

collection to a stream, processing the elements possibly 

in parallel, and then gathering the results into a 

collection. The elements are processed by pipelining 

stream operations, zero or more so-called intermediate 

operations like map followed by a termination operation 

like reduce [11]. 

 

One key benefit of using streams is the internalization of 

iterations, called internal iterations. A conventional way to 

iterate through an array or collection is to use for loops or 

iterators, as shown below. 

 

for (int i; i < players.length; i++) { 

 players[i].setFleet(defaultFleet()); 

} 

 

This iteration is called an external iteration, and the iteration 

is clearly visible in the code. The Stream API provides methods 

like forEach to internalize iterations (see below), and the code 

is completely unaware of the iteration logic in the background.  

 

Stream.of(players).forEach(p -> p.setFleet(defaultFleet()) 

 

The static method Stream.of creates a new stream from an 

array, and the forEach operation performs a specified task on 

each element. There are many operations provided by the 

Stream API. Table 1 shows several immutable operations that 

are most useful in writing JML assertions.  

 

Table 1. Stream API 
 

Operation Description 

allMatch(pred) All elements satisfy pred? 

anyMatch(pred) Any element satisfy pred? 

filter(pred) Select all elements satisfying pred 
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map(mapper) Apply mapper to each element 

reduce(ident,accum) Combine (fold) all elements 

distinct() Select all distinct elements 

findAny() Pick an arbitrary element 

collect(collector) Convert to a collection 

 

III. BATTLESHIP GAME 

 In the next section we will specify in JML a Java program 

that allows a user to play Battleship games; we wrote both a 

Java application and an Android app 

[2]. Battleship is a very well-known 

guessing game for two players, and its 

purpose is to sink all the ships of the 

opponent. The game is played on 

grids, usually 10×10, of squares. Each 

player has a fleet of ships, and each 

ship occupies a number of 

consecutive squares on the grid, 

arranged either horizontally or 

vertically. Once the ships are secretly 

positioned on the grids of the players, 

the game proceeds in a series of 

rounds. In each round, each player 

takes a turn to make a shot to a square 

in the opponent's grid. A shot is either 

a ‘hit’ on a ship or a ‘miss’. When all 

the squares of a ship have been hit, the ship sinks. If all of a 

player's ships have been sunk, the game is over and the 

opponent wins. 

 We will write JML specifications of the classes found in the 

business logic layer. These classes are independent of a 

particular UI framework such as Java Swing and Android. 

Figure 1 describes the main business logic classes of the 

program and their relationships. A game consists of two 

players, each with a board and a fleet of ships. The ships of a 

player are to be placed on the player's board by the player and 

then to be hit and sunk by the opponent player. Our JML 

specifications will be focused on the 1-to-many associations. 

  

 
 

Figure 1. Battleship class diagram 

IV. USING STREAMS IN JML 

 In this section we will suggest several different ways for 

writing better JML specifications using streams. As shown in 

the class diagram in the previous section, there are four 1-to-

many associations in the Battleship application. The many ends 

of these associations will be represented as either collections or 

arrays. We will write JML assertions manipulating the many 

ends of these associations using streams. 

A. Writing Assertion 

 The simplest way of using streams in JML is to convert an 

array or collection to a stream inside an assertion and write the 

assertion in terms of the stream. As examples, consider the 

following two invariants from Listing 1 in Section II.A. 

 
I1: (\forall int i; 0 <= i && i < players.length; players[i] != null);    

I2: (\forall int i, j; 0 <= i && i < players.length;  

 0 <= j && j < players.length; 

 i != j ==> players[i] != player[j]); 

 

 The first invariant states that the players array shouldn’t 

contain a null value, and the second states that there is no 

duplicate player contained in the array. Both invariants use the 

JML universal quantifier, and thus they are in a sense external 

iterations. We can internalize the iterations or simplify the 

assertions using stream operations as follows. 

 
I1: Stream.of(players).matchAll(p -> p != null); 

I2: Stream.of(players).distinct().count() == players.length; 

 

 The Stream.of static method creates a stream from an array. 

The matchAll method tests if each element of a stream satisfies 

the specified condition written in lambda notation. The second 

invariant (I2) asserts that the number of distinct elements of the 

stream is the same as the length of the players array. The 

distinct method creates a new stream by collecting all distinct 

elements of a stream. The use of stream methods like matchAll 

produces assertions that are concise and easy to read and 

understand. This is due to the internalization of iterations.  The 

assertions are cleaner, as there is no need to introduce quantified 

variables and manipulate them to access the elements explicitly. 

The invariant I2 demonstrates that assertions can be written at 

a higher abstraction level with stream operations. It constrains 

the size of a stream instead of comparing each pair of the 

elements. An equivalent assertion written with players would 

be: new HashSet<Player>(players).size() == players.length. 

 This simple approach works well if stream operations are 

used sparsely in assertions. As shown in I2, stream expressions 

can also be mixed with other expressions like players.length. 

However, one weakness of this simple approach is duplications 

of conversion expressions like Stream.of(players) because of 

explicit conversions from arrays and collections to streams. 

Duplicates are bad in code and specifications as well. Another 

weakness is that a single assertion is written at two different 

levels of abstraction. A stream is an abstraction of an array or a 

collection. Thus, a stream expression is in a sense an abstract 

assertion written in terms of an abstract state. The problem is 

that abstract assertions are mingled with concrete assertions 

written in terms of concrete representations like arrays and 

collections. Such assertions are in general hard to read and 

understand because of constant shifts of abstraction levels.  

Game
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B. Using Model Variables 

 A more holistic approach would be to write all JML 

assertions in terms of streams rather than underlying concrete 

representations (arrays or collections). For this we use JML 

model fields, specification-only fields introduced for writing 

JML specifications [4]. The use of model fields also makes the 

conversion from collections to streams occur implicitly. The 

key to this approach is to: 

 

• Declare model fields of stream types 

• Define abstraction functions for model fields 

• Write abstract assertions by referring to model fields  

 

 As an example, let’s rewrite the specification of the Game 

class. First, we define model fields. 

 
//@ public model Stream<Player> specPlayers; 

//@ public model activePlayer; 

 

 Note that we also abstract the notion of active player from its 

concrete representation, the index of the active player, to the 

player herself. We then define abstraction functions for model 

fields by mapping concrete values such as arrays and 

collections to abstract values of streams. The abstraction 

functions allow one to evaluate abstract assertions written with 

model fields in concrete program states [4]. JML provides 

represents clauses to define abstraction functions. 

 
private Player[] players; //@ in specPlayers; 

private int active; //@ in activePlayer; 

//@ private represents specPlayers <- Stream.of(players); 

//@ private represents activePlayer <- players[active]; 

 

 As shown above, the abstraction functions for both model 

fields are private and specified straightforwardly. The in clause 

following a field like players adds the field to a data group. 

A data group is a set of locations and is used in JML's frame 

axioms (assignable clauses) to name sets of locations in a way 

that does not expose representation details [8] (see below for an 

example). Each model fields define a new data group of the 

same name.  

 Now we can write JML assertions such as class invariants 

and method pre and postconditions by referring to only model 

fields. For example, we can rewrite all the invariants of the 

Game class as follows. 
 

/*@ public invariant specPlayers.count() == 2 && 

   @    specPlayers.distinct().count() == 2 && 

 @    specPlayers.allMatch(p -> p != null) ; @*/ 

     

//@ public invariant specPlayers.anyMatch(p -> p == activePlayer); 

 

 As expected, there is no explicit conversion from arrays to 

streams, and all assertions concerned with players are at the 

same abstraction level. They are all written in terms of 

specPlayers. In the public scope, game players are viewed as a 

stream of players, not an array. The assertions are shorter and 

more readable. We can also rewrite the specification of the 

changeTurn method. As hinted earlier, the assignable clause 

also uses a model fieldto be more precise, the data group of 

the model fieldnot the concrete representation.  

    
/*@ assignable activePlayer; 

   @ ensures activePlayer != \old(activePlayer); 

   @ ensures_redundantly activePlayer ==  

   @   specPlayers.filter(p -> p != activePlayer).findAny().get(); @*/ 

public void changeTurn() { … } 

 

 There is another important benefit of using model fields. 

Recall from the model field declarations that concrete 

representations such as players and active remain private, and 

represents clauses are also private. Therefore, they may be 

changed without affecting public assertions and any assertions 

written in terms of public model fields such as specPlayers and 

activePlayer. It is also possible to keep all previous assertions 

as private for the implementer of the Game class. 

C. Streams to Collections 

 The Stream API defines a variety of higher-order operations 

such as allMatch, anyMatch, filter, map, and reduce. These 

operations provide a convenient way to iterate through the 

elements of a stream. When writing JML assertions, however, 

there are cases in which it would be preferable to manipulate 

the elements as a collection by applying collection operations. 

As an example, consider the tail() method of the Ship class. A 

ship occupies a sequence of consecutive places in a board, and 

the method returns the last place of the sequence. 

 
/*@ requires specPlaces.count() > 0; 

 @ ensures \result == specPlaces.skip(specPlaces.count()-1) 

 @    .findFirst().get(); 

  public /*@ pure @*/ Place tail() { ... } 

 

 The pre and postconditions are written using a model field 

specPlaces that represents a sequence of places occupied by a 

ship. The postcondition is convoluted because there is no 

stream operation to access an element based on its position. In 

fact, such an operation would defeat the purpose of a stream. If 

we use the concrete representation, a private field places of type 

List, the postcondition can be simplified to:  

 
//@ ensures \result == places.get(places.size() – 1); 

 

 However, it not only exposes the implementation details but 

also results in a mixed use of abstract and concrete values. What 

is missing is a unified abstraction that supports both the stream 

and collection operations (refer to Section V for a discussion). 

A quick solution would be to map streams to appropriate 

collections. The collections could be either Java collections 

such as Set and List or JML collections such as JMLEqualsSet 

and JMLEqualsSequence. JML provides a set of immutable 

collection types suitable for writing assertions. For example, the 

above postcondition can be rewritten to: 

 
/*@ ensures \result == specPlaces.collect(Collectors.toList()) 

   @    .get(specPlaces.count() – 1); @*/ 

 



 

5 

 

 The Collectors.toList() collector accumulates the elements of 

a stream into a new list. If the conversion is needed at several 

places, we may define a model method for that. Like a model 

field, a model method is a method defined solely for writing 

JML specifications [4]. A model method would be especially 

usual for converting a stream to a JML collection class or 

defining a JML-specific collector. 

 
/*@ public pure <T> JMLEqualsSet<T> toSet(Stream<T> stream) { 

   @    return JMLEqualsSet.convertFrom( 

   @      stream.collect(Collectors.toList())); @*/ 

 

 Note that converting a stream to a collection is different from 

using a concrete collection representation as done in Section A. 

It doesn’t expose the implementation details and isn’t limited to 

a particular collection type. 

D. More Examples 

 In this section we show a serious of JML specifications to 

further illustrate the use of streams in writing assertions. All the 

examples are from the Battleship application. The complete 

specifications of the Battleship classes can be found in 

Appendix. 

The Player class is an abstraction of a Battleship game 

player, and each player has a board and a fleet of ships. A 

player’s fleet of ships is abstracted to a model field named 

specFleet as shown below. 

 
//@ public model Stream<Ship> specFleet; 

private /*@ spec_public @*/ Board board; 

private List<Ship> fleet; //@ in specFleet; 

//@ private represents specFleet <- fleet.stream(); 

 

 One interesting domain constraint is that a player has at least 

one ship of size from 2 to 5, inclusive. Another constraint is that 

all the ships placed on the board of a player belong to the player. 

A board keeps track of all the ships placed on it (see the 

specification of the Board class below). These two constraints 

can be expressed as invariants as follows. 

 
/*@ public invariant IntStream.rangeClosed(2,5).allMatch(n ->  

   @   specFleet.anyMatch(ship -> ship.size() == n)); 

   @ public invariant  

   @   toSet(specFleet).containsAll(toSet(board.specShips)); @*/ 

 

 The first invariant uses a stream of integers from 2 to 5, 

inclusive. Its use produces a concise assertion by eliminating 

the use of nested quantifiers. Compare it with the following 

assertion written without a stream. 

 
(\forall s: int; 2 <= s && s <= 5;  

   (\exists i: int; 0 <= i && i < fleet.size();  

     fleet.get(i).size() == s)); 

 

 The second constraint asserts a subset relationship between 

two sets of ships. It can also be expressed with streams, but 

using a set operation like containsAll produces a more concise 

assertion. Thus, we convert streams to sets using a model 

method toSet (see Appendix for the definition). 

 A player’s fleet of ships can be obtained by calling the fleet 

method, which returns an Iterable. The behavior of this method 

can be specified nicely using a stream. The stream obtained 

from the returned iterable object should be equivalent to 

specFleet. The StreamSupport.stream static method creates a 

new stream from an iterable object. 

 
/*@ ensures specFleet.equals( 

   @    StreamSupport.stream(\result.spliterator(), false)) @*/ 

public /*@ pure @*/ Iterable<Ship> fleet() { ... } 

 

The Ship class is an abstraction of a battleship that can be 

placed on a player’s board and then hit and sunk by the 

opposing player. Each ship has a size and a sequence of places. 

The abstract and concrete states of a ship are represented as 

follows. 

 
//@ public model Stream<Place> specPlaces; 

private /*@ spec_public @*/ final int size; 

private final List<Place> places; //@ in specPlaces; 

//@ private represents specPlace <- places.stream().sorted(cmp); 

 

 The abstract state of a ship’s places, specPlaces, is interesting 

in that it is a sorted stream. The comparator cmp used in the 

represents clause is a final model field that compares two places 

considering only their column and row indices (see Appendix 

for the definition). A sorted stream facilitates writing certain 

assertions, e.g., the postcondition of the head method shown 

below. 
 

/*@ requires specPlaces.count() > 0; 

   @ ensures \result == specPlaces.findFirst(); @*// 

public /*@ pure @*/ Place head() { ... } 

 

One key domain constraint is that a ship occupies a sequence 

of consecutive places, and the number of places should be less 

than or equal to the size of the ship. The number of places may 

be less than the size of the ship because the ship may be in the 

process of being placed one place at a time. The first constraint 

may be specified directly in terms of the concrete representation 

(field places) as follows. 

 
places.size() == size ==> 

    (\forall int i; 0 < i && i < places.size();  

       places.get(i).getX() == places.get(i-1).getX() + 1 

       && places.get(i).getY() == places.get(i-1).getY()) || 

    (\forall int i; 0 < i && i < places.size();  

       places.get(i).getX() == places.get(i-1).getX() 

       && places.get(i).getY() == places.get(i-1).getY() + 1);     

   

Besides readability, one downside of the above assertion is 

that it relies on the underlying implementation details. It 

assumes that the places are stored in increasing order of their 

column or row indices. The use of model fields allows us to 

make such an assumption safely at the abstract state. In fact, our 

abstraction function already maps a list of places to a sorted 

stream. We can also remedy the problem by reformulating the 

assertion to manipulate streams of column and row indices. We 

can use such operations as max and min defined for IntStream. 
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For this, we first convert a stream of places to a stream of row 

or column indices using the maptToInt method shown below in 

the where clause. The where clause is our own extension to JML 

to introduce local definitions. 

 
specFleet.count() == size ==> 

(horizontal && xs.max().getAsInt() == xs.min().getAsInt() + size - 1) 

||| (vertical && ys.max().getAsInt() == xs.min().getAsInt() + size - 1)       

where 
   IntStream xs = specPlaces.mapToInt(p -> p.getX()).distinct(); 

 IntStream ys = specPlaces.mapToInt(p -> p.getY()).distinct(); 

 boolean horizontal = ys.count() == 1 && xs.count() == size; 

 boolean vertical = xs.count() == 1 && ys.count() == size; 

 

Perhaps, the most interesting class of the Battleship 

application is the Board class, an abstraction of a battleship 

board. A board is composed of n × n places, where n > 0, and 

has a set of ships placed on it. The state of a board is represented 

as follows. 

 
//@ public model Stream<Place> specPlaces; 

//@ public model Stream<Ship> specShips; 

private /*@ spec_public @*/ final int size; 

private final List<Place> places; //@ in specPlaces; 

private final List<Ship> ships; //@ in specShips; 

//@ private represents specPlaces <- places.stream(); 

//@ private represents specShips <- ships.stream(); 

 

There are many interesting constraints on a board (see 

Appendix). One such a constraint is the uniqueness of the 

indices of the places belonging to a board. A pair of column and 

row indices, (x, y), should uniquely identify a place of a board, 

where 0 ≤ x, y < size. This can be specified in terms of concrete 

representation (places) using nested quantifiers as follows. 

 
(\forall int i; 0 <= i && i < places.size(); 

  (\forall int j; 0 <= j && j < places.size(); 

     i != j ==> places.get(i).getX() != places.get(j).getX() 

        || places.get(i).getY() != places.get(j).getY())) 

 

By using a stream, we can simplify the above assertion as 

follows. 

 
specPlaces.count() ==  

   specPlaces.map(p -> p.getX() + "," + p.getY()).distinct().count() 

 

 It asserts the uniqueness of indices indirectly by constraining 

the number of column-and-row indices. The use of string 

concatenation is a quick workaround to represent a pair of 

values for a counting purpose. One may introduce a model type 

to represents a pair of values or use a JML model class such as 

JMLValueValuePair to represent a pair of values. 

 Another interesting constraint is that all the ships of a board 

are indeed placed on the board. We can specify this constraint 

in terms of concrete representations (ships and places) or their 

abstractions (specShips and specPlaces). The flatMap operation 

used in the second assertion flattens the results, e.g., transforms 

a stream of streams to a stream of elements. 

 

(\forall int i; 0 <= i && i < ships.size(); 

      (\forall int j; 0 <= j && j < ships.get(i).places.size(); 

        places.contains(ships.get(i).places().get(j)))); 

 

specShips.flatMap(s -> s.specPlaces) 

       .allMatch(p -> toSet(specPlaces).contains(p)); 

 

 Obviously, two ships cannot overlap. Stating this directly in 

terms of the concrete representation (ships) is a bit involved. It 

requires nesting of several quantifiers. 

 

(\forall int i, j;  

    0 <= i && i < ships.size() && 0 <= j && j < ships.size(); 
     i != j ==> 

        (\forall int i1; 0 <= i1 && i1 < ships.get(i).places.size(); 

           (\forall int j1; 0 <= j1 && j1 < ships.get(j).places.size(); 

             ships.get(i).places().get(i1) !=  ships.get(j).places().get(j1)))); 

 

 It can be stated indirectly using streams by constraining the 

number of places. The number of places of all ships should be 

equal to the number of unique indices of the places. 

 
all.count() == all.map(p -> p.getX() +","+ p.getY()).distinct().count() 

where 
   Stream<Place> all = specShips.flatMap(s -> s.specPlaces); 

 

 So far, we focused on specifying class invariants. Streams 

can be used equally well in specifying the behavior of a method 

and a constructor. They provide a powerful way of writing 

assertions involving collections in a single state, such as class 

invariants, method preconditions, and postconditions of 

observer methods. For example, the following two observer 

methods of the Board class can be nicely specified using 

streams. In particular, the use of the orElse method on an 

Optional object emphasizes the fact that the at method may 

return a null value. An optional object is a container, and the 

orElse method returns the contained value or the specified value 

if there is no value present. 

 
/*@ ensures \result == specPlaces.filter(p ->  

   @   p.getX() == x && p.getY() == y).findAny().orElse(null); @*/ 

public /*@ pure nullable @*/ Place at(int x, int y) { ... } 

 

//@ ensures \result == specShips.allMatch(s -> s.isSunk()); 

public /*@ pure @*/ boolean allSunk() { ... } 

 

 However, streams often aren’t effective in specifying state 

changes of mutation methods. Their assertions involve two 

states, pre- and post-states. To specify the side effect of a 

method, one needs to relate the new value of a stream in the 

post-state to its old value in the pre-state. But, there are not 

many operations provided for comparing or relating two 

streams. As an example, consider the placeShip method of the 

Board class that, given a start place and a horizontal or vertical 

direction, places a ship on a board. Its specification is shown 

below. 

 
/*@ requires (* omitted *); 

   @ assignable specShips, specPlaces, ship.specPlaces; 

   @ ensures specShips.equals( 
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   @    \old(Stream.concat(specShips, Stream.of(ship)))); 

   @ ensures specPlaces.equals(\old(specPlaces)) && 

   @    specPlaces->allMatch(p ->  

   @       p.ship == (pls.constains(p) ? ship : \old(p.ship))); 

   @ ensures toSet(ship.specPlaces).equals(pls);    

   

   @ where Set<Place> pls = specPlaces.filter(p ->  

   @   dir ? x <= p.x && p.x < x + ship.size() && p.y == y  

   @     : p.x == x && y <= p.y && p.y < y + ship.size()) 

   @   .collect(Collectors.toSet()); @*/ 

public void placeShip(Ship ship, int x, int y, boolean dir) { ... } 

 

 The above specification uses three different ways of relating 

two streams: comparing two streams directly (the first ensures 

clause), stating properties using stream methods (the second 

ensures clause), and converting to collections such as sets (the 

third ensures clauses). In many cases, the third approach is most 

effective due to the availability of a large number of collection 

types and their operations (including JML model classes). 

V. LESSONS LEARNED AND DISCUSSION 

 In this section we describe some of the lessons that we 

learned from specifying the Battleship application. We also 

suggest a few possible extensions to JML to help effective use 

of streams. 

 The use of streams in assertions allows us to pick a suitable 

style for writing assertions. In particular, they enable us to write 

constructive assertions for method postconditions. As an 

example, let’s reconsider the at method of the Board class 

specified in the previous section. The method returns a place at 

the given indices.  

 
/*@ ensures \result == specPlaces.filter(p ->  

   @   p.getX() == x && p.getY() == y).findAny().orElse(null); @*/ 

public /*@ pure nullable @*/ Place at(int x, int y) { ... } 

 

 If we specify the method without using a stream, we will 

have something similar to the following. 

 
/*@  requires 0 <= x && x < size && 0 <= y && y < size; 

   @  ensures places.contains(\result) && 

   @    \result.getX() == x && \result.getY() == y; 

   @ also 

   @  requires x < 0 || x >= size || y < 0 || y >= size; 

   @  ensures \result = null; @*/ 

 

 The also keyword separates different cases of a specification, 

and the method has to satisfy all the specification cases. 

Compare this specification with the stream version above. The 

stream version is constructive in that it states how the result is 

calculated while this one is property-oriented in that it only 

states the property that the result has to meet. A constructive 

assertion is often more intuitive and understandable. It also 

provides a guidance to an implementer. With streams, one can 

pick an assertion style that works best for a particular situation: 

constructive, property-oriented, or a combination of both. 

  We found that writing assertions at a higher level of abstraction 

using streams help us to expose weaknesses in our assertions. 

In Section II.A, we asserted that two players of a game should 

be different by writing the following invariant. 
 

(\forall int i, j; 

   0 <= i && i < players.length && 0 <= j && j < players.length; 

 i != j ==> players[i] != player[j]) 

 

 The invariant looked good. But, when we wrote a stream 

version, specPlayers.distinct().count() == specPlayers.count(), 

it stoke us that the distinct method uses the equals method to 

identify all distinct elements of a stream. We then realized that 

the original invariant is too weak in that it uses an object 

equality (==) to compare players. The array shouldn’t contain 

more than one equivalent player by using the equals method. 

Similarly, the use of streams also let us uncover several 

important implicit assumptions present in the code. For all the 

1-to-many associations of the application, the code made an 

implicit assumption that the many ends contain no duplicates. 

This is the default in the class diagram because the many ends 

have a uniqueness property by default. But, when the 

associations are translated to Java arrays or collections like lists, 

it has to be stated explicitly as an invariant. Our initial JML 

specification missed them. We often needed to introduce our 

own, customized notion of duplication without relying on the 

equals method of the elements. We were able to formulate it 

easily by using streams. For example, all places of a ship have 

to be unique on their column and row indices, as specified 

below. 

 
specPlaces.map(p -> p.getX() + "," + p.getY()).distinct().count()  

   == specPlaces.count() 

 

 We learned that JML is good in identifying and writing 

assertions for individual program modules such as classes. 

However, we often missed important, high-level domain 

constraints buried in the code, especially those involving 

multiple modules. One such a constraint is that the numbers of 

ships and their sizes should be the same for both players of the 

game. It’s so basic and fundamental that we didn’t even think 

about it or include an invariant for it in the Game class. 

 
specPlayers..allMatch(p1 -> 

 specPlayers.allMatch(p2 -> 

   p1.specFleet.mapToInt(s -> s.size()).sorted().equals( 

        p2.specFleet.mapToInt(s -> s.size()).sorted()) 

 

 We identified the missing invariant while studying our UML 

class diagram and formulating some of the domain constraints 

in OCL. The Object Constraint Language (OCL) is a textual 

notation to specify constraints on UML models that cannot 

otherwise be expressed using diagrammatic notations such as 

class diagrams [11]. We believe that such inter-module 

constraints can be identified better using a design notation such 

as the UML class diagram that shows an overall structure of an 

application. It is also said assertions are more effective when 

derived from formal specifications such as OCL constraints 

[11] [9]. It would be possible to systematically translate OCL 

constraints to JML assertions [5]. 
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 As hinted in the previous section, streams are not a silver 

bullet. One motivation for the introduction of streams in Java 8 

was to allow parallel or concurrent operations [11]. This means 

that stream operations must be independent of the position of 

the elements in the stream or the elements around it. Thus, they 

make certain position-based assertions more complex. For 

example, to denote the i-th element of a stream, one use an 

expression like: stream.skip(i-1).findFirst().get(). For a similar 

reason, streams lack high-level collection and sequence 

operators commonly found in formal specification languages 

such as Z [10], VDM-SL [6], and OCL [11], and thus they are 

not good for asserting state changes of mutation methods. Our 

quick solution to the above problem was to convert a stream to 

a suitable collection on-the-fly. For this, you introduced utility 

model methods such as toList and toSet. However, a better 

solution would be to define sort of specification purpose, 

unified collection types to support common collection 

operations as well as stream operations that take lambda 

expressions. The idea is to define a set of JML model types 

similar to the OCL collection types that provide so-called 

collection iterators [11]. The various JML collection types 

could be a starting point for defining such unified collection 

types. 

 One key benefit of using streams is the internalization of 

iterations (see Section II.B), which becomes possible due to the 

introduction of lambda expressions in Java. Many stream 

operations take lambda expressions as arguments. In this paper 

we used only a very simple form of lambda expressions, those 

consisting of a single expression specifying the return value. 

We also used the lambda notation liberally without concerning 

much about technical details. However, there are many 

interesting technical questions regarding the use of lambda 

expressions in JML assertions. What kinds of statements are 

allowed in the body of a lambda expression? Can a model field 

be used in the body? Should the body be side-effect free? If so, 

how can it be assured? Can a lambda expression have its own 

specification? If so, can its body, a block of Java code, be 

completely left out? It would be interesting future research to 

fresh out these and other technical details and study the 

implications of using the lambda notation in JML. 

 A recommended pattern for using streams are: (a) convert a 

collection to a stream, (b) perform a series of stream operations 

such as filtering and mapping, optionally followed by 

reduction, and (c) convert the result stream back to a collection 

[11]. The main step frequently involves mutating the items 

contained in the stream using such stream operations as 

forEach.  However, these stream operations shouldn’t be used 

in JML assertions because of their side-effects. This makes it 

very difficult to express side-effects on streams in JML 

assertions. It is particularly problematic to map a stream of 

items to another stream by changing only parts of the states of 

the items. For example, the specification of the at method of the 

Board class shown in the previous section is incomplete. Only 

relevant parts are copied below. 

 
/*@ assignable specPlaces; 

   @ ensures specPlaces.equals(\old(specPlaces)) && 

   @    specPlaces->allMatch(p ->  

   @       p.ship == (pls.constains(p) ? ship : \old(p.ship)); 

   @ where Set<Place> pls = … 

   @*/  

public void placeShip(Ship ship, int x, int y, boolean dir) { ... } 

 

 The intention of the ensures clause is to assert that for each 

place contained in pls its ship field should be set to ship; all 

other places should remain the same. But, the assertion is too 

weak in that it doesn’t constrain other fields of p except for the 

ship field; thus, they may have any arbitrary values. One 

possible solution would be to improve the expressiveness of 

frame conditions to state exact locations that may be changed. 

We may introduce a regular expression notation or set-theoretic 

operations such as union, intersection, and complement to 

pinpoint a specific set of locations at a fine granularity. For 

example, the \not_assigned clause below states that all other 

fields of p except for the ship field are not allowed to be 

changed; that is, for the object p, only its ship field may be 

changed. 
 

specPlaces.allMatch(p -> p.ship == ship && \not_assigned(p.!ship)) 

 

 Another possibility would be to provide a built-in operation 

to denote a new state of an object by stating only those parts 

that are changed. The idea is to write an expression like: p with 

its ship field changed to s but all other fields remaining the 

same. We can borrow the \mu notation from Z [10] to state that 

as shown below, and we can express a mapping from one stream 

to another concisely.  
 

specPlaces.equals(\old(specPlaces.map(p ->(\mu p; p.ship == ship)))) 

VI. CONCLUSION 

We showed through a small case study how to use Java 8 

streams in JML. The use of streams along with lambda 

expressions produces assertions that are more concise and 

cleaner. It also provides more options for selecting an 

appropriate assertion style: constructive, property-oriented, and 

a combination of both. However, streams are not a silver bullet. 

There are limitations on using them as they are, e.g., lack of a 

unified interface for both collection and stream operations, and 

thus ineffectiveness in asserting state changes or side-effects. 

There are also some technical details to fresh out for the full use 

of streams in JML. We suggested these and other interesting 

research questions as future work. One such a research question 

not discussed before is to study the impact of stream-based 

assertions on various JML tools, especially static checkers and 

verification tools. 
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APPENDIX 

 This appendix provides specifications of all the classes of the 

Battleship program mentioned in this paper. Our specifications 

are not complete in that we only show several representative 

methods for each class. 

A. Game 

public class Game { 

  //@ public model Stream<Player> specPlayers; 

/*@ public invariant specPlayers.count() == 2 && 

   @    specPlayers.distinct().count() == 2 && 

   @    specPlayers.allMatch(p -> p != null) && 

     @    specPlayers.allMatch(p1 -> specPlayers.allMatch(p2 -> 

     @       p1.specFleet.mapToInt(s -> s.size()).sorted().equals( 

  @            p2.specFleet.mapToInt(s -> s.size()).sorted()); @*/ 

     

  //@ public model Player activePlayer; 

  //@ public invariant specPlayers.anyMatch(p -> p == activePlayer); 

 

  private Player[] players; //@ in specPlayers; 

  private int active; //@ in activePlayer; 

  //@ private represents specPlayers <- Stream.of(players); 

  //@ private represents activePlayer <- players[active]; 

     

  /*@ assignable activePlayer; 

     @ ensures activePlayer != \old(activePlayer); 

     @ ensures_redundantly activePlayer ==  

     @   specPlayers.filter(p -> p != activePlayer).findAny().get(); @*/ 

public void changeTurn() { … } 

} 

B. Player 

public class Player { 

  //@ public model Stream<Ship> specFleet; 

/*@ public invariant specFleet.count() >= 5 && 

   @    specFleet.distinct.count() == specFleet.count() && 

     @    IntStream.rangeClosed(2,5).allMatch(n ->  

     @        specFleet.anyMatch(s -> s.size() == n)) && 

     @    toSet(specFleet).containsAll(toSet(board.specShips))); @*/ 

 

  private /*@ spec_public @*/ Board board; 

  private List<Ship> fleet; //@ in specFleet; 

  //@ private represents specFleet <- fleet.stream(); 

 

/*@ requires specFleet.count() >= 5 && 

   @   specFleet.distinct.count() == specFleet.count() && 

     @   IntStream.rangeClosed(2,5).allMatch(n ->  

     @      specFleet.anyMatch(s -> s.size() == n)); 

     @ requires board.specShips.count() == 0; 

     @ assignable this.board, specFleet; 

     @ ensures this.board = board && specFleet.equals(fleet.stream()); @*/ 

  public Player(Board board, List<Ship> fleet) { ... } 

 

/*@ ensures StreamSupport.stream(\result.spliterator(), false) 

   @    .equals(specFleet); @*/ 

public /*@ pure @*/ Iterable<Ship> fleet() { ... } 

 

/*@ ensures \result == stream.collect(Collectors.toSet()); 

   @ public model pure <T> Set<T> toSet(Stream<T> stream) { 

   @    return stream.collect(Collectors.toSet()); 

   @ } @*/ 

} 

C. BOARD 

public class Board { 

  private /*@ spec_public @*/ final int size; 

  //@ public model Stream<Place> specPlaces; 

  //@ public model Stream<Ship> specShips; 

 

  /*@ public invariant size >  

     @   specShips.mapToInt(s->s.size()).max().orElse(0); @*/ 

/*@ public invariant specPlaces.count() == size * size && 

   @    specPlaces.allMatch(p.getX() < size && p.getY() < size) && 

     @    specPlaces.count() == 

     @       specPlaces.map(p->p.getX() + "," + p.getY()).distinct().count(); @*/ 

 

  /*@ public invariant specShips.count() == specShips.distinct().count() && 

     @    all.count() == all.map(p -> p.getX() +","+ p.getY()).distinct().count() 

     @   where Stream<Place> all = specShips.flatMap(s -> s.specPlaces); @*/ 

 

  private final List<Place> places; //@ in specPlaces; 

  private final List<Ship> ships; //@ in specShips; 

  //@ private represents specPlaces <- places.stream(); 

  //@ private represents specShips <- ships.stream(); 

     

  /*@ requires size > 0; 

     @ assignable this.size, specPlaces, specShips; 

     @ ensures this.size == size; 

     @ ensures specShips.count() == 0; 

     @ ensures specPlaces.allMatch(p -> p.isEmpty() && !p.isHit()); @*/ 

  public Board(int size) { ... } 

 

/*@ requires ship.specPlaces.count() == 0; 

     @ requires specShips.noneMatch(p -> p.equals(ship)); 

     @ requires 0 <= x && x < size && 0 <= y && y < size; 

     @ requires dir ==> x + len - 1 < size && 

     @   (\forall int i; x <= i && i < x + len; at(i,y).isEmpty()); 

     @ requires !dir ==> y + len - 1 < size && 

     @   (\forall int i; y <= i && i < y + len; at(x,i).isEmpty()); 

     @ assignable ship.specPlaces, specShips; 

     @ ensures specShips.equals( 

     @    \old(Stream.concat(specShips, Stream.of(ship)))); 

     @ ensures specPlaces.equals(\old(specPlaces)) && 

     @    specPlaces->allMatch(p ->  

     @       p.ship == (pls.constains(p) ? ship : \old(p.ship))); 

     @ ensures toSet(ship.specPlaces).equals(pls);      

     @ where Set<Place> pls = specPlaces.filter(p ->  

 @    dir ? x <= p.x && p.x < x + ship.size() && p.y == y 

     @    : p.x == x && y <= p.y && p.y < y + ship.size()) 

     @    .collect(Collectors.toSet()); @*/ 

  public void placeShip(Ship ship, int x, int y, boolean dir) { ... } 

 

  /*@ ensures \result == places.stream().filter(p ->  

     @   p.getX() == x && p.getY() == y).findAny().orElse(null); @*/ 

  public /*@ pure @*/ Place at(int x, int y) { ... } 

 

  //@ ensures \result == ships.stream().allMatch(s -> s.isSunk()); 

  public /*@ pure @*/ boolean isGameOver() { ... } 
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} 

D. PLACE 

public class Place { 

  public /*@ spec_public @*/ final int x; 

  public /*@ spec_public @*/ final int y; 

  private /*@ spec_public @*/ boolean isHit; 

  private /*@ spec_public nullable @*/ Ship ship; 

 

//@ public invariant x >= 0 && y >= 0; 

//@ public invariant ship != null ==> toSet(ship.specPlaces).contains(this); 

 

  /*@ requires x >= 0 && y >= 0; 

     @ assignable this.*; 

     @ ensures this.x = x && this.y = y; 

     @ ensures !isHit; 

     @ ensures ship == null; @*/ 

  public Place(int x, int y) { ... } 

 

  //@ ensures \result == x; 

  public /*@ pure @*/ int getX() { ... } 

 

  //@ ensures \result == y; 

  public /*@ pure @*/ int getY() { ... } 

 

  //@ ensures \result == isHit; 

  public /*@ pure @*/ boolean isHit() { ... } 

 

  /*@ assignable isHit; 

     @ ensures isHit; @*/ 

  public void hit() { ... } 

 

  //@ ensures \result == (ship != null); 

  public /*@ pure @*/ boolean hasShip() { ... } 

 

  //@ ensures result == (ship == null);     

  public /*@ pure @*/ boolean isEmpty() { ... } 

    

  /*@ requires isEmpty(); 

     @ requires ship.specPlaces.count() < ship.size() && 

     @    !toSet(ship.specPlaces).contains(this); 

     @ requires ship.specPlaces.count() == ship.size() – 1  

     @    ==> Ship.isSeq(specPlaces.concat(Stream.of(this))); 

     @ assignable this.ship, ship.specPlaces; 

     @ ensures this.ship == ship; 

     @ ensures toSet(ship.specPlaces).equals(\old(toSet( 

     @    specPlaces.concat(Stream.of(this))))); @*/ 

  public void placeShip(Ship ship) { ... } 

 

  //@ ensures \result == ship; 

public /*@ pure @*/ Ship ship() { ... } 

 

/*@ public static model pure boolean isSeq(Stream<Place> stream) { 

   @   int len = stream.count(); 

     @   IntStream xs = stream.mapToInt(p -> p.getX()).distinct(); 

     @   IntStream ys = stream.mapToInt(p -> p.getY()).distinct(); 

     @   return (xs.count() == len && ys.count() == 1 && 

     @       xs.max().getAsInt() == xs.min().getAsInt() + len – 1) || 

     @     (xs.count() == 1 && ys.count() == len && 

     @      ys.max().getAsInt() == ys.min().getAsInt() + len – 1); 

   @ } @*/ 

} 

E. SHIP 

public class Ship { 

  private /*@ spec_public @*/ final int size; 

  //@ public invariant 2 <= size && size <= 5; 

 

  /*@ public model Stream<Place> specPlaces; 

     @ public invariant specPlaces.count() <= size && 

     @    specPlaces().matchAll(p -> p.getShip() == this) && 

     @    (specPlaces.count() == size  ==> Place.isSeq(specPlaces)); @*/ 

     

  private final List<Place> places; 

//@ private represents specPlaces <- places.stream().sorted(cmp); 

/*@ private final model Comparator<Place> cmp = new Comparator<>() { 

   @      public int compare(Place p1, Place p2) { 

   @           int diff = p1.getX() – p2.getX(); 

   @           return diff != 0 ? diff : p1.getY() – p2.getY(); 

   @      } 

   @ }; @*/ 

     

  /*@ requires 2 <= size && size <= 5; 

     @ assignable this.size, specPlaces; 

     @ ensures this.size == size; 

     @ ensures specPlaces.count() == 0; @*/ 

  public Ship(int size) { ... } 

 

  //@ ensures \result == size; 

  public /*@ pure @*/ int size() { ... } 

 

  /*@ requires specPlaces.count() > 0; 

     @ ensures \result == specPlaces.findFirst(); @*// 

  public /*@ pure @*/ Place head() { ... } 

 

  /*@ requires specPlaces.count() > 0; 

     @ ensures \result == specPlaces.skip(specPlaces.count()-1).findFirst(); */ 

  public /*@ pure @*/ Place tail() { ... } 

 

  /*@ requires specPlaces.count() > 0; 

     @ ensures \result == specPlaces.mapToInt(p ->  

     @   p.getY()).distinct().count() == 1; @*/ 

  public /*@ pure @*/ boolean isHorizontal() { ... } 

 

  /*@ requires specPlaces.count() > 0; 

     @ ensures \result == specPlaces.mapToInt(p ->  

     @   p.getX()).distinct().count() == 1; @*/ 

  public /*@ pure @*/ boolean isVertical() { ... } 

 

/*@ ensures StreamSupport.stream(\result.spliterator(), false) 

   @    equals(specPlaces); @*/ 

  public /*@ pure @*/ Iterable<Place> places() { ... } 

 

  //@ ensures \result == specPlaces.allMatch(p -> p.isHit()); 

  public /*@ pure @*/ boolean isSunk() { ... } 

 

/*@ requires place.ship() == this; 

   @ requires specPlaces.noneMatch(p -> p.equals(place)); 

   @ requires specPlaces.count() < size; 

   @ requires specPlaces.count() == size – 1 ==> 

   @   Place.isSeq(specPlaces.concat(Stream.of(place))); @*/ 

     @ assignable specPlaces; 

     @ ensures toSet(specPlaces).equals(\old(toSet( 

     @    specPlaces.concat(Stream.of(place))))); @*/ 

  public void addPlace(Place place) { ... } 

} 


