

Writing JML Specifications

Using Java 8 Streams

Yoonsik Cheon, Zejing Cao and Khandoker Rahad

TR #16-83

November 2016

Keywords: Assertions, formal specifications, lambda notations, streams, Java, JML.

1998 CR Categories: D.1.5 [Programming Techniques] Applicative (Functional) Programming; D.2.1

[Software Engineering] Requirements/Specificationslanguages; D.2.4 [Software Engineering]

Software/Program Verificationclass invariants, formal methods, programming by contract; D.3.3

[Software Engineering] Language Constructs and Featuresclasses and objects, frameworks; F.3.1 [Logics

and Meanings of Programs] Specifying and Verifying and Reasoning about Programsassertions,

invariants, pre- and post-conditions, specification techniques.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

1

Abstract—JML is a formal behavioral interface specification

language for Java to document Java program modules such as

classes and interfaces. When composing JML specifications,

one frequently writes assertions involving a collection of

values. In this paper we propose to use Java 8 streams for

writing more concise and cleaner assertions on a collection. The

use of streams in JML can be minimal and non-invasive in the

conventional style of writing assertions. It can also be holistic

to write all assertions in the abstract state defined by streams.

We perform a small case study to illustrate our approach and

show its effectiveness as well. We then summarize our findings

and the lessons that we learned from the case study.

Keywords—assertions, formal specifications, lambda notation,

stream, Java, JML.

I. INTRODUCTION

 Java 8 supports functional-style programming by introducing

lambda expressions and a stream application program interface

(API) [11]. A lambda expression is a block of code with

parameters that can be passed around so that it can be executed

later. A stream is an immutable sequence of elements, providing

a variety of so-called higher-order operations such as filter,

map, and reduce that take lambda expressions as arguments.

The underlying idea is to convert a collection to a stream,

process the elements potentially in parallel, and then gather the

results into a collection. Elements are processed by pipelining

stream operations. One key benefit of using streams is the

internalization of iterations. The code is completely unaware of

the iteration logic in the background.

 The Java Modeling Language (JML) is a behavioral interface

specification language for Java to formally specify the behavior

of Java classes and interfaces [7] [1]. In JML, the behavior of a

Java class is specified by writing class invariants and pre and

post-conditions for the methods exported by the class. In

designing an object-oriented program, a class relationship

called an association plays an important role. It defines the

internal structure of an object. An object is associated with other

objects and collaborate with them to perform a task collectively

by sending messages. In writing JML specifications, thus, it is

crucial to manipulate a collection of objects effectively. In JML,

one can write assertions on a collection of objects using

quantified expressions like \forall and \exists. The JML

quantifiers, however, are similar to external iterations in that

one has to use quantified variables to iterate over a collection of

objects. The current JML doesn't provide a notation for internal

iteration over collections.

 In this paper we propose to use the Java Stream API in JML.

The aim is to write more concise and cleaner assertions at a

higher level of abstraction. We explore several different ways

of using streams in writing JML specifications. However, the

underlying idea is the same and is to convert a collection to a

stream and write assertions using various stream operations.

The conversion can be done either explicitly or implicitly by

defining an abstraction function. An abstraction function

specifies a mapping from concrete program states to abstract

specification states. The style of writing assertions can be

minimalistic and non-invasive. One can mix stream assertions

with those written in the conventional style. The assertion style

can also be holistic in that one writes all assertions in terms of

abstract streams, not concrete collections. For this, one uses

model fields, specification-only fields introduced for writing

JML specifications functions [4]. We explain our approach by

applying it to a Battleship game application, a well-known

guessing game for two players (see Section III). We show a

series of example JML assertions to illustrate many interesting

aspects of using streams in JML. We also point out interesting

technical questions and future research directions to better

support the use of streams in JML.

 In Section II below we provide a quick overview of JML and

Java 8 Stream API. In Section III we describe the Battleship

game briefly along with its design expressed in a class diagram.

In Section IV we illustrate our approach by writing many JML

assertions involving the many ends of 1-to-many associations

in the Battleship application. In Section V we describe some of

the lessons that we learned along with possible improvements

or extensions to JML to help the use of streams. In Section VI

we provide a concluding remark.

II. BACKGROUND

A. JML

 The Java Modeling Languge (JML) is a behavioral interface

specification language for Java to formally specify the behavior

of Java classes and interfaces [7]. JML provides a wide range

of tools from static analysis to runtime checking and interactive

Writing JML Specifications

Using Java 8 Streams

Yoonsik Cheon, Zejing Cao and Khandoker Rahad

 Department of Computer Science

 The University of Texas at El Paso

 El Paso, Texas, U.S.A.

ycheon@utep.edu, {zcao2, karahad}@miners.utep.edu

2

verification [1]. In JML, the behavior of a Java class is specified

by writing class invariants and pre and postconditions for the

methods exported by the class. Listing 1 shows an example

JML specification concerned with a game played by two

players. As shown, JML specifications are written as special

comments in Java source code, either after //@ or between /*@

and @*/. The keyword spec_public indicates that private fields

players and active are treated as public for a specification

purpose. They can be used in publicly-visible specifications

such as public class invariants. One unique feature of JML

compared with other specification languages like Z and VDM-

SL is that JML assertions are written in the Java expression

syntax with a few JML-specific extensions like universal and

existential quantifiers. The first invariant constrains the length

of the players array to 2 and the value of the active field to be a

legal index of players. The next two invariants assert that the

elements of players are distinct and not a null value. A JML-

specific operator ==> denotes logical implication. A method

specification precedes the declaration of the specified method.

The requires clause specifies the precondition, the assignable

clause specifies the frame condition, and the ensures clause

specifies the postcondition. The keyword \old in a postcondition

denotes the pre-state value of an expression. It is most

commonly used in the specification of a mutation method such

as the changeTurn() method that changes the state of an object.

Listing 1. Example JML specification

public class Game {

 private /*@ spec_public @*/ Player[] players;

 private /*@ spec_public @*/ int active;

 /*@ public invariant players.length == 2 &&

 @ 0 <= active && active < players.length; @*/

 /*@ public invariant (\forall int i; 0 <= i && i < players.length;

 @ players[i] != null); @*/

/*@ public invariant (\forall int i, j; 0 <= i && i < players.length

 @ && 0 <= j && j < players.length;

 @ i != j ==> players[i] != player[j]); @*/

 /*@ requires true;

 @ assignable active;

 @ ensures active != \old(active);

 @ ensures_redundantly

 @ active == \old(active + 1) % players.length); @*/

 public void changeTurn() { ... }

}

B. Java 8 Streams

 Java 8 enables functional-style programming by providing

lambda expressions and a stream API [11]. A lambda

expression is a block of code with parameters that can be passed

around so that it can be executed later. A stream is an immutable

sequence of elements, providing a variety of so-called higher-

order operations that take lambda expressions as arguments.

The stream API allows one to work with a sequence of elements

possibly in parallel without worrying about how the elements

are stored or accessed. To perform a computation, stream

operations are composed into a stream pipeline. A stream

pipeline consists of a source, zero or more intermediate

operations and a terminal operation. Streams are most often

lazy in that computation on the source data is only performed

when the terminal operation is initiated, and source elements

are consumed only as needed. A few key features of Java

Stream API include:

• Functional-style operations: A variety of higher-order

operations are provided, including filter, map, and

reduce (also called fold in functional languages).

• Lazy construction: A stream is constructed lazily in that

its elements are computed when a user demands it. This

is contrary to a collection whose elements are computed

before they become parts of the collection. A collection

is constructed eagerly.

• Concurrency: Many parallel operations are provided to

process the elements contained in a stream, while

completely abstracting out the low level multithreading

logic.

• Pipeline: The API is based on the idea of converting a

collection to a stream, processing the elements possibly

in parallel, and then gathering the results into a

collection. The elements are processed by pipelining

stream operations, zero or more so-called intermediate

operations like map followed by a termination operation

like reduce [11].

One key benefit of using streams is the internalization of

iterations, called internal iterations. A conventional way to

iterate through an array or collection is to use for loops or

iterators, as shown below.

for (int i; i < players.length; i++) {

 players[i].setFleet(defaultFleet());

}

This iteration is called an external iteration, and the iteration

is clearly visible in the code. The Stream API provides methods

like forEach to internalize iterations (see below), and the code

is completely unaware of the iteration logic in the background.

Stream.of(players).forEach(p -> p.setFleet(defaultFleet())

The static method Stream.of creates a new stream from an

array, and the forEach operation performs a specified task on

each element. There are many operations provided by the

Stream API. Table 1 shows several immutable operations that

are most useful in writing JML assertions.

Table 1. Stream API

Operation Description

allMatch(pred) All elements satisfy pred?

anyMatch(pred) Any element satisfy pred?

filter(pred) Select all elements satisfying pred

3

map(mapper) Apply mapper to each element

reduce(ident,accum) Combine (fold) all elements

distinct() Select all distinct elements

findAny() Pick an arbitrary element

collect(collector) Convert to a collection

III. BATTLESHIP GAME

 In the next section we will specify in JML a Java program

that allows a user to play Battleship games; we wrote both a

Java application and an Android app

[2]. Battleship is a very well-known

guessing game for two players, and its

purpose is to sink all the ships of the

opponent. The game is played on

grids, usually 10×10, of squares. Each

player has a fleet of ships, and each

ship occupies a number of

consecutive squares on the grid,

arranged either horizontally or

vertically. Once the ships are secretly

positioned on the grids of the players,

the game proceeds in a series of

rounds. In each round, each player

takes a turn to make a shot to a square

in the opponent's grid. A shot is either

a ‘hit’ on a ship or a ‘miss’. When all

the squares of a ship have been hit, the ship sinks. If all of a

player's ships have been sunk, the game is over and the

opponent wins.

 We will write JML specifications of the classes found in the

business logic layer. These classes are independent of a

particular UI framework such as Java Swing and Android.

Figure 1 describes the main business logic classes of the

program and their relationships. A game consists of two

players, each with a board and a fleet of ships. The ships of a

player are to be placed on the player's board by the player and

then to be hit and sunk by the opponent player. Our JML

specifications will be focused on the 1-to-many associations.

Figure 1. Battleship class diagram

IV. USING STREAMS IN JML

 In this section we will suggest several different ways for

writing better JML specifications using streams. As shown in

the class diagram in the previous section, there are four 1-to-

many associations in the Battleship application. The many ends

of these associations will be represented as either collections or

arrays. We will write JML assertions manipulating the many

ends of these associations using streams.

A. Writing Assertion

 The simplest way of using streams in JML is to convert an

array or collection to a stream inside an assertion and write the

assertion in terms of the stream. As examples, consider the

following two invariants from Listing 1 in Section II.A.

I1: (\forall int i; 0 <= i && i < players.length; players[i] != null);

I2: (\forall int i, j; 0 <= i && i < players.length;

 0 <= j && j < players.length;

 i != j ==> players[i] != player[j]);

 The first invariant states that the players array shouldn’t

contain a null value, and the second states that there is no

duplicate player contained in the array. Both invariants use the

JML universal quantifier, and thus they are in a sense external

iterations. We can internalize the iterations or simplify the

assertions using stream operations as follows.

I1: Stream.of(players).matchAll(p -> p != null);

I2: Stream.of(players).distinct().count() == players.length;

 The Stream.of static method creates a stream from an array.

The matchAll method tests if each element of a stream satisfies

the specified condition written in lambda notation. The second

invariant (I2) asserts that the number of distinct elements of the

stream is the same as the length of the players array. The

distinct method creates a new stream by collecting all distinct

elements of a stream. The use of stream methods like matchAll

produces assertions that are concise and easy to read and

understand. This is due to the internalization of iterations. The

assertions are cleaner, as there is no need to introduce quantified

variables and manipulate them to access the elements explicitly.

The invariant I2 demonstrates that assertions can be written at

a higher abstraction level with stream operations. It constrains

the size of a stream instead of comparing each pair of the

elements. An equivalent assertion written with players would

be: new HashSet<Player>(players).size() == players.length.

 This simple approach works well if stream operations are

used sparsely in assertions. As shown in I2, stream expressions

can also be mixed with other expressions like players.length.

However, one weakness of this simple approach is duplications

of conversion expressions like Stream.of(players) because of

explicit conversions from arrays and collections to streams.

Duplicates are bad in code and specifications as well. Another

weakness is that a single assertion is written at two different

levels of abstraction. A stream is an abstraction of an array or a

collection. Thus, a stream expression is in a sense an abstract

assertion written in terms of an abstract state. The problem is

that abstract assertions are mingled with concrete assertions

written in terms of concrete representations like arrays and

collections. Such assertions are in general hard to read and

understand because of constant shifts of abstraction levels.

Game

changeTurn
Player

Board

size

placeShip

at

Place

x, y

isHit

hit

Ship

size
/isSunk

is_placed_on

place

ships

has_fleet_of

2 1
*

0..1

*

5

4

B. Using Model Variables

 A more holistic approach would be to write all JML

assertions in terms of streams rather than underlying concrete

representations (arrays or collections). For this we use JML

model fields, specification-only fields introduced for writing

JML specifications [4]. The use of model fields also makes the

conversion from collections to streams occur implicitly. The

key to this approach is to:

• Declare model fields of stream types

• Define abstraction functions for model fields

• Write abstract assertions by referring to model fields

 As an example, let’s rewrite the specification of the Game

class. First, we define model fields.

//@ public model Stream<Player> specPlayers;

//@ public model activePlayer;

 Note that we also abstract the notion of active player from its

concrete representation, the index of the active player, to the

player herself. We then define abstraction functions for model

fields by mapping concrete values such as arrays and

collections to abstract values of streams. The abstraction

functions allow one to evaluate abstract assertions written with

model fields in concrete program states [4]. JML provides

represents clauses to define abstraction functions.

private Player[] players; //@ in specPlayers;

private int active; //@ in activePlayer;

//@ private represents specPlayers <- Stream.of(players);

//@ private represents activePlayer <- players[active];

 As shown above, the abstraction functions for both model

fields are private and specified straightforwardly. The in clause

following a field like players adds the field to a data group.

A data group is a set of locations and is used in JML's frame

axioms (assignable clauses) to name sets of locations in a way

that does not expose representation details [8] (see below for an

example). Each model fields define a new data group of the

same name.

 Now we can write JML assertions such as class invariants

and method pre and postconditions by referring to only model

fields. For example, we can rewrite all the invariants of the

Game class as follows.

/*@ public invariant specPlayers.count() == 2 &&

 @ specPlayers.distinct().count() == 2 &&

 @ specPlayers.allMatch(p -> p != null) ; @*/

//@ public invariant specPlayers.anyMatch(p -> p == activePlayer);

 As expected, there is no explicit conversion from arrays to

streams, and all assertions concerned with players are at the

same abstraction level. They are all written in terms of

specPlayers. In the public scope, game players are viewed as a

stream of players, not an array. The assertions are shorter and

more readable. We can also rewrite the specification of the

changeTurn method. As hinted earlier, the assignable clause

also uses a model fieldto be more precise, the data group of

the model fieldnot the concrete representation.

/*@ assignable activePlayer;

 @ ensures activePlayer != \old(activePlayer);

 @ ensures_redundantly activePlayer ==

 @ specPlayers.filter(p -> p != activePlayer).findAny().get(); @*/

public void changeTurn() { … }

 There is another important benefit of using model fields.

Recall from the model field declarations that concrete

representations such as players and active remain private, and

represents clauses are also private. Therefore, they may be

changed without affecting public assertions and any assertions

written in terms of public model fields such as specPlayers and

activePlayer. It is also possible to keep all previous assertions

as private for the implementer of the Game class.

C. Streams to Collections

 The Stream API defines a variety of higher-order operations

such as allMatch, anyMatch, filter, map, and reduce. These

operations provide a convenient way to iterate through the

elements of a stream. When writing JML assertions, however,

there are cases in which it would be preferable to manipulate

the elements as a collection by applying collection operations.

As an example, consider the tail() method of the Ship class. A

ship occupies a sequence of consecutive places in a board, and

the method returns the last place of the sequence.

/*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.skip(specPlaces.count()-1)

 @ .findFirst().get();

 public /*@ pure @*/ Place tail() { ... }

 The pre and postconditions are written using a model field

specPlaces that represents a sequence of places occupied by a

ship. The postcondition is convoluted because there is no

stream operation to access an element based on its position. In

fact, such an operation would defeat the purpose of a stream. If

we use the concrete representation, a private field places of type

List, the postcondition can be simplified to:

//@ ensures \result == places.get(places.size() – 1);

 However, it not only exposes the implementation details but

also results in a mixed use of abstract and concrete values. What

is missing is a unified abstraction that supports both the stream

and collection operations (refer to Section V for a discussion).

A quick solution would be to map streams to appropriate

collections. The collections could be either Java collections

such as Set and List or JML collections such as JMLEqualsSet

and JMLEqualsSequence. JML provides a set of immutable

collection types suitable for writing assertions. For example, the

above postcondition can be rewritten to:

/*@ ensures \result == specPlaces.collect(Collectors.toList())

 @ .get(specPlaces.count() – 1); @*/

5

 The Collectors.toList() collector accumulates the elements of

a stream into a new list. If the conversion is needed at several

places, we may define a model method for that. Like a model

field, a model method is a method defined solely for writing

JML specifications [4]. A model method would be especially

usual for converting a stream to a JML collection class or

defining a JML-specific collector.

/*@ public pure <T> JMLEqualsSet<T> toSet(Stream<T> stream) {

 @ return JMLEqualsSet.convertFrom(

 @ stream.collect(Collectors.toList())); @*/

 Note that converting a stream to a collection is different from

using a concrete collection representation as done in Section A.

It doesn’t expose the implementation details and isn’t limited to

a particular collection type.

D. More Examples

 In this section we show a serious of JML specifications to

further illustrate the use of streams in writing assertions. All the

examples are from the Battleship application. The complete

specifications of the Battleship classes can be found in

Appendix.

The Player class is an abstraction of a Battleship game

player, and each player has a board and a fleet of ships. A

player’s fleet of ships is abstracted to a model field named

specFleet as shown below.

//@ public model Stream<Ship> specFleet;

private /*@ spec_public @*/ Board board;

private List<Ship> fleet; //@ in specFleet;

//@ private represents specFleet <- fleet.stream();

 One interesting domain constraint is that a player has at least

one ship of size from 2 to 5, inclusive. Another constraint is that

all the ships placed on the board of a player belong to the player.

A board keeps track of all the ships placed on it (see the

specification of the Board class below). These two constraints

can be expressed as invariants as follows.

/*@ public invariant IntStream.rangeClosed(2,5).allMatch(n ->

 @ specFleet.anyMatch(ship -> ship.size() == n));

 @ public invariant

 @ toSet(specFleet).containsAll(toSet(board.specShips)); @*/

 The first invariant uses a stream of integers from 2 to 5,

inclusive. Its use produces a concise assertion by eliminating

the use of nested quantifiers. Compare it with the following

assertion written without a stream.

(\forall s: int; 2 <= s && s <= 5;

 (\exists i: int; 0 <= i && i < fleet.size();

 fleet.get(i).size() == s));

 The second constraint asserts a subset relationship between

two sets of ships. It can also be expressed with streams, but

using a set operation like containsAll produces a more concise

assertion. Thus, we convert streams to sets using a model

method toSet (see Appendix for the definition).

 A player’s fleet of ships can be obtained by calling the fleet

method, which returns an Iterable. The behavior of this method

can be specified nicely using a stream. The stream obtained

from the returned iterable object should be equivalent to

specFleet. The StreamSupport.stream static method creates a

new stream from an iterable object.

/*@ ensures specFleet.equals(

 @ StreamSupport.stream(\result.spliterator(), false)) @*/

public /*@ pure @*/ Iterable<Ship> fleet() { ... }

The Ship class is an abstraction of a battleship that can be

placed on a player’s board and then hit and sunk by the

opposing player. Each ship has a size and a sequence of places.

The abstract and concrete states of a ship are represented as

follows.

//@ public model Stream<Place> specPlaces;

private /*@ spec_public @*/ final int size;

private final List<Place> places; //@ in specPlaces;

//@ private represents specPlace <- places.stream().sorted(cmp);

 The abstract state of a ship’s places, specPlaces, is interesting

in that it is a sorted stream. The comparator cmp used in the

represents clause is a final model field that compares two places

considering only their column and row indices (see Appendix

for the definition). A sorted stream facilitates writing certain

assertions, e.g., the postcondition of the head method shown

below.

/*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.findFirst(); @*//

public /*@ pure @*/ Place head() { ... }

One key domain constraint is that a ship occupies a sequence

of consecutive places, and the number of places should be less

than or equal to the size of the ship. The number of places may

be less than the size of the ship because the ship may be in the

process of being placed one place at a time. The first constraint

may be specified directly in terms of the concrete representation

(field places) as follows.

places.size() == size ==>

 (\forall int i; 0 < i && i < places.size();

 places.get(i).getX() == places.get(i-1).getX() + 1

 && places.get(i).getY() == places.get(i-1).getY()) ||

 (\forall int i; 0 < i && i < places.size();

 places.get(i).getX() == places.get(i-1).getX()

 && places.get(i).getY() == places.get(i-1).getY() + 1);

Besides readability, one downside of the above assertion is

that it relies on the underlying implementation details. It

assumes that the places are stored in increasing order of their

column or row indices. The use of model fields allows us to

make such an assumption safely at the abstract state. In fact, our

abstraction function already maps a list of places to a sorted

stream. We can also remedy the problem by reformulating the

assertion to manipulate streams of column and row indices. We

can use such operations as max and min defined for IntStream.

6

For this, we first convert a stream of places to a stream of row

or column indices using the maptToInt method shown below in

the where clause. The where clause is our own extension to JML

to introduce local definitions.

specFleet.count() == size ==>

(horizontal && xs.max().getAsInt() == xs.min().getAsInt() + size - 1)

||| (vertical && ys.max().getAsInt() == xs.min().getAsInt() + size - 1)

where
 IntStream xs = specPlaces.mapToInt(p -> p.getX()).distinct();

 IntStream ys = specPlaces.mapToInt(p -> p.getY()).distinct();

 boolean horizontal = ys.count() == 1 && xs.count() == size;

 boolean vertical = xs.count() == 1 && ys.count() == size;

Perhaps, the most interesting class of the Battleship

application is the Board class, an abstraction of a battleship

board. A board is composed of n × n places, where n > 0, and

has a set of ships placed on it. The state of a board is represented

as follows.

//@ public model Stream<Place> specPlaces;

//@ public model Stream<Ship> specShips;

private /*@ spec_public @*/ final int size;

private final List<Place> places; //@ in specPlaces;

private final List<Ship> ships; //@ in specShips;

//@ private represents specPlaces <- places.stream();

//@ private represents specShips <- ships.stream();

There are many interesting constraints on a board (see

Appendix). One such a constraint is the uniqueness of the

indices of the places belonging to a board. A pair of column and

row indices, (x, y), should uniquely identify a place of a board,

where 0 ≤ x, y < size. This can be specified in terms of concrete

representation (places) using nested quantifiers as follows.

(\forall int i; 0 <= i && i < places.size();

 (\forall int j; 0 <= j && j < places.size();

 i != j ==> places.get(i).getX() != places.get(j).getX()

 || places.get(i).getY() != places.get(j).getY()))

By using a stream, we can simplify the above assertion as

follows.

specPlaces.count() ==

 specPlaces.map(p -> p.getX() + "," + p.getY()).distinct().count()

 It asserts the uniqueness of indices indirectly by constraining

the number of column-and-row indices. The use of string

concatenation is a quick workaround to represent a pair of

values for a counting purpose. One may introduce a model type

to represents a pair of values or use a JML model class such as

JMLValueValuePair to represent a pair of values.

 Another interesting constraint is that all the ships of a board

are indeed placed on the board. We can specify this constraint

in terms of concrete representations (ships and places) or their

abstractions (specShips and specPlaces). The flatMap operation

used in the second assertion flattens the results, e.g., transforms

a stream of streams to a stream of elements.

(\forall int i; 0 <= i && i < ships.size();

 (\forall int j; 0 <= j && j < ships.get(i).places.size();

 places.contains(ships.get(i).places().get(j))));

specShips.flatMap(s -> s.specPlaces)

 .allMatch(p -> toSet(specPlaces).contains(p));

 Obviously, two ships cannot overlap. Stating this directly in

terms of the concrete representation (ships) is a bit involved. It

requires nesting of several quantifiers.

(\forall int i, j;

 0 <= i && i < ships.size() && 0 <= j && j < ships.size();
 i != j ==>

 (\forall int i1; 0 <= i1 && i1 < ships.get(i).places.size();

 (\forall int j1; 0 <= j1 && j1 < ships.get(j).places.size();

 ships.get(i).places().get(i1) != ships.get(j).places().get(j1))));

 It can be stated indirectly using streams by constraining the

number of places. The number of places of all ships should be

equal to the number of unique indices of the places.

all.count() == all.map(p -> p.getX() +","+ p.getY()).distinct().count()

where
 Stream<Place> all = specShips.flatMap(s -> s.specPlaces);

 So far, we focused on specifying class invariants. Streams

can be used equally well in specifying the behavior of a method

and a constructor. They provide a powerful way of writing

assertions involving collections in a single state, such as class

invariants, method preconditions, and postconditions of

observer methods. For example, the following two observer

methods of the Board class can be nicely specified using

streams. In particular, the use of the orElse method on an

Optional object emphasizes the fact that the at method may

return a null value. An optional object is a container, and the

orElse method returns the contained value or the specified value

if there is no value present.

/*@ ensures \result == specPlaces.filter(p ->

 @ p.getX() == x && p.getY() == y).findAny().orElse(null); @*/

public /*@ pure nullable @*/ Place at(int x, int y) { ... }

//@ ensures \result == specShips.allMatch(s -> s.isSunk());

public /*@ pure @*/ boolean allSunk() { ... }

 However, streams often aren’t effective in specifying state

changes of mutation methods. Their assertions involve two

states, pre- and post-states. To specify the side effect of a

method, one needs to relate the new value of a stream in the

post-state to its old value in the pre-state. But, there are not

many operations provided for comparing or relating two

streams. As an example, consider the placeShip method of the

Board class that, given a start place and a horizontal or vertical

direction, places a ship on a board. Its specification is shown

below.

/*@ requires (* omitted *);

 @ assignable specShips, specPlaces, ship.specPlaces;

 @ ensures specShips.equals(

7

 @ \old(Stream.concat(specShips, Stream.of(ship))));

 @ ensures specPlaces.equals(\old(specPlaces)) &&

 @ specPlaces->allMatch(p ->

 @ p.ship == (pls.constains(p) ? ship : \old(p.ship)));

 @ ensures toSet(ship.specPlaces).equals(pls);

 @ where Set<Place> pls = specPlaces.filter(p ->

 @ dir ? x <= p.x && p.x < x + ship.size() && p.y == y

 @ : p.x == x && y <= p.y && p.y < y + ship.size())

 @ .collect(Collectors.toSet()); @*/

public void placeShip(Ship ship, int x, int y, boolean dir) { ... }

 The above specification uses three different ways of relating

two streams: comparing two streams directly (the first ensures

clause), stating properties using stream methods (the second

ensures clause), and converting to collections such as sets (the

third ensures clauses). In many cases, the third approach is most

effective due to the availability of a large number of collection

types and their operations (including JML model classes).

V. LESSONS LEARNED AND DISCUSSION

 In this section we describe some of the lessons that we

learned from specifying the Battleship application. We also

suggest a few possible extensions to JML to help effective use

of streams.

 The use of streams in assertions allows us to pick a suitable

style for writing assertions. In particular, they enable us to write

constructive assertions for method postconditions. As an

example, let’s reconsider the at method of the Board class

specified in the previous section. The method returns a place at

the given indices.

/*@ ensures \result == specPlaces.filter(p ->

 @ p.getX() == x && p.getY() == y).findAny().orElse(null); @*/

public /*@ pure nullable @*/ Place at(int x, int y) { ... }

 If we specify the method without using a stream, we will

have something similar to the following.

/*@ requires 0 <= x && x < size && 0 <= y && y < size;

 @ ensures places.contains(\result) &&

 @ \result.getX() == x && \result.getY() == y;

 @ also

 @ requires x < 0 || x >= size || y < 0 || y >= size;

 @ ensures \result = null; @*/

 The also keyword separates different cases of a specification,

and the method has to satisfy all the specification cases.

Compare this specification with the stream version above. The

stream version is constructive in that it states how the result is

calculated while this one is property-oriented in that it only

states the property that the result has to meet. A constructive

assertion is often more intuitive and understandable. It also

provides a guidance to an implementer. With streams, one can

pick an assertion style that works best for a particular situation:

constructive, property-oriented, or a combination of both.

 We found that writing assertions at a higher level of abstraction

using streams help us to expose weaknesses in our assertions.

In Section II.A, we asserted that two players of a game should

be different by writing the following invariant.

(\forall int i, j;

 0 <= i && i < players.length && 0 <= j && j < players.length;

 i != j ==> players[i] != player[j])

 The invariant looked good. But, when we wrote a stream

version, specPlayers.distinct().count() == specPlayers.count(),

it stoke us that the distinct method uses the equals method to

identify all distinct elements of a stream. We then realized that

the original invariant is too weak in that it uses an object

equality (==) to compare players. The array shouldn’t contain

more than one equivalent player by using the equals method.

Similarly, the use of streams also let us uncover several

important implicit assumptions present in the code. For all the

1-to-many associations of the application, the code made an

implicit assumption that the many ends contain no duplicates.

This is the default in the class diagram because the many ends

have a uniqueness property by default. But, when the

associations are translated to Java arrays or collections like lists,

it has to be stated explicitly as an invariant. Our initial JML

specification missed them. We often needed to introduce our

own, customized notion of duplication without relying on the

equals method of the elements. We were able to formulate it

easily by using streams. For example, all places of a ship have

to be unique on their column and row indices, as specified

below.

specPlaces.map(p -> p.getX() + "," + p.getY()).distinct().count()

 == specPlaces.count()

 We learned that JML is good in identifying and writing

assertions for individual program modules such as classes.

However, we often missed important, high-level domain

constraints buried in the code, especially those involving

multiple modules. One such a constraint is that the numbers of

ships and their sizes should be the same for both players of the

game. It’s so basic and fundamental that we didn’t even think

about it or include an invariant for it in the Game class.

specPlayers..allMatch(p1 ->

 specPlayers.allMatch(p2 ->

 p1.specFleet.mapToInt(s -> s.size()).sorted().equals(

 p2.specFleet.mapToInt(s -> s.size()).sorted())

 We identified the missing invariant while studying our UML

class diagram and formulating some of the domain constraints

in OCL. The Object Constraint Language (OCL) is a textual

notation to specify constraints on UML models that cannot

otherwise be expressed using diagrammatic notations such as

class diagrams [11]. We believe that such inter-module

constraints can be identified better using a design notation such

as the UML class diagram that shows an overall structure of an

application. It is also said assertions are more effective when

derived from formal specifications such as OCL constraints

[11] [9]. It would be possible to systematically translate OCL

constraints to JML assertions [5].

8

 As hinted in the previous section, streams are not a silver

bullet. One motivation for the introduction of streams in Java 8

was to allow parallel or concurrent operations [11]. This means

that stream operations must be independent of the position of

the elements in the stream or the elements around it. Thus, they

make certain position-based assertions more complex. For

example, to denote the i-th element of a stream, one use an

expression like: stream.skip(i-1).findFirst().get(). For a similar

reason, streams lack high-level collection and sequence

operators commonly found in formal specification languages

such as Z [10], VDM-SL [6], and OCL [11], and thus they are

not good for asserting state changes of mutation methods. Our

quick solution to the above problem was to convert a stream to

a suitable collection on-the-fly. For this, you introduced utility

model methods such as toList and toSet. However, a better

solution would be to define sort of specification purpose,

unified collection types to support common collection

operations as well as stream operations that take lambda

expressions. The idea is to define a set of JML model types

similar to the OCL collection types that provide so-called

collection iterators [11]. The various JML collection types

could be a starting point for defining such unified collection

types.

 One key benefit of using streams is the internalization of

iterations (see Section II.B), which becomes possible due to the

introduction of lambda expressions in Java. Many stream

operations take lambda expressions as arguments. In this paper

we used only a very simple form of lambda expressions, those

consisting of a single expression specifying the return value.

We also used the lambda notation liberally without concerning

much about technical details. However, there are many

interesting technical questions regarding the use of lambda

expressions in JML assertions. What kinds of statements are

allowed in the body of a lambda expression? Can a model field

be used in the body? Should the body be side-effect free? If so,

how can it be assured? Can a lambda expression have its own

specification? If so, can its body, a block of Java code, be

completely left out? It would be interesting future research to

fresh out these and other technical details and study the

implications of using the lambda notation in JML.

 A recommended pattern for using streams are: (a) convert a

collection to a stream, (b) perform a series of stream operations

such as filtering and mapping, optionally followed by

reduction, and (c) convert the result stream back to a collection

[11]. The main step frequently involves mutating the items

contained in the stream using such stream operations as

forEach. However, these stream operations shouldn’t be used

in JML assertions because of their side-effects. This makes it

very difficult to express side-effects on streams in JML

assertions. It is particularly problematic to map a stream of

items to another stream by changing only parts of the states of

the items. For example, the specification of the at method of the

Board class shown in the previous section is incomplete. Only

relevant parts are copied below.

/*@ assignable specPlaces;

 @ ensures specPlaces.equals(\old(specPlaces)) &&

 @ specPlaces->allMatch(p ->

 @ p.ship == (pls.constains(p) ? ship : \old(p.ship));

 @ where Set<Place> pls = …

 @*/

public void placeShip(Ship ship, int x, int y, boolean dir) { ... }

 The intention of the ensures clause is to assert that for each

place contained in pls its ship field should be set to ship; all

other places should remain the same. But, the assertion is too

weak in that it doesn’t constrain other fields of p except for the

ship field; thus, they may have any arbitrary values. One

possible solution would be to improve the expressiveness of

frame conditions to state exact locations that may be changed.

We may introduce a regular expression notation or set-theoretic

operations such as union, intersection, and complement to

pinpoint a specific set of locations at a fine granularity. For

example, the \not_assigned clause below states that all other

fields of p except for the ship field are not allowed to be

changed; that is, for the object p, only its ship field may be

changed.

specPlaces.allMatch(p -> p.ship == ship && \not_assigned(p.!ship))

 Another possibility would be to provide a built-in operation

to denote a new state of an object by stating only those parts

that are changed. The idea is to write an expression like: p with

its ship field changed to s but all other fields remaining the

same. We can borrow the \mu notation from Z [10] to state that

as shown below, and we can express a mapping from one stream

to another concisely.

specPlaces.equals(\old(specPlaces.map(p ->(\mu p; p.ship == ship))))

VI. CONCLUSION

We showed through a small case study how to use Java 8

streams in JML. The use of streams along with lambda

expressions produces assertions that are more concise and

cleaner. It also provides more options for selecting an

appropriate assertion style: constructive, property-oriented, and

a combination of both. However, streams are not a silver bullet.

There are limitations on using them as they are, e.g., lack of a

unified interface for both collection and stream operations, and

thus ineffectiveness in asserting state changes or side-effects.

There are also some technical details to fresh out for the full use

of streams in JML. We suggested these and other interesting

research questions as future work. One such a research question

not discussed before is to study the impact of stream-based

assertions on various JML tools, especially static checkers and

verification tools.

REFERENCES

[1] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M.

Leino, and E. Poll, An overview of JML tools and applications,

International Journal on Software Tools for Technology Transfer, 7(3):

212–232, June 2005.

[2] Y. Cheon, Are Java Programming Best Practices Also Best Practices for

Android? Technical Report 16-76, Department of Computer Science, The

University of Texas at El Paso, El Paso, TX, October 2016.

[3] Y. Cheon, C. Avila, S. Roach, and C. Munoz, Checking design constraints

at run-time using OCL and AspectJ, International Journal of Software

Engineering, 2(3): 5–28, December 2009.

9

[4] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards, Model

variables: Cleanly supporting abstraction in design by contract,

Software—Practice & Experience, 35(6): 583–599, May 2005.

[5] A. Hamie, Using patterns to map OCL constraints to JML specifications,

International Conference on Model-Driven Engineering and Software

Development, pages 35-48, Lisbon, Portugal, January 2014.

[6] C. B. Jones, Systematic Software Development using VDM, Prentice Hall,

1990.

[7] G. T. Leavens, A. L. Baker, and C. Ruby, Preliminary design of JML: A

behavioral interface specification language for Java, ACM SIGSOFT

Software Engineering Notes, 31(3): 1–38, March 2006.

[8] K. R .M. Leino, Data group: Specifying the modification of extended

state, Conference on Object Oriented Programming Systems, Languages,

and Applications, pages 144-153, ACM, 1998.

[9] D. S. Rosenblum, A practical approach to programming with assertions,

IEEE Transactions on Software Engineering, 21(1):19–31, January 1995.

[10] J. M. Spivey, Understanding Z: A Specification Language and its Formal

Semantics, Cambridge University Press, New York, NY, 1988.

[11] R. Warburton, Java 8 Lambdas: Functional Programming for the Masses,

O’Reilly, 2014.

[12] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your

Models Ready for MDA, second edition. Addison-Wesley, 2003.

APPENDIX

 This appendix provides specifications of all the classes of the

Battleship program mentioned in this paper. Our specifications

are not complete in that we only show several representative

methods for each class.

A. Game

public class Game {

 //@ public model Stream<Player> specPlayers;

/*@ public invariant specPlayers.count() == 2 &&

 @ specPlayers.distinct().count() == 2 &&

 @ specPlayers.allMatch(p -> p != null) &&

 @ specPlayers.allMatch(p1 -> specPlayers.allMatch(p2 ->

 @ p1.specFleet.mapToInt(s -> s.size()).sorted().equals(

 @ p2.specFleet.mapToInt(s -> s.size()).sorted()); @*/

 //@ public model Player activePlayer;

 //@ public invariant specPlayers.anyMatch(p -> p == activePlayer);

 private Player[] players; //@ in specPlayers;

 private int active; //@ in activePlayer;

 //@ private represents specPlayers <- Stream.of(players);

 //@ private represents activePlayer <- players[active];

 /*@ assignable activePlayer;

 @ ensures activePlayer != \old(activePlayer);

 @ ensures_redundantly activePlayer ==

 @ specPlayers.filter(p -> p != activePlayer).findAny().get(); @*/

public void changeTurn() { … }

}

B. Player

public class Player {

 //@ public model Stream<Ship> specFleet;

/*@ public invariant specFleet.count() >= 5 &&

 @ specFleet.distinct.count() == specFleet.count() &&

 @ IntStream.rangeClosed(2,5).allMatch(n ->

 @ specFleet.anyMatch(s -> s.size() == n)) &&

 @ toSet(specFleet).containsAll(toSet(board.specShips))); @*/

 private /*@ spec_public @*/ Board board;

 private List<Ship> fleet; //@ in specFleet;

 //@ private represents specFleet <- fleet.stream();

/*@ requires specFleet.count() >= 5 &&

 @ specFleet.distinct.count() == specFleet.count() &&

 @ IntStream.rangeClosed(2,5).allMatch(n ->

 @ specFleet.anyMatch(s -> s.size() == n));

 @ requires board.specShips.count() == 0;

 @ assignable this.board, specFleet;

 @ ensures this.board = board && specFleet.equals(fleet.stream()); @*/

 public Player(Board board, List<Ship> fleet) { ... }

/*@ ensures StreamSupport.stream(\result.spliterator(), false)

 @ .equals(specFleet); @*/

public /*@ pure @*/ Iterable<Ship> fleet() { ... }

/*@ ensures \result == stream.collect(Collectors.toSet());

 @ public model pure <T> Set<T> toSet(Stream<T> stream) {

 @ return stream.collect(Collectors.toSet());

 @ } @*/

}

C. BOARD

public class Board {

 private /*@ spec_public @*/ final int size;

 //@ public model Stream<Place> specPlaces;

 //@ public model Stream<Ship> specShips;

 /*@ public invariant size >

 @ specShips.mapToInt(s->s.size()).max().orElse(0); @*/

/*@ public invariant specPlaces.count() == size * size &&

 @ specPlaces.allMatch(p.getX() < size && p.getY() < size) &&

 @ specPlaces.count() ==

 @ specPlaces.map(p->p.getX() + "," + p.getY()).distinct().count(); @*/

 /*@ public invariant specShips.count() == specShips.distinct().count() &&

 @ all.count() == all.map(p -> p.getX() +","+ p.getY()).distinct().count()

 @ where Stream<Place> all = specShips.flatMap(s -> s.specPlaces); @*/

 private final List<Place> places; //@ in specPlaces;

 private final List<Ship> ships; //@ in specShips;

 //@ private represents specPlaces <- places.stream();

 //@ private represents specShips <- ships.stream();

 /*@ requires size > 0;

 @ assignable this.size, specPlaces, specShips;

 @ ensures this.size == size;

 @ ensures specShips.count() == 0;

 @ ensures specPlaces.allMatch(p -> p.isEmpty() && !p.isHit()); @*/

 public Board(int size) { ... }

/*@ requires ship.specPlaces.count() == 0;

 @ requires specShips.noneMatch(p -> p.equals(ship));

 @ requires 0 <= x && x < size && 0 <= y && y < size;

 @ requires dir ==> x + len - 1 < size &&

 @ (\forall int i; x <= i && i < x + len; at(i,y).isEmpty());

 @ requires !dir ==> y + len - 1 < size &&

 @ (\forall int i; y <= i && i < y + len; at(x,i).isEmpty());

 @ assignable ship.specPlaces, specShips;

 @ ensures specShips.equals(

 @ \old(Stream.concat(specShips, Stream.of(ship))));

 @ ensures specPlaces.equals(\old(specPlaces)) &&

 @ specPlaces->allMatch(p ->

 @ p.ship == (pls.constains(p) ? ship : \old(p.ship)));

 @ ensures toSet(ship.specPlaces).equals(pls);

 @ where Set<Place> pls = specPlaces.filter(p ->

 @ dir ? x <= p.x && p.x < x + ship.size() && p.y == y

 @ : p.x == x && y <= p.y && p.y < y + ship.size())

 @ .collect(Collectors.toSet()); @*/

 public void placeShip(Ship ship, int x, int y, boolean dir) { ... }

 /*@ ensures \result == places.stream().filter(p ->

 @ p.getX() == x && p.getY() == y).findAny().orElse(null); @*/

 public /*@ pure @*/ Place at(int x, int y) { ... }

 //@ ensures \result == ships.stream().allMatch(s -> s.isSunk());

 public /*@ pure @*/ boolean isGameOver() { ... }

10

}

D. PLACE

public class Place {

 public /*@ spec_public @*/ final int x;

 public /*@ spec_public @*/ final int y;

 private /*@ spec_public @*/ boolean isHit;

 private /*@ spec_public nullable @*/ Ship ship;

//@ public invariant x >= 0 && y >= 0;

//@ public invariant ship != null ==> toSet(ship.specPlaces).contains(this);

 /*@ requires x >= 0 && y >= 0;

 @ assignable this.*;

 @ ensures this.x = x && this.y = y;

 @ ensures !isHit;

 @ ensures ship == null; @*/

 public Place(int x, int y) { ... }

 //@ ensures \result == x;

 public /*@ pure @*/ int getX() { ... }

 //@ ensures \result == y;

 public /*@ pure @*/ int getY() { ... }

 //@ ensures \result == isHit;

 public /*@ pure @*/ boolean isHit() { ... }

 /*@ assignable isHit;

 @ ensures isHit; @*/

 public void hit() { ... }

 //@ ensures \result == (ship != null);

 public /*@ pure @*/ boolean hasShip() { ... }

 //@ ensures result == (ship == null);

 public /*@ pure @*/ boolean isEmpty() { ... }

 /*@ requires isEmpty();

 @ requires ship.specPlaces.count() < ship.size() &&

 @ !toSet(ship.specPlaces).contains(this);

 @ requires ship.specPlaces.count() == ship.size() – 1

 @ ==> Ship.isSeq(specPlaces.concat(Stream.of(this)));

 @ assignable this.ship, ship.specPlaces;

 @ ensures this.ship == ship;

 @ ensures toSet(ship.specPlaces).equals(\old(toSet(

 @ specPlaces.concat(Stream.of(this))))); @*/

 public void placeShip(Ship ship) { ... }

 //@ ensures \result == ship;

public /*@ pure @*/ Ship ship() { ... }

/*@ public static model pure boolean isSeq(Stream<Place> stream) {

 @ int len = stream.count();

 @ IntStream xs = stream.mapToInt(p -> p.getX()).distinct();

 @ IntStream ys = stream.mapToInt(p -> p.getY()).distinct();

 @ return (xs.count() == len && ys.count() == 1 &&

 @ xs.max().getAsInt() == xs.min().getAsInt() + len – 1) ||

 @ (xs.count() == 1 && ys.count() == len &&

 @ ys.max().getAsInt() == ys.min().getAsInt() + len – 1);

 @ } @*/

}

E. SHIP

public class Ship {

 private /*@ spec_public @*/ final int size;

 //@ public invariant 2 <= size && size <= 5;

 /*@ public model Stream<Place> specPlaces;

 @ public invariant specPlaces.count() <= size &&

 @ specPlaces().matchAll(p -> p.getShip() == this) &&

 @ (specPlaces.count() == size ==> Place.isSeq(specPlaces)); @*/

 private final List<Place> places;

//@ private represents specPlaces <- places.stream().sorted(cmp);

/*@ private final model Comparator<Place> cmp = new Comparator<>() {

 @ public int compare(Place p1, Place p2) {

 @ int diff = p1.getX() – p2.getX();

 @ return diff != 0 ? diff : p1.getY() – p2.getY();

 @ }

 @ }; @*/

 /*@ requires 2 <= size && size <= 5;

 @ assignable this.size, specPlaces;

 @ ensures this.size == size;

 @ ensures specPlaces.count() == 0; @*/

 public Ship(int size) { ... }

 //@ ensures \result == size;

 public /*@ pure @*/ int size() { ... }

 /*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.findFirst(); @*//

 public /*@ pure @*/ Place head() { ... }

 /*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.skip(specPlaces.count()-1).findFirst(); */

 public /*@ pure @*/ Place tail() { ... }

 /*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.mapToInt(p ->

 @ p.getY()).distinct().count() == 1; @*/

 public /*@ pure @*/ boolean isHorizontal() { ... }

 /*@ requires specPlaces.count() > 0;

 @ ensures \result == specPlaces.mapToInt(p ->

 @ p.getX()).distinct().count() == 1; @*/

 public /*@ pure @*/ boolean isVertical() { ... }

/*@ ensures StreamSupport.stream(\result.spliterator(), false)

 @ equals(specPlaces); @*/

 public /*@ pure @*/ Iterable<Place> places() { ... }

 //@ ensures \result == specPlaces.allMatch(p -> p.isHit());

 public /*@ pure @*/ boolean isSunk() { ... }

/*@ requires place.ship() == this;

 @ requires specPlaces.noneMatch(p -> p.equals(place));

 @ requires specPlaces.count() < size;

 @ requires specPlaces.count() == size – 1 ==>

 @ Place.isSeq(specPlaces.concat(Stream.of(place))); @*/

 @ assignable specPlaces;

 @ ensures toSet(specPlaces).equals(\old(toSet(

 @ specPlaces.concat(Stream.of(place))))); @*/

 public void addPlace(Place place) { ... }

}

