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Adriana Escobar De La Torre and Yoonsik Cheon 
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Abstract. Android apps are written in Java, but unlike Java applications they are resource-
constrained in storage capacity and battery lifetime. In this document, we perform an experiment 
to measure quantitatively the impact of Java language and standard API features on the memory 
efficiency of Android apps. We focus on garbage collection because it is a critical process for 
performance affecting user experience. We learned that even Java language constructs and 
standard application programming interfaces (APIs) may be a source of a performance problem 
causing a significant memory overhead for Android apps. Any critical section of code needs to 
be scrutinized on the use of these Java features.  

1. Introduction 
Android is one of the most popular mobile platforms paving the way for the development of a flood of 

mobile apps. Android devices are resource-constrained in storage capacity and battery lifetime. 

Performance is always a problem for anyone developing Android apps [12] [15]. Memory, for example, is 

a lot more valuable on Android than on other operating systems. An application launched on Microsoft 

Windows, for example, may stay running indefinitely. It is different on Android. Android has a memory 

conservation mechanism known as Low Memory Killer (LMK) [14]. When too much memory is used, 

LMK will start killing background and inactive processes that consume large amounts of memory. Thus, 

Android programmers should build apps with memory conservation in mind. 

Android apps are written in Java though there are some minor differences between the Java application 

programming interface (API) and the Android API. Because of this, there is a misconception that the best 

Java programming and coding practices -- tips, idioms, styles, patterns, and recipes -- are equally applicable 

to Android programming [2]. In fact, some are anti-patterns or code smells [10] that Android programmers 

should avoid. They have devastating effects on the memory performances of Android apps, causing 

frequent garbage collection and thus making the apps unusable. It is also reported that frequent garbage 

collection may affect the battery life of a device by overheating it [3].  

In this document, we perform an experiment to ask a more fundamental question: what are the impacts of 

the Java language and standard API features on the memory efficiency of Android apps? We consider, 

among others, the following Java features: lambda expressions (Java 8), Stream API (Java 8), for-each 

statements (Java 5) and iterators. These are features that in general produce more succinct and cleaner code 

[11]. Java 8 is a big step for the Java language [8], and features like the lambda notation are most anticipated 

and long-awaited features for Java and Android. We design our experiment in such a way to measure 

quantitatively the garbage collection frequencies as well as the amount of additional memory allocated due 

to the above mentioned Java features.  

Our key finding is that all the above Java features (except for for-each statements on arrays) allocate hidden 

objects. The objects are hidden in the sense that they are caused by the way the features are translated by 

the compiler or evaluated at runtime, and oftentimes programmers may not be aware of them. In general, 

this may not be such a big deal regarding the memory consumption of an app; however, if the code 

containing the features are executed repeatedly and continuously, there can be significant memory 
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overheads, e.g., a dozen garbage collection events per second. Our experiment also shows that the 

underlying assumption of object-oriented programming (OOP) -- objects are cheap and do not take lots of 

resources such as memory – does not hold on Android. The idea of OOP is to let many small objects solve 

a task together, each object focusing on a small aspect of the task. Android programmers, however, need to 

scrutinize any critical section of code for inefficient use of memory. It is important to analyze and know 

the memory impacts of the so-called best Java coding practices, as they in a certain situation may have 

devastating effects on the memory performance of an app [2]. One unpleasant finding from our experiment 

is that one needs to pay close attention to hidden objects caused by not only one’s own code but also the 

built-in language constructs like the for-each statement and the Java 8 lambda notation.  

2. Android Java: Language and API features 
 

Java 8 is a big step for the Java language [8]. It makes it easy for programmers to create new applications 
and clean up existing code by writing cleaner code. The two most significant features of Java 8 are lambda 
expressions (see Section 15.27 of [8]) and the Stream application programming interface (API). Indeed the 
support for the lambda notation is one of the most anticipated and long-awaited features for Java and 
Android. At the time of writing, however, Android supports a subset of Java 8 language features that vary 
by platform version1. In this study, we consider these two Java 8 features along with two other features 
from earlier versions of Java as listed below. 

• Iterators 

• For-each statement 

• Lambda expressions 

• Stream API 

Iterators: Java provides an interface named Iterator to access the elements of various collections in a 
uniform way. The interface implements the Iterator design pattern [4] and defines methods like hasNext() 
and next() to iterate over elements of a container or aggregate object. As the interface provides a way to 
access the elements without exposing the underlying representation, its use is a recommended coding 
practice. As expected, all Java collection classes implements the interface. 

For-each statement: This statement also known as the enhanced for statement is introduced in Java 5. As 
shown below, it provides an even simpler way to iterate through the elements of a collection. 

int[] values = …; 
for (int v: values) { 
    sum += v; 
} 

 

The for-each statement works for an array and any class that implements the Interable interface. The 
Iterable interface defines an iterator() method that returns an Iterator object. All Java collection classes 
implements the Iterable interface. As there is no need to introduce and manipulate an index or loop variable 
to access the elements of a collection, the for-each statement produces cleaner code. 

Lambda expressions: A lambda expression introduced in Java 8 is a block of code with parameters that 
can be passed around so that it can be executed later [8] [13]. It is one of the most anticipated features of 
Java, and it allows one to pass to a method not only data but also a behavior, thus enabling to dramatically 
raise the level of abstraction. As shown below, the lambda notation can be used to omit the boilerplate code 

                                                           
1Currently the Jack tool chain is needed to use Java 8, which compiles Java source code into Android bytecode. In the 
preview version of Android Studio 3, Java 8 language features are built into the default tool chain. 
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for implementing an interface like the ActionListener interface — i.e., defining an anonymous or named 
class and creating an instance of it. 

 
JButton playButton = new JButton(“Play”); 
playButton.addActionListener(new ActionListener() { 
   public void actionPerformed(ActionEvent e) { 
        startNewGame(); 
   } 
}); 
 
// rewritten in lambda notation 
playButton.addActionListener(e -> startNewGame());  

 

A lambda expression comprises of parameters, a lambda operator (->) and a function body. It can be used 
in a place where an object of a functional interface is required. A functional interface is an interface with a 
single method; for example, the ActionListener interface in the above code is a functional interface. 

Streams: Java 8 introduced the Stream application programming interface (API) [13]. A stream is an 

immutable sequence of elements and provides a variety of operations to be executed on the elements 

possibly in parallel. A typical use of streams involves three steps: (a) creating a stream, (b) forming a 

pipeline, and (c) closing the pipeline to return a result. The code snippet shown below calculates the squares 

of even numbers contained in a list by first creating a stream from a list, pipelining two intermediate 

operations (filter and map), and then applying a terminal operation (collect). The Collectors.toList() returns 

a collector that accumulates the elements of a stream in a new list. 

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 
List<Integer> evenSquares =  numbers.stream() 
           .filter(n -> n % 2 == 0) 
           .map(n -> n * n) 
           .collect(Collectors.toList()); 

 
One key difference between streams and collections is that streams are centered on operations while 

collections are in-memory data structures to hold elements within them. That is, each element of a collection 

is computed before it becomes a part of the collection. On the other hand, streams are fixed data structures 

that computes the elements on-demand basis. Streams are most often lazy in that computation on the source 

data is only performed when the terminal operation is initiated, and source elements are consumed only as 

needed. The Stream API allows one to work with a sequence of elements possibly in parallel without 

worrying about how the elements are stored or accessed. As shown in the above sample code, the use of 

streams along with lambda expressions produces functional-style code of a higher level of abstraction. 

3. Experiment 
The purpose of our experiment is to study the impacts of Java language and API features on the memory 

performance of Android apps. Our study is focused on garbage collection (GC) because it is a critical process 

for performance that can affect user experience of an app. GC can impair the performance of an app, 

resulting in choppy display and poor UI responsiveness. Android Studio provides a tool called Memory 

Monitor to visualize the real-time information about the memory usage of an app, e.g., graphs showing 

available and allocated memory over time as well as garbage collection events over time [5]. Since it can 

display the patterns of GC events graphically, it is a good tool to profile and optimize memory use of an app. 
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However, we need to have more accurate memory usage information to find out the memory overheads of 

the Java features under investigation. We write sample code of the features that also includes small probe to 

collect information about GC events as well as the memory use.2 We write the simplest sample code to 

prevent any overheads not attributed to the features under investigation. Table 1 shows our sample 

code along with equivalent code written without using the features. We will compare the memory usage of 

the two code to find out the memory overheads caused by the features. 

 

Table 1. Sample code of Java features under investigation 

Feature Code Refactored 

Iterator 

int sum; 
List<Integer> values = …; 

Iterable<Integer> it = values.iterator(); 
while (it.hasNext()) { 
    sum += it.next(); 
} 

for (int i = 0; i < values.size()) { 
   sum += values.get(i); 
} 

For-each 

int sum; 
List<Integer> values = Aarrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 

for (int x: values) { 
    sum += sum; 
} 

for (int i = 0; i < values.size()) { 
   sum += values.get(i); 
} 

Lambda 

int sum; 
void helper(Runnable action) { 
    action.run(); 
} 
Runnable action = () -> sum++; 

helper(() -> sum++); helper(action); 

Stream 

int sum; 
int[] values = …; 

sum = Arrays.stream(values) 
   .filter(x -> x > 0) 
   .map(x -> x + 1) 
   .sum(); 

for (int x: values) { 
   if (x > 0) { 
       sum += (x + 1); 
   } 
} 

 

 

For each sample code, we measure several different factors that indicate memory usage and performance of 

the code, including: 

• Interval between two consecutive GC events 

• Frequency of GC 

• Allocated heap size at the time of a GC event 

• (Hidden) objects created due to the language features under investigation 

• Number of times the code is executed to trigger a GC event 

 

                                                           
2Some of the information can also be obtained using the Android Debug Bridge (adb) command-line tool. This tool 
can measure GC performance of apps, i.e., GC timing dump and systrace [7]. 
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The first two can be calculated by measuring the number of GC events for a certain period of time. The 

third can be measured by finding out the allocated heap size when a GC is initiated, and the last can be 

measured in a similar fashion. The Memory Monitor tool of the Android Studio can be used to find out the 

objects that are allocated due to the features under investigation, either by dumping the Java heap or tracking 

memory allocation time [5]. 

 

Most of the measurements are done by our probe code mentioned previously. The key idea for writing the 

probe is to create a garbage that will be collected when garbage collection is initiated – i.e., when a GC 

event happens. As shown below, we create such a garbage by using a weak reference, a reference that does 

not protect the referenced object from being collected by a garbage collector. 

 

private WeakReference<GarbageCollectionWatcher> gcWatcher 

        = new WeakReference<>(new GarbageCollectionWatcher()); 

private class GarbageCollectionWatcher { 

      protected void finalize() throws Throwable { 

            // collect memory usage information here … 

            gcWatcher = new WeakReference<>(new GarbageCollectionWatcher()); 

      } 

} 

 

The gcWatcher field is a weak reference. Its referent, an instance of the GarbageCollectionWatcher class, 

is a garbage that will be collected when garbage collection begins. We use the finalize() method to collect 

various information about the memory usage. The method also re-initialize the gcWatcher field to detect 

the next garbage collection. The finalize() method is called by the garbage collector. 

To perform the experiment, we wrote an Android app that runs our sample code. The app was written with 

Android Studio 2.3.3 configured to use the Jack tool chain in 

order to use Java 8 language features such as the lambda 

notation and the Stream API. The app runs sample code 

repeatedly in a loop until a user click the stop button, at which 

time it displays the collected memory usage information (see 

a screenshot in the left). A user can select either the code 

written with or without using the feature experiment. Since 

the Java 8 Stream API is available only on Android API level 

24 or higher, the app works only on Android version 7.0 

(Nougat) or above. This also means that our experiment is 

done on the Android Runtime (ART), not its predecessor 

Dalvik virtual machine. The ART is the default Android 

runtime for Android 5.0 and beyond. It is said that ART 

provides an improved GC mechanism over Dalvik by having 

several different garbage collection plans to run different 

garbage collectors [5]. The default GC plan is the concurrent 

mark sweep (CMS), which uses mostly sticky CMS and 

partial CMS. The sticky CMS scans only the portion of the 

heap that was modified since the last GC and thus can reclaim only the objects allocated since the last GC. 

 

Figure 1. Experiment app 
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4. Results 
We ran our experiment app on a Samsung Galaxy S7 smartphone with Qualcomm Snapdragon 820 2.1Ghz 

Quad-Core CPU and 4GB RAM running Android version 7.0. Table 2 show the results of running our 

sample code with the features under investigation; there was no additional memory allocation for the 

refactored code -- code without the features -- and thus no garbage collection either.  The fourth column 

(Avg. # loops) shows the number of times the code under measurement is executed between two GC events; 

remember that our app executes the code repeatedly in an infinite loop until the user clicks the stop button. 

The sixth column (Avg. heap size) shows the average amount of allocated memory upon GC events. For all 

the features under investigation, a lot of GC events occur over and over again in a short period of time, i.e., 

4 - 12 times per second. We will look into this table closely in the next section. 

 

Table 2. Results of running the experiment app 

 
# GC 

Execution 
time (msec) 

Avg. # 
loops (/gc) 

Avg. GC 
cycle (msec) 

Avg. heap 
size (mb) 

GC freq 
(gc/sec) 

Iterator 377 60328 435113 160.02 17.28 6.25 

For-each 251 43740 408477 174.26 18.14 5.74 

Lambda 648 72299 2106384 111.57 27.41 8.96 

Stream 691 55374 41265 80.14 23.46 12.48 

 

We also looked at the memory usage of our app using the Memory Monitor tool of the Android Studio (see 

Figure 2). The amount of allocated memory changes quite frequently and fluctuates for all features due to 

GC, and there are significant differences in the peak amounts of allocated memory, i.e., about 16 MB for 

iterators and for-each statements and about 32 MB for lambdas and streams. When no feature is used (i.e., 

refactored code), however, the graph is flat, which is the ideal scenario from the performance perspective. 

 

 

None 

Iterator 

For-each 

Lambda 

Stream 
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Figure 2. Patterns of garbage collection events 

We also performed our experiment on emulators of different configurations. The main motivation was to 

limit the heap size for the app. It is impossible to do so on a real device because the heap limit of an app is 

determined by the device itself, not the app. On Android virtual device (AVD), however, one can configure 

its heap size when it is created. The findings from this experiment will be described in the following section. 

5. Observations and Analyses 
The first observation we made is that all the Java features under investigation have overheads regarding 

memory allocations (see Table 3). They require additional memory to be allocated in the heap storage. For 

all the features, the amount of allocated memory does not change -- meaning no additional memory 

allocation – when they are not used. With the features, however, the amount of allocated memory fluctuates 

due to GC events. The table shows the average amount of allocated memory upon GC events. Additional 

memory needed are in the range of 11-21 MB, giving overheads from 134% up to 311%. It should be noted, 

however, that this is a worst case analysis in that we run the code repeatedly and continuously in a loop (see 

Section 6 for more on this). 

 

Table 3. Memory overheads 

Feature 

Allocated memory (MB) 
Difference Overhead (%) 

w/o feature* with feature** 

Iterator 6.54 17.28 10.74 164.22 

For-each 6.54 18.14 11.06 177.37 

Lambda 6.67 27.41 20.74 310.94 

Stream 10.02 23.46 13.44 134.13 
  *Fixed amount (no GC); **Average amount of allocated memory upon GC events. 

 

Figure 3 shows the frequency of GCs along with the average heap sizes when GC events occur. As shown, 

GC frequencies are in the range of 6 to 12 GCs per second. The use of streams causes about two times more 

GCs than iterators and for-each statements. 

 

  
Figure 3 Heap sizes and GC frequencies 
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As described above, GC occurs more frequently for streams than other features. However, for a fair 

comparison we need to consider the GC commencement threshold, the low-memory threshold that triggers 

GC. GC thresholds are not fixed or the same. Figure 4 shows normalized GC frequencies of the Java features 

under investigation; they are estimated GC frequencies under the assumption that their average amounts of 

allocated memory upon GC events are the same as that of lambda code (27.41 MB). The stream code and 

lambda code need 2.8 and 2.4 times more GCs than the for-each code.  

 

 

Figure 4. Normalized GC frequencies 

 

One interesting finding is that, for a lambda expression, the way its body is written affects the memory 

performance of the expression. In particular, there is a noticeable difference in the amount of allocated 

memory depending on whether a lambda body refers to a field or not. A lambda body may refer to an 

(effectively final) local variable and a field. A final local variable can’t be changed, however a field may 

be freely changed in the lambda body and the changes need to be propagated to the outside the lambda 

expression. This difference apparently affects the translation of lambda expressions such a way that there 

is noticeable difference in memory overheads. As shown in Table 4 below, the use of a field in the lambda 

body requires 4.31 MB (19 %) more memory and causes a 35% increase in GC frequency. 

 

Table 4. Impact of a field reference appearing in a lambda body 

Field ref. 
# loops 

(/gc) 
Time 

(msec) 
Heap 
(MB) 

GC freq 
(gc/sec) 

Nor. GC 
freq (gc/sec) 

Yes 2106384 111.57 27.41 8.96 8.96 

No 2278409 126.86 23.10 7.88 6.64 

 

A lambda expression is evaluated at runtime to an object -- e.g., an instance of edu.utep.cs.java8demo.-

$Lamda$6 that implements the functional interface of the lambda expression -- and its size is different 

depending on the existence of a field reference in its body; the lambda class itself is also created dynamically 

at runtime (see below for more on the translation of lambda expressions). For our sample lambda code, the 

size of a lambda object is 8 bytes when there is no field reference in the body. However, it increases to 16 

bytes when the body contains field references; it’s 16 bytes regardless the number of referenced fields in 

the body.  
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Why do the Java features under investigation cause the memory overheads? To find an answer, we tracked 

memory allocations of our experiment app using the Memory Monitor tool of Android Studio. The tool can 

track memory allocations for new objects along with their counts and total memory sizes. A sample 

screenshot of tracking is shown in Figure 5, and the tracking results for the Java features under investigation 

are summarized in Table 5. 

 

 

Figure 5. Memory allocation tracking 

 

Table 5. Memory allocations 

Feature Allocator/Classes 
# of objects Total size (byte) 

count % size % 

Iterator java.util.AbstractList$Itr 65535 100.00 1572840 100.00 

For-each 

java.util.AbstractList$Itr 65531 99.99 1572696 99.99 

java.lang.ref.FinalizerReference 2 0.00 80 0.01 

MainActivity$GcWatcher 1 0.00 24 0.00 

java.lang.WeakReference 2 0.00 32 0.00 

Lambda MainActivity.-$Lambda$6 65535 100.00 1048560 100.00 

Stream 

java.util.Spliterators$IntArraySpliterator 5958  9.09 142992 7.90 

java.util.stream.IntPipeline$... (5 classes) 29789  45.46 1000888 55.26 

java.util.stream.ReduceOps$...(2 classes) 11916  18.18 285984 15.79 

java.util.stream.IntPipeline$Head 5957  9.09 285936 15.79 

MainActivity.-$Lambda$1 5958  9.09 47664 2.63 

MainActivity.-$Lambda$2 5957  9.09 47656 2.63 

 

As shown in the table, nearly all memory allocations are due to hidden objects. For features like iterators, 

it is somewhat obvious because an object of the Iterator interface needs to be allocated and initialized. That 
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is, the call values.iterator() in our sample code creates an instance of java.util.AbstractList$Itr. It’s similar 

for the for-each statement because it is at least conceptually translated to a loop that uses the iterator of the 

Iterable object; the Iterable interface defines the iterator() method that returns an iterator. For lambda 

expressions there are also hidden objects involved as described before. The evaluation of a lambda 

expression is similar to an evaluation of a class instance creation expression (see Section 15.27.4 of [8]). 

Either a new instance of a class (e.g., edu.utep.cs.java8demo.-$Lambda$6) that implements the target 

functional interface is allocated and initialized, or an existing instance is referenced. In Java, the 

implementation class is dynamically generated at runtime. However, the lambda body itself is typically 

translated into a static method of the class where the lambda expression appears. For streams, depending 

on the stream operations used, different types of hidden objects are allocated and initialized along with 

lambda objects for the arguments of the stream operations. As shown in Table 5, our sample stream code 

with three stream operations (filter, map, and sum) creates 11 different types of objects. The (average) size 

of a hidden object created (total size / # of objects) is: 24 bytes for iterators and for-each, 16 bytes for 

lambda, and 15 for streams.  

As mentioned in the previous section, we also performed our experiment on Android virtual devices of 

different configurations. First, we varied both the RAM and the VM heap sizes of the devices: 512/16 MB 

(the minimum values allowed by Android Studio) vs. 1024/80 MB. As shown by the bar graph in Figure 6, 

there is no noticeable difference in the amounts of allocated memory as well as GC frequencies.3 This is 

perhaps because the average GC thresholds (7-20 MB) are below the amount of the available memory. 

 

 

Figure 6. Emulators with different heap size, 128 MB and 1025 MB. 

 

At the time of writing, Android Studio provides an experimental feature for specifying the number of 

processing units (cores) of the virtual devices. It can be either 1 or 2. We ran our experiment on two different 

emulators with 1 and 2 cores, respectively. The results are surprising for both the lambda code and the 

stream code. Their GC frequencies are decreased significantly on the 2-core emulator, 2.2 and 2.4 times for 

the lambda and the stream, respectively (see Figure 7). For the stream code, its average heap size on the 2-

                                                           
3 For lambda and streams, the amounts of allocated memory are frequently more than the specified VM heap size of 
16 MB.  
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core emulator is about twice of the 1-core emulator, and this will definitely help in reducing the GC 

frequency on the 2-core (see Figure 8). However, the average heap size of the lambda code is almost the 

same on both the 1- and 2-core emulators. It looks like that, on a faster device with multiple cores, there 

are less memory overheads (GC frequencies) caused by the Java features under investigation. This is indeed 

the case when we compare the results of our experiment on the Samsung device with those of the emulators. 

The Samsung device (with 4 cores) outperforms the emulator (with 1 or 2 cores) up to 6 times in GC 

frequency. We do not know the correlation between GC frequency and the number of cores, although we 

know that ART garbage collectors run more efficiently than Dalvik virtual machine by taking advantage of 

multiple cores; GC runs on a core different from the those for the app code.  

 

 

Figure 7. Emulators with 1 and 2 cores 

 

 

 

Figure 8. GC patterns for the stream code on 1 and 2-core emulators 

 

6. Discussion 
We mentioned in the previous section that our experiment is sort of a worst case analysis in that we run our 

experiment code repeatedly and continuously in an infinite loop. We can find out the exact amount of 

additional memory needed for each feature under investigation. We can use the Memory Monitor tool of 
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Android Studio to track memory allocations for new objects along with their counts and total memory sizes 

(see Table 5 in Section 5). If we know how many new objects are created per execution of the feature, we 

can calculate the overhead. We can also use our experiment code to count the number of loops in GC cycles. 

In Table 6 below, the second column (Avg. # loops) shows the average number of loops per GC cycle, and 

the last column shows the average amount of additional memory needed for the features under investigation. 

The table shows that streams have 34 times more overheads than lambda expressions. In our experiment, 

the stream code creates two lambda objects and many other hidden objects determined by stream operations 

(see Table 5). Even if our experiment is a worst case analysis, there are indeed such cases. A common 

example is code to be called by UI -- especially an animation UI -- directly or indirectly. The screen refresh 

rate of most Android device is 60 Hz, and thus the Android system may call the code up to 60 times per seconds. 

Another example is code handling streaming data; the code runs repeatedly, say once for each unit of the data stream [3]. 

If these features are used sparsely in an app, their impacts are insignificant as indicated by the numbers of iterations needed 

for GC events (the second column of the table). However, if used together in multiple places in an app, they might affect 

the memory performance of the app. It would be interesting future work to find out how frequently these language features 

are used in typical Android apps and what their collective impacts are on the overall memory performance of the apps.  

 

Table 6. Memory overheads for features 

 
Feature 

Avg. # 
loops (/gc) 

Allocated memory (MB) 
Overhead 

(byte/loop) 
Without 
feature* 

With 
feature** 

Overhead 

Iterator 435113 6.54 17.28 10.74 26 

For-each 408477 6.54 18.14 11.06 28 

Lambda 2106384 6.67 27.41 20.74 10 

Stream 41265 10.02 23.46 13.44 342 
*Fixed heap size (no GC); **Average size of allocated heap memory when GC are initiated. 

 

The memory inefficiencies of all the Java features investigated in our experiment are caused by hidden objects. One 

concern is that programmers may not aware of the existence of these hidden objects because they are all allocated and 

initialized by the compiler behind the scene. Another concern is that they may depend on how a compiler translates or 

evaluates at runtime these language features. The Java language specification, for example, doesn’t constrain much on the 

way lambda expressions should be translated to or evaluated at runtime; a new (lambda) instance may be allocated and 

initialized, or an existing one may be reused as long as a few specified properties are satisfied (see Section 15.27.4 of [8]). 

A similar problem was reported in [2] in that iterators, for-each statements, choice of data structure and use of 

local variables affect the memory efficiency of Android apps. It is also said that frequent garbage collection 

may affect the battery power of a device by overheating it [3]. It is bothering that one has to pay close 

attention to hidden objects caused by not only the standard library classes and methods but also built-in 

language constructs like for-each statements and lambda expressions. 

Identifying an app’s performance bottlenecks and address them is critical to the success of the app [9]. For 

example, an Internet blog post says that more than 86% of users have uninstalled apps after using them only 

once due to poor performance [15]. As expected, there are performance tips, guidelines, patterns, code 

smells (anti-patterns), and best practices suggested by different people, some specifically for minimizing 

garbage collection execution time [2] [6] [9] [10] [12]. Our experiment reported in this document answers 

a more fundamental question -- memory overheads of Java language constructs and standard library classes. 

Our finding is unpleasant in that one also has to worry about the memory efficiency of Java language 

features in addition to their own code and the APIs used. 
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It would be interesting future work to find a way for specifying formally the memory requirements of Java 

language constructs, standard library classes, and other program modules. Ideally, such specifications 

should be part of the language and API specifications because they provide a formal basis for reasoning 

about the memory requirement and efficiency of an app. 
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