

Sudoku App: Model-Driven Development

of Android Apps Using OCL?

Yoonsik Cheon and Aditi Barua

TR #17-91
November 2017

Keywords: class invariant, model-driven development, pre and postconditions, Android, Object Constraint
Language (OCL).

1998 ACM CR Categories: D.2.1 [Software Engineering] Requirements/Specificationslanguages; D.2.2
[Software Engineering] Design Tools and Techniquesobject-oriented design methods, state diagrams;
D.2.4 [Software Engineering] Software/Program Verificationclass invariants, formal methods; F.3.1
[Logics and Meaning of Programs] Specifying and Verifying and Reasoning about Programsassertions,
invariants, pre- and post-conditions, specification techniques

A shorter version of this document entitled “Model Driven Development for Android Apps” appeared in
the Proceedings of the 2018 International Conference on Software Engineering Research & Practice, Las
Vegas, Nevada, July 30 - August 2, 2018, pages 17-22, 2018.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A

1

Abstract— Model driven development (MDD) shifts the focus of
software development from writing code to building models by
developing an application as a series of transformations on models
including eventual code generation. Can the key ideas of MDD be
applied to the development of Android apps, one of the most
popular mobile platforms of today? To answer this question, we
perform a small case study of developing an Android app for
playing Sudoku puzzles. We use the Object Constraint Language
(OCL) as the notation for creating precise models and translate
OCL constraints to Android Java code. Our findings are mixed in
that there is a great opportunity for generating a significant
amount of both platform-neutral and Android-specific code
automatically but there is a potential concern on the memory
efficiency of the generated code. We also point out several
shortcomings of OCL in writing precise and complete
specifications for UML models and suggest a few extensions and
improvements to make it more expressive and suitable for MDD.
The reader is assumed to be familiar with OCL.

Keywords— class invariant, model-driven development, pre and
postconditions, Android, Object Constraint Language.

I. INTRODUCTION

Model driven development (MDD) is a paradigm to solve a
number of problems associated with the development of a large
complex application [25]. It relies on the use of models as the
basis for software development and shifts the focus of
development from writing code to building models. The key
idea of MDD, in particular the Model Driven Architecture
(MDA) of the Object Management Group (OMG) [5] [21], is to
develop applications as series of transformations on models and
to generate code automatically from the models. It is also
suggested to construct models at several different abstraction
levels, such as computation independent models (CIM),
platform independent models (PIM), platform specific models
(PSM), and implementation specific models (ISM). The
underlying assumption of MDD, however, is the existence of an
appropriate model -- a representation that is sufficiently general
to capture the semantics of many different domains and yet
precise enough to support eventual transformation into code.

Android is one of the most popular mobile platforms today
paving the way for the development of a flood of apps; the

reported market share of Android-based smartphones in the first
quarter of 2017 is 85.0% (http://www.idc.com). Android
provides its own operating system, libraries, and application
programming interfaces (API), and its apps are written in Java.
Despite the use of Java, the Android application domain is
sufficiently narrow with several interesting characteristics, such
as XML-based UI, event-based reactive apps, life cycles of
apps, and the single active app. However, one key difference is
that Android devices are resource-constrained in storage
capacity and battery lifetime, and thus memory efficiency is an
important quality factor for Android apps [20] [24]. Android
apps are also relatively small and not as complex as typical
enterprise applications. Thus, it is natural to ask whether the
ideas of MDD are applicable to the development of Android
apps and whether the promised benefits of MDD such as
productivity can be obtained even without using MDD-specific
tools. There is no well-known commercial quality MDD tools
for Android.

MDA of OMG [5] [21], one of the best known MDD
approaches, recommends to use well-defined, standard
notations like the Unified Modeling Language (UML) [12] [23].
One key requirement of MDD is the availability of a precise
model to generate working code from it. A formal notation such
as the Object Constraint Language (OCL) [22] [27] of UML can
play an important role to build such a precise model. OCL is a
textual, declarative notation to specify constraints or rules that
apply to models expressed in UML diagrams such as class
diagrams. We would like to know whether UML/OCL is
suitable for creating precise models that can be used as the basis
of MDD.
 In this paper, we perform an experiment to answer the above
two questions. Our experiment is a small case study of applying
the key ideas of MDD to the development of an Android app.
However, unlike previous work on the use of MDD for mobile
apps (e.g., [3] [14] [16]), the purpose of our study is not to
propose new languages, techniques, methods, or toolsets. Our
main objective is to study a practical application of the key
components of MDD -- precise models and code generation -- in
developing Android apps using the standard modeling notation
UML/OCL. Another objective is to study suitability of OCL in

Yoonsik Cheon
 Department of Computer Science

 The University of Texas at El Paso
 El Paso, Texas

ycheon@utep.edu

Aditi Barua
 Department of Economics and Finance

 The University of Texas at El Paso
 El Paso, Texas

abarua@utep.edu

Sudoku App: Model-Driven Development
of Android Apps Using OCL?

2

creating precise models that can be used as the basis of MDD.
We perform our case study manually without using any specific
MDD technology or toolset. We use only a free UML tool to
draw UML diagrams and write and attach OCL constraints to
the UML models [9]. But as said above, it is not our purpose to
evaluate the support tools.

The app we develop is for playing Sudoku puzzles, one of the
running examples used in [18]. Sudoku is a logic-based, number

placement puzzle for a single
player. The objective of the game
is to fill a 99 grid with numbers
so that each column, row, and 33
sub-grid that composes the grid
contains all of the numbers from
one to nine. Thus, the same
number cannot appear more than
once in the same column, row or
sub-grid. Figure 1 shows a
partially solved Sudoku puzzle; a
gray square represents a number

that is given and thus cannot be changed. A game starts with a
partially filled grid, typically having at least 17 numbers,
normally 22-30 numbers. A well-designed puzzle has a single
solution.

Our case study consists of three main steps: (a) creating a
precise specification model, (b) creating a detailed design
model, and (c) generating Android Java code from the design
model. For both specification and design models, we use UML
and OCL and create static models (class diagrams) as well as
dynamic models (state machines). We generate functioning
code manually but systematically from the UML models and
accompanying OCL constraints.

The case study steps are reflected in the structure of this
paper. In Section II below, we create a specification model of
our app to describe precisely what the app has to do. In Section
III, we transform the specification model to a detailed design
model. We incorporate design decisions to the specification
model by extending existing classes and adding new PIM/PSM
classes. The design model consists of an architectural design, a
UI design and detailed designs of classes including algorithms.
In Section IV, we generate functioning Android Java code from
our design models manually. In Section V, we share our
findings and lessons learned from the case study, and in Section
VI, we provide a concluding remark.

II. SPECIFICATION

In this section we create a specification model for our app. Our
specification model consists of two UML diagrams, a class
diagram and a state machine diagram. The class diagram models
the entities and the static structure of our app while the state
machine diagram specifies the dynamic behavior of the app,
specifying the allowed sequences of operation calls.

Figure 2 show the static model. A Sudoku game consists of a
99 grid with numbers, called a board. A 3x3 sub-grid of a

board is called a box, and each cell of the grid is called a square.
The association between Board and Square is derived from the
Board-Box and the Box-Square associations; it is calculated
from the other associations. All the classes appearing in the
diagram will be specified in OCL later in this section.

/squares

Square

x: Integer
y: Integer
number: Integer

hasNumber: Boolean()
permittedNumbers(): Set(Integer)
isConsistent(): Boolean

Box

x: Integer
y: Integer
/size: Integer

at(x: Integer, y: Integer): Square

Board

size: Integer
/boxSize: Integer

at(x: Integer, y: Integer): Square
box(x: Integer, y: Integer): Box
column(x: Integer): Set(Square)
row(y: Integer): Set(Square)
isSolved(): Boolean

Game

init() boxes

81

9

squares9

Figure 2. Class diagram

Figure 3 show a dynamic model of the game. It is a protocol

state machine for the Game class and specifies the allowed
sequence of operation calls.

Filling

Solved

[isSolved()]

init()/A

fill(x,y,n)[P] clear(x,y)[Q] init()/A

clear(x,y)  board.at(x,y).setNumber(0)
fill(x,y,n)  board.at(x,y).setNumber(n)
A  given = board.filledSquares()
P  not isSolved() and given->excludes(board.at(x,y))]
Q  not isSolved() and given->excludes(board.at(x,y))

and board.at(x,y).hasNumber()

Figure 3. Protocol state machine

An initial board configuration, partially filled grid of
numbers that has a solution, is created by the init() operation.
Numbers are filled in or removed from the board until the
puzzle is solved. The guards P and Q in the fill(x,y,n) and
clear(x,y) transitions prevents the fixed number given by the
initial configuration from being replaced or removed. The
composite transition init() allows one to start a new game in any
state. Below we specify OCL constraints for classes appearing
in the class diagram.

A. Game Class

The key responsibility of the Game class is to create a new game
by coming up with a partially filled grid of numbers. As will be
shown later, this turns out to be one of the most complicate
tasks. The partially filled board should have a solution --

Figure 1. Sudoku puzzle

3

preferably one -- and this is expressed by a newly-introduced
operation isSolvable().

context Game::init()
post: isSolvable() and 0 < filled and filled < n
 where n = board.size * board.size,
 filled = board.squares->select(hasNumber())->size()

context Game
def: isSolvable():Boolean = Board.allInstances()->exists(
 size = self.board.size and isSolved() and
 squares->forAll(let s = self.board.at(x, y) in s.hasNumber()
 implies hasNumber() and number = s.number))

A board is solvable if there exists a solved version of it, a
board with all the empty squares filled with non-conflicting
numbers; see Section B below for the specification of the
Board::isSolved() operations. Note that in the specification of
Game::init() we introduced our own extension to OCL, where
clause, to present a constraint in a more structured fashion. It is
a syntactic sugar in that E where D can be translated to let D in E
in the standard OCL.

B. Board Class

A board consists of a set of squares subdivided into boxes. The
size attribute denotes the width and height of a board. The first
invariant below constrains it to be a square, and the second
invariant together with the invariant of the Square class (see
Section C) asserts that each box is uniquely identified by its row
and column indexes.

context Board
inv: size >= 9 and Sequence{1..size}->exists(i | i * i = size)
inv: boxes->isUnique(Tuple{col = x, row = y})

context Board::boxSize: Integer
derive: Sequence{1..size}->any(i | i * i = size)

context Board::squares: Set(Square)
derive: boxes.squares->asSet()

 As shown above, the values of derived attributes and
association ends are specified using the derive clause. Below we
specify several representative operations of the Board class.

context Board::at(x1: Integer, y1: Integer): Square
pre: 0 <= x1 and x1 < size and 0 <= y1 and y1 < size
post: result = squares@pre->any(x = x1 and y = y1)

context Board::column(x1: Integer): Set(Square)
pre: 0 <= x1 and x1 < size
post: result = squares@pre->select(x = x1)

context Board::isSolved(): Boolean
body: squares->forAll(hasNumber() and isConsistent())

The specification of the Board::isSolved() operation states
that a board is solved if each of its squares has a consistent or
non-conflicting number; see Section D for the consistency of a
square.

C. Box Class

A box consists of a set of squares, each denoted by a pair of
0-based column (x) and row (y) indexes. The size of a box is
determined by the size of the board.

context Box:: size: Integer
derive: board.boxSize

context Box
inv: 0 <= x and x < size and 0 <= y and y < size
inv: xys = coords where
 xys = squares->collect(Tuple{col = x, row = y})->asSet(),
 coords = Sequence{0..size-1}->collect(i|

 Sequence{0..size-1}->collect(j|
 Tuple{col = x*size + i, row = y*size + j}))->asSet()

One interesting modeling choice is the indexes of squares (see

also Section D below). They can be local and unique in each
box, e.g. 0Box::size, or global and unique in the board, e.g.
0Board::size. We found that use of square indexes outside the
Box class are for the second type. This choice affects the
formulation of the second invariant above stating that each
square of a board be uniquely identified by its column and row
indexes.

D. Square Class

A square of a board is uniquely identified by a pair of column (x)
and row (y) indexes. A square may have a number between 1
and Board::size, inclusive. An empty square is denoted by the
number 0.

context Square
inv: 0 <= x and x <.board.size and 0 <= y and y <.board.size
inv: 0 <= number and number <= board.size

context Square::hasNumber(): Boolean
body: number <> 0

context Square::permittedNumbers(): Set(Integer)
body: result = all - b - h – v where
 all = Sequence{1..board.size}->asSet(),
 b = box.squares->excluding(self)->collect(number),
 h = board.row(x)->excluding(self)->collect(number),
 v = board.column(y)->excluding(self)->collect(number)

context Square::isConsistent(): Boolean
body: b and h and v where
 b = box.squares->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0,
 h = board.row(y)->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0,

4

 v = board.column(x)->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0

The permittedNumbers() operation returns the set of all
non-conflicting or allowed numbers for a square. A number is
allowed in a square if it doesn’t appear in any other squares in
the same box, column, and row. The isConsistent() operation
determines if a square is consistent. A square is consistent if its
number doesn’t appear in any other squares in the same box,
column, and row. An empty square is consistent, and this can be
inferred from the specification.

III. DESIGN

In this section, we create a detailed design model for our app
that conforms the specification model created in the previous
section. Our design model consists of a UI design, an
architecture, and detailed designs of classes and algorithms. We
uses the model-view-control (MVC) architectural pattern,
where the model (business logic) is separated from the view
(UI) and the control code. This is a good style for Android apps
as the UI of an app can be defined in XML (see Section IV). Our
design model consists of all the classes from the specification
model with some extensions. We also add several new classes.
Although we don’t make a clear distinction between PIM and
PSM, certain extensions to the specification classes and newly
introduced classes are PIM while others are PSM in that they are
Android-specific extensions or classes.

A. UI

Figure 4 shows the layout of the UI consisting of several buttons
(new, delete, and numbers 1-9) and a custom view. A custom
view is used to display the current state of the board in 2-D
graphics as well as to select a square to fill in a new number or
delete the current one.

Figure 4. UI design

We can associate UI events such as button click and screen
touch with game operations as follows.

 New button: Game::init()

 Number buttons: Game::fill(x,y,n), where x and y is the
indexes of the selected square and n is the label (i.e.,
the represented number) of the clicked button.

 Delete button: Game::clear(x,y)
 Screen touch: set the square selection

With these bindings, the protocol state machine in Section II

can be turned into a state machine describing the allowed
sequences of user interactions.

B. Classes

Object-oriented design is all about refining classes from the
analysis or specification model as well as introducing new
classes by making decision or implementation-oriented
decisions. The class diagram in Figure 5 depicts a portion of our
specification model extended with several design decisions.

use

Square

given: Boolean

Board

interface
SelectionListener

selected(s: Square)

BoardView

onDraw(c: Canvas)

interface
ChangeListener

filled(s: Square, o: Integer)

Game

theInstance: Game

getInstance(): Game

activity
MainActivity

onCreate()
onResume()

use

0..1

*

*

BoardModel

squares

board

Figure 5. Design class diagram

 Several new classes and interfaces are introduced, and
existing classes are extended with new attributes, associations
and operations. In Android, an activity is an app component
responsible for a single UI screen. An app may consist of one or
more activities. The MainActivity class is the main entry point
to our app. The BoardView class is a custom view class to
display a board, and the BoardModel is a subclass of Board to
contain view-dependent board data, e.g., the currently selected
square that is to be displayed differently. The Observer design
pattern [11] is used to notify changes in a BoardView and a
Board to interested observers such as MainActivity. For this,
two interfaces SelectionListener and ChangeListener are
introduced. Below we explain in detail some of our design
decisions shown in the class diagram.

One of interesting platform-specific design decisions is to use
the Singleton design pattern [11] for the Game class. The main
reason is to save and restore the game state when the activity is
destroyed and later recreated. On Android, an activity may be
paused, stopped, and destroyed at any time by the operating
system. For example, it is destroyed when the screen orientation
changes or another activity is launched. When the main activity
is (re)created, the single instance of the Game class is retrieved
and thus maintains its previous state automatically. The
specification of the getInstance() operation is shown below.

5

context Game::getInstance()
post: result = theInstance and
 (if theInstance.oclIsUndefined()@pre
 then theInstance.oclIsNew()
 else theInstance = theInstance@pre endif)

The MainActivity class is the controller for the app and is
responsible for configuring the UI and creating various objects
such as a board, boxes, and squares. Below are shown the
specifications of its two lifecycle operations.

context MainActivity::onCreate()
post: game = Game.getInstance()
 and self^setLayout(?: Integer)
 and boardView^addSelectionListener(?: SelectionListener)
 and buttons->forAll(b |
 b^setOnClickListener(?: View::OnClickListener))

context MainActivity::onResume()
post: game = Game.getInstance() and boardView^invalidate()

The onCreate() operation is defined by the Android
framework and is called when an activity is newly created. It is
responsible for configuring the UI and creating the initial state
of the activity. The UI configuration and the event handler
registrations are loosely specified using the OCL message
expression. The OCL hasSent (^) operator specifies that a
specified message should be sent during the execution of the
operation [22]. As shown here, our approach for specifying
Android framework operations is to focus only on the key state
change or to gross over the state change and instead specify the
interactions needed to achieve the change (see Section V for a
discussion on this). The onResume() operation is called when an
activity starts interacting with the user. It restores the state of the
activity and refresh the board view to display the restored state.

The BoardView class is a custom view class to display a
board. It also responds to a touch event to select a square of the
displayed board. The BoardView class is associated with a
subclass of the Board class, named BoardModel, to remember
the view-specific board data such as the currently-selected
square.

context BoardModel
inv: square <> null implies squares->includes(square)

context BoardView::onDraw(c: Canvas)
post: self^drawLines(c) and (selected <> null implies

 self^drawSquare(c, selected, ?: Paint)) and
 (board.squares->forall(s| s.hasNumber() implies

 self^drawSquare(c, s))
 where selected = board.square

context BoardView::drawSquare(c:Canvas, s:Square, p:Paint)
post: let w = getMeasuredWidth().min(getMeasureHeight())
 / board.size, x = s.x * w, y = s.y * w

 in c^drawRect(x, y, x + board.size, y + board.size, p) and
 (s.hasNumber() implies
 c^drawText(s.number, ?: Real, ?: Real, ?: Paint))

The onDraw() operation is an Android framework operation
overridden to draw a custom view such as BoardView. As
shown in its specification, drawing a 2-D representation of a
board involves drawing horizontal and vertical lines of the grid
(drawLines) and drawing the numbers for all the squares of the
board (drawSquare). The screen coordinates of a square are
calculated from its indexes as well as the width and height of the
screen. These operations are loosely specified using the OCL
message expressions. Their postconditions constrain only that
appropriates drawing messages be sent during the execution;
they don’t say anything about the effect or state changes.

On Android, one way to detect a touch gesture that occurs
when a user places one or more fingers on the touch screen is to
override the onTouchEvent() operation in a view class. As
specified below, it determines the square displayed at the
touched screen coordinate (see the locateSquare() operation),
sets the square selection, refreshes the view by invaliding it, and
notifies the new selection to all registered listeners. The
notification of a new selection can be elegantly specified using
the OCL message expression.

context BoardView::onTouchEvent(e: MotionEvent)
post: e.getAction() = MotionEvent.ACTION_UP implies
 let s = locateSquare(e.getX(), e.getY()) in
 s <> null implies board.square =
 (if s = board.square@pre then null else s endif)
 and self^invalidate()
 and changeListener->forall(l| l^selected(s))

context BoardView::locateSquare(x: Real, y: Real): Square
pre: 0 <= x and x <= getMeasuredWidth()
pre: 0 <= y and y <= getMeasuredHeight()
post: let w = getMeasuredWidth().min(getMeasureHeight())
 / board.size, m = w * board.size
 in result = if x > m or y > m then null
 else board.at((x/w).floor(), (y/w).floor()) endif

In our design, we didn’t make a clear distinction between
PIM and PSM, but several newly-added classes such as
BoardView and MainActivity are PSM while others such as
BoardModel and listener interfaces are PIM. Similarly, the
Game extension is PSM while the Square extension is PIM.

C. Algorithms

For operations whose pre and postconditions cannot be
translated directly to executable code, we design algorithms for
them. One such operation is the Game::init() operation to create
an initial board configuration. It creates a partially filled grid of
numbers such that each number 1 to 9 occupies each row,
column and box just once. Ideally, the created grid should have
only one solution. In this section, we design one possible

6

algorithm for the operation and describe it by drawing a
behavioral state machine (see Figure 6).
 Our algorithm consists of two steps: creating a solved grid of
numbers and removing numbers repeatedly that, upon removal,
are likely to produce a single solution. To determine the
likelihood of one solution, a candidate number is removed from
the board and then the board is solved again. If the solver fills
the candidate square with the same number, it is more likely to
have a single solution; otherwise, the candidate square is
rejected and a new one is attempted. The key of our algorithm is
a solver that finds a solution for an empty or partially filled
board. Below we design a solver based on backtracking. A
backtracking algorithm constructs a solution by making
succession of choices. If there is no choice available, it retraces
backwards through the choices made, undoing their effect, until
an alternative choice is found.

[c->size() < N]

/P

[c->size() > N]
/s = c->any(true); v = s.number();
s.setNumber(0); solver.solve()

A  c = board.squares->select(hasNumber())
P  [board.squares->forAll(s| c.excludes(s) implies s^setNumber(0)]

[s.number = v]
/s.setNumber(0)

[s.number <> v]
/s.setNumber(v)

entry: A

/board.clear(); solver.solve()

Figure 6. Algorithm for creating a new game

Solver

solve():Boolean

Assignment

values: Integer[*]

perform
undo()
hasAlternative(): Boolean

Board Square
squares

*

history

{ordered}
*

Game

init()

Figure 7. Design of a backtracking solver

As shown in Figure 7, a solver has a history of choices made,

where a choice is an assignment of a number to a square. The
Assignment class represents a choice as a tuple of a square and
alternative numbers assignable to the square. Below we first
specify Solver::solve() operation and then design its algorithm.

context Solver::solve(): Boolean
post: result = isSovable()@pre and
 (result implies board.isSolved() and board.squares->forAll(
 hasNumber()@pre implies number = number@pre)

context Solver

def: isSolvable():Boolean = Board.allInstances()->exists(
 size = self.board.size and isSolved() and
 squares->forAll(let s = self.board.at(x, y) in s.hasNumber()
 implies hasNumber() and number = s.number))

The specification of the newly-introduced isSolverable()
operation is similar to that of the Game class. The behavioral
machine shown Figure 8 describes a backtracking algorithm for
the solve() operation.

/fillDetermined()

[board.isFilled()]
/result = true

[not board.isFilled()]
/s = pickSquare()

[s == null]
/ok = backtrack()

[!ok][ok]

[s <> null]
/assign(q)

[conflict()]

[not conflict()]
/history.clear()

/result = false

Figure 8. Backtracking algorithm

 The key of the algorithm is first to fill all empty squares that
have only one permitted number (fillDetermined). A number is
permitted in a square if it doesn’t appear in the row, column, and
box of the square. The algorithm then picks an empty square
that has permitted numbers (pickSquare) and assigns one such
number to the square (assign). If no square can be picked, the
algorithm does backtracking (backtrack). Below we specify the
helper operations introduced in the state machine diagram.

context Solver
def: conflict():Boolean =
 board.squares->exists(not isConsistent())

context Solver::fillDetermined()
post: board.squares->forAll(not hasNumber()@pre and
 permittedNumbers()@pre->size() = 1 implies
 number = permittedNumbers()@pre->any(true))

context Solver::pickSquare(): Square
post: result = if c->size() > 0 then c->any(true) else null endif
 where Square::isPickable():Boolean = not hasNumber()
 and permittedNumber()->size() > 0,
 c = board.squares@pre->collect(s| isPickable() and
 board.squares@pre->forAll(isPickable() implies
 permittedNumbers()->size()
 >= s.permittedNumbers()->size())

7

context Solver::assign(s: Square)
post: let a = new Assignment(s)
 in a^perform() and history = history.append(a)@pre

The pickSquare() operation is specified to pick a square that
is empty but has at least one permitted value. If there are more
than one such square, it picks an arbitrary square with the
smallest number of permitted values. The specification of the
Solver::backtrack() operation is complicate and involved
despite its straightforward algorithm, so instead of specifying it
in OCL we design its algorithm directly (see Figure 9).

[h->isEmpty()]
/result = false

[not a.hasAlternative()]
/a.undo();
h = h->excluding(a);

[a.hasAlternative()]
/a.perform();
result = true

[h->notEmpty()]
/a = h->last(); a.undo()

h  history

Figure 9. Algorithm for the backtrack operation

The specification of the Assignment class are shown below.

context Assignment::Assignment(s: Square)
post: square = s and values = s.permittedNumbers()

Assignment::perform()
pre: values.size() > 0
post: let n = values.any(true)@pre in
 square.number = n and values = values->excluding(n)@pre

Assignment::undo()
post: square.number = 0

Assignment::hasAlternative(): Boolean
body: values.siz() > 0

IV. IMPLEMENTATION

In this section, we explain how we translate our design shown in
the previous section to functioning Android Java code including
both the UI and the functional core. The key of our translation
approach is to generate code incrementally on a need basis. We
first generate skeletal code from the class diagram considering
only the structural aspect such as classes and their attributes. We
then translate operations to Java methods, considering one
operation at a time. We focus on core operations that are
explicitly specified in the model. The underlying idea is to
introduce additional structural elements (e.g., fields for
associations) and behavior such as helper methods (e.g., getter
and setters for fields and association ends) on a need basis. This
will let us to generate minimal code with minimal effort.

The UI of an Android app is typically defined declaratively in
XML, called a layout. We create our layout XML file using the
Layout Editor of Android Studio, a visual editor for creating
layouts by dragging widgets. We use a recently-introduced
layout called ConstraintLayout as our base layout. It allows us
to compose our layout file corresponding to the UI design of the
previous section entirely by dragging and dropping (see Figure
10).

Figure 10. UI implementation

We next translate our detailed design -- consisting of a class
diagram, OCL specifications, and behavioral state machines --
to functioning Java source code. This involves translating both
the structure (attributes and associations) and the behavior
(pre/postconditions and behavioral state machines). As said
earlier, we introduce getters and setters for attributes and role
names (association ends) on a need basis. For this, we check for
the readOnly property for an attribute. We also look at each
occurrence of an attribute and a role name in OCL constraints to
determine if it appears in a read context or a write context.
Every occurrence in an invariant and a precondition is a read
context. An occurrence in a postcondition is in general a write
context unless suffixed with @pre; an unqualified feature
denotes its new value in the post-state, which may be different
from its pre-state value. For an attribute and an association end
with multiplicity bigger than one, its getter returns an immutable
view of the collection to prevent mutation, e.g., the getter of the
squares role of the Box-Square association is defined as:

 public List<Square> squares() {
 return Collections.unmodifiableList(squares);
 }

We may also introduce additional helper operations to

manipulate a single element of a collection, e.g., to access an
element, add a new element, or remove an existing element. For
an association, we determine its navigability based on its use in
OCL constraints. In general, a derived attribute and association

8

is translated to a getter; its return value is determined by the
OCL derive expression of the attribute and association.

While the class diagram is used to generate the basic
structural elements of an implementation, it is necessary to use
OCL constraints and dynamic models like behavior state
machines to generate the detailed functional behavior of an
application. Operations of classes are translated to methods
based on either their postconditions or behavioral state
machines. A behavioral state machine can be automatically
translated to functional code if it is written in the style used in
this paper. For example, the behavioral state machine of the
Solver::solve() in Section III.C can be translated to the
following code.

public boolean solve() {
 if (conflict()) { return false; }
 history.clear();
 while (true) {
 fillDetermined();
 if (board.isFilled()) { return true; }
 Square s = pickSquare();
 if (s != null) { assign(s); }
 else if (!backtrack()) { return false; }
 }
}

 When an operation doesn’t have an algorithm specified as a
behavioral state machine. We use its postcondition to generate
its functional code. Its precondition can also be used to generate
a runtime check to determine whether the assumption of the
operation is met or not [1] [7]. When the postcondition is
written in an explicit style in which the expected change in the
value of features are specified definitely, it can be used to derive
code systematically. The new features of Java 8 language and
APIs such as lambda expressions and the Stream API are of
great help in systematically deriving concise code from
constraints [13]. The OCL collection iterators such as forAll can
be translated to the corresponding Java stream operations such
as allMatch and their argument expressions to Java lambda
expressions. For example, shown below is one possible
translation of the Square::isConsistent() operation described in
Section II.D.

context Square::isConsistent(): Boolean
body: b and h and v where
 b = box.squares->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0,
 h = board.row(y)->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0,
 v = board.column(x)->select(s| s <> self and
 hasNumber() and number = self.number)->size() = 0

public boolean isConsistent() {
 return isConsistent(box.squares())
 && isConsistent(board.row(y))
 && isConsistent(board.column(x));

}

private boolean isConsistent(Collection<Square> sqs) {
 return sqs.stream().filter(s -> s != this &&
 s.hasNumber() && s.number() == number()).count() = 0;
}

 The OCL select iterator is nicely translated to the Java stream
method filter and its argument expression becomes a lambda
expression in Java. The resulting code thus has a structure
similar to that of the OCL constraint. As shown above, private
helper methods may be introduced to factor out common
subexpressions of constraints.
 Generating code for update operations are more involved
than query operations, as one needs to figure out the features
whose values have to be changed. As an example, let us
consider the Solver::fillDetermined() operation (see Section
III.C).

context Solver::fillDetermined()
post: board.squares->forAll(not hasNumber()@pre and
 permittedNumbers()@pre->size() = 1 implies
 number = permittedNumbers()@pre->any(true))

The postcondition constrains those squares of the board that
are empty and have exactly one permitted value in the pre-state.
The number attributes of these squares have to be modified to
satisfy the postcondition; that is, the modifiable features are
uniquely determined. In spite of the use of the any operation that
picks an arbitrary element of a collection, the post-values of the
number attributes are not loosely specified because the
collections are singletons. Thus, Java code can be generated
from the postcondition as shown below. We use the forEach
method defined on collections.

private void fillDetermined() {
 board.squares().forEach(s -> {
 if (!s.hasNumber()
 && s.permittedNumbers().size() == 1) {
 s.setNumber(s.permittedNumbers().get(0));
 }
 });
}

 We often have to address platform-specific restrictions or
constraints during the implementation. For example, there is a
one-to-one association between BoardView and BoardModel in
our design model. However, this one-to-one relationship cannot
be maintained as an invariant on Android because views are
automatically created by the system according to the layout
specified in XML. There is no way to provide a board object to
the constructors of the BoardView class. Therefore, the
multiplicity of the Board end of the association needs to be
weakened to 0..1. And all its occurrences in OCL constraints
need to be checked for nullness. For example, we need to

9

change the specification of the BoardView::onDraw operation
as follow (see Section III.B).

context BoardView::onDraw(c: Canvas)
post: board <> null implies …

In fact, this revised specification produces more robust code
that works harmoniously in the Android environment. Due to
the new non-nullness guard, the onDraw method should work
even if there is no associated board. As the result, Android tools
like the Layout Editor will be able to display the BoardView
class correctly.

As described above, we translated our specifications and
design models to functioning Android Java code sort of
semi-automatically without much coding effort.1 The generated
code satisfies the constraints of our models, such as class
invariants and operation postconditions. Table 1 provides a
summary of the generated classes. For each field and method of
a class, we traced its source: specified attribute/operation
(spec), derived attributes (deri), associations (assoc), attributes
(attr), and helper methods (help).

Table 1. Summary of generated code

Class
Fields Methods

spec deri assoc spec attr assoc help
Game 1 1 4 2
Board 1 1 2 5 1 6
Box 2 1 2 1 1
Square 4 2 3 6 5
Solver 2 6
Assign 1 1 3 1
BdView 1 2 4 4 7
BdModel 1 3
Activity 1 4 3 9

Total
11 2 17 29 12 27

30 74

In our specification and design models, there are nine classes
with ten associations among them. All nine classes appear in the
implementation with total 30 fields and 74 methods (without
counting constructors), and Java source code consists of 1279
lines2. Among the 30 fields, more than half (57%; 17/30) are
generated from associations. This is generally a good sign for an
object-oriented program. It indicates that there exists a
significant structure in the program. It may also mean that the
functionalities of the program are well distributed among the
classes. Indeed, the method spec column shows that operations
are well distributed among the classes. One interesting
observation is that only 39% (29/74) of methods are from the
operations explicitly specified in the model. The rest are from
attributes, associations, and common subexpressions of

1 However, two Android framework-related classes BoardView and

MainActivity required manual coding work; their behavior are not completely
specified in the model.

2About 43% (553 lines) of source code are for two Android framework
–related classes: BoardView and MainActivity.

operation specifications (helpers). The percentage will decease
further with getter and setters for such attributes as size, x, and y
of Box and Square classes that are currently translated to final
fields. This means that one needs to focus on specifying and
designing only interesting, core operations that account for less
than 40% of operations, and the rest of the operations --
secondary, uninteresting or helper operations, which are not
even specified as operations in the model -- can be generated
automatically. In sum, a significant amount of code can be
generated automatically.

V. FINDINGS AND DISCUSSION

A. Code Generation

There is an opportunity for generating a significant amount of
code automatically from models. Besides code that can be
translated from constraints and behavioral state machines,
operations can be derived on a need basis from the static
structures expressed in class diagrams, e.g., operations for
accessing attributes and traversing associations. In our app, for
example, more than 60% of operations are of these and other
helper operations mechanically generated from the models. It is
also possible to automatically generate platform-specific code
from models. An example is code to preserve the state of an app.
Remember that when an event like screen orientation change
occurs, an activity is destroyed and a new instance is created by
the system. One way to preserve an activity’s state is to use the
Singleton design pattern as we did in Section IV. A new
Singleton class with operations to store an activity’s state and
retrieve the stored state can be generated from a model, and
calls to these operations can be added to appropriate framework
methods such as onPause() and onResume(). Thus, one only
needs to indicate in the model the attributes whose states have to
be preserved, say, using a custom stereotype; such a stereotype
can be defined in a UML profile. One key benefit of generating
these kinds of code automatically is that one can focus on
specifying and designing only more meaningful and interesting
operations so called business logic or functional core. Another
benefit is that one does not have to consider or even express in
the model the detailed design or implementation decisions such
as the visibility of features and the navigability of associations.
The resulting model is more readable, as it doesn’t distract the
reader with unimportant design or implementation details.

We learned that the process of creating a precise model
provides an opportunity for refactoring the model. In a sense, it
forces one to review and evaluate the current model and thus
refine and improve it. This happens naturally as part of
formulating and writing constraints. For example, one
functionality of the BoardView class is to let the user select a
square to enter a new number or delete an existing one. In our
initial design, we introduced an attribute in the BoardView class
to store the selected square. We also introduced a corresponding
attribute in the Game class to remember the selected square
throughout the app’s lifecycle, e.g., when the app is destroyed
and recreated. We immediately noticed a deficiency of this
design when we started formulating the behavior of the activity

10

lifecycle methods such as onPause() and onResume(). Since all
such attributes have to be stored in and restored from the game
object one by one, the design leads to long, unstructured
constraints. We refactored our initial design by introducing a
view-specific subclass of the Board class named BoardModel to
remember view-specific data (see Section III.B). This produces
not only a clean and extensible design but also simple
specifications for the onPause() and onResume() methods. In
fact, no additional constraint is needed because it is done
automatically by the singleton game object composed of a
board.

A precise model also facilitates evolution of an application.
We made several enhancements to our app along with options to

enable and disable new features:
displaying all permitted numbers
for empty squares, undoing and
redoing assignments of numbers to
squares, and the calculation of
uniquely determined numbers for a
set of squares (see Figure 11). The
first enhancement didn’t require a
significant change in our model.
The others required new model
classes (e.g., stacks to keep track of
undoable/re-doable actions), new
UI elements (e.g., undo/redo
buttons), Android specific classes
(e.g., PreferenceFragment and its

activity), and changes to existing classes. Our models provided
us a good guidance in developing these enhancements by
allowing us to identify the required change along with its impact
in the models and the source code as well, e.g., modification of
specifications, modification of the design to satisfy the modified
specifications, and consequent modification of the source code.
The preciseness of the model helped us to come up with an
extended design with minimal change in order to support the
enhancements.
 One potential concern for automatically-generated code,
however, is its runtime performance. Since Android devices are
resource-constrained in storage capacity and battery lifetime,
performance is always a concern in developing an app [24]. It is
even said that identifying an app’s performance bottlenecks and
addressing them is critical to the success of the app [20]. For
example, Android has a memory conservation mechanism
known as Low Memory Killer (LMK) that, upon shortage of
memory, starts killing background and inactive processes to
reclaim their memory [28]. Another concern is that a
performance problem hardly show up in the model. It is
revealed only after the model is transformed to code and
executed. In fact, we encountered such a performance problem
in one of our operations whose constraints was directly
translated to Java 8. The Solver::pickSquare() operation picks a
square to fill in a number (see Section III.C), and its OCL
specification and translated code are shown below.

context Solver::pickSquare(): Square

post: result = if c->size() > 0 then c->any(true) else null endif
 where Square::isPickable():Boolean = not hasNumber()
 and permittedNumber()->size() > 0,
 c = board.squares@pre->collect(s| isPickable() and
 board.squares@pre->forAll(isPickable() implies
 permittedNumbers()->size()
 >= s.permittedNumbers()->size())

private Square pickSquare() {
 List<Square> c = board.squares().stream()
 .filter(this::isPickable).collect(Collectors.toList());
 Square result = null;
 if (c.size() > 0) {
 int m = c.stream().mapToInt(s ->
 s.permittedNumbers().size()).min().getAsInt();
 c = c.stream().filter(s-> s.permittedNumbers().size() == m)
 .collect(Collectors.toList());
 result = c.get(random.nextInt(c.size()));
 }
 return result;
}

private boolean isPickable(Square s) {
 return !s.hasNumber() && s.permittedNumbers().size() > 0;
}

As said in the previous section, we use Java 8 features such as
lambda expressions and the Stream API to generate code from
OCL constraints. The OCL collection iterators such as collect
are mapped to the Java stream operations such as filter and their
argument expressions to lambda expressions. The code is a
direct translation of the postcondition except for some
performance improvements; e.g., in order to pick a square that
has the least number of permitted values, it calculates the
smallest size of permitted values of all squares and stores it in a
local variable instead of comparing a candidate square to all
other squares. The above code, however, failed to create a new
game. There were too frequent garbage collections (see Figure
12), suspending all threads several times and eventually closing
the app.

Figure 12. Pattern of garbage collection events

We rewrote our initial code to make it more memory efficient
by reducing the number of garbage collections. Since stream
operations create hidden objects and cause significant memory
overheads [10], we refactored our code to remove them as
shown below.

private Square pickSquare() {
 Square result = null;

Figure 11. Enhanced UI

11

 int min = Integer.MAX_VALUE;
 for (Square s: board.emptySquares()) {
 int c = s.permittedNumbers().size();
 if (c == 0) { return null; } // not solvable!
 if (c < min || (c == min && random.nextBoolean())) {
 min = c; result = s;
 }
 }
 return result;
}

 This new code fixed our problem. When a new game is
created, it triggers only one or two garbage collection events
without causing all threads be suspended. However, we soon
learned that the real cause of our problem was not the use of
streams though it aggravated the problem. Our new code fixed
the problem accidently by the way it was written -- i.e., a case
analysis on the number of permitted values. When there is an
empty square with no permitted number, it returns null. Thus, it
forces backtracking as soon as the board becomes unsolvable
without performing sort of exhaustive search for other empty
squares. When we made this fix to our original code, it worked
although its memory performance was not as good as the new
code. We revisited our specification of the Solve::pickSquare
operation to admit only this more efficient code as shown
below.

result = if board.squares@pre->exists(not hasNumber() and
 permittedNumber() = 0) or c->size() = 0 then null else …

We learned that developing a good model is an iterative

process. As shown above, coding can be an effective way to find
a problem in a model and improve it. It is difficult to verify and
validate a model alone while it is often rather straightforward to
generate code from a specification and to observe its runtime
behavior. Unlike the above example, however, it doesn’t have to
be a performance-related issue. As an example, consider the
Solver::fillDetermined() operation from Section III.C.

context Solver::fillDetermined()
post: board.squares->forAll(not hasNumber()@pre and
 permittedNumbers()@pre->size() = 1 implies
 number = permittedNumbers()@pre->any(true))

It is supposed to fill all the empty squares that have a single
permitted number. The specification looked good to us though
there is some incompleteness (see below). However, when we
ran the generated code, the solver behaved strangely. We were
able to track the cause to the fillDetermined() method, whose
code is a simple, direct translation of its specification and is
indeed correct (see Section IV). There was a problem in the
specification itself. Missing in the specification is a key
constraint asserting all the newly assigned squares have to be
remembered for backtracking. We fixed our specification as
follows.

context Solver::fillDetermined()
post: board.squares->forAll(s| not hasNumber()@pre and
 permittedNumbers()@pre->size() = 1 implies
 number = permittedNumbers()@pre->any(true) and
 history^append(new Assignment(s)))

We used the OCL message expression (^) to add the new
constraint. Note that it is also possible to simplify the whole
consequent of the implication (the implies operation) to
self^assign(s). Ironically, while tracking the cause of the
problem, we also came up with a more efficient algorithm.
Filling a number in a square may make other squares to be
“determined”, and we can fill these squares too as shown below.

private void fillDetermined() {
 boolean[] found = { false };
 do {
 found[0] = false;
 board.squares().forEach(s -> {
 if (!s.hasNumber()
 && s.permittedNumbers().size() == 1) {
 assign(s); found[0] = true;
 }
 });
 } while (found[0]);
}

B. OCL

Is OCL a good notation for constructing a precise model for
MDD approaches? Our finding is that it is expressive and
reasonably good for writing single-state assertions such as class
invariants, derived attributes and associations, and behavior of
query operations. However, it is hard to write complete
specifications in OCL for update operations and constraints
involving multiple states, often called history constraints. For
example, the specification of the Solver::fillDetermined()
revised in the previous subsection is still incomplete. It
constraints only the number attributes of those squares that are
empty and have a single permitted value in the pre-state. What
should be the new values of other attributes? What about other
squares of the board or the board itself? What is missing in OCL
is a built-in language construct for specifying the so-called
frame axiom that essentially says “and nothing else changes”
[2]. Some common but potentially imprecise approaches are to
assume that only those objects mentioned in the postcondition
are allowed to change, and objects that are not specified to
change in the postcondition do not change [17]. We also found
that it is often more intuitive and straightforward to design a
step-by-step algorithm than to write pre and postconditions for
an operation. For example, instead of writing an OCL
constraint, we drew a behavioral state machine to express the
behavior of the Solver::backtrack() operation that does
backtracking. In general, when a constraint involves side effects
on a series of hidden internal states, it is hard to formulate it
because, besides the frame problem, there is no direct way to

12

refer to the hidden internal states to order or accumulate the side
effects. Another example is the improved version of the
fillDetermined() operation in the previous subsection whose
behavioral machine produces a more concise and clearer
description. We also learned that OCL are not effective in
specifying the behavior of Android framework classes and their
operations involving user interactions or collaborations among
objects (see below).
 We found that OCL message expressions are useful in
specifying certain behavior of operations. One common use is to
specify in a postcondition that a certain interaction should
happen, e.g., invoking a callback operation or notifying an event
to an observer. The OCL hasSent (^) operator allows one to
specify this elegantly at a higher level of abstraction, i.e.,
without worrying about the state change due to the interaction.
As described in Section III.B, for example, the
BoardView::onTouchEvent() operation should notify to its
observers when a square is touched and selected, and this
behavior is specified as: listeners->forAll(l | l^selected(s)),
where s is the selected square. In fact, it is impossible to specify
the state change caused by the callback operation such as
selected in this example because each observer may implement
it differently and thus have different behavior. Another common
use of the OCL message expression in our specifications is
when we know how to achieve the required state change but
specifying it is too involved or worthless. For example, the
BoardView::onTouchEvent() operation has to refresh its display
when a square is selected (see Section III.B). This behavior can
be succinctly specified as: self^invalidate(); the invalidate
operation is an Android framework method to force a view to
draw itself. As shown above, judicious use of the message
expressions in postconditions can improve the clarity and
readability of the constraints. However, one has to be cautious
when both query expressions and message expressions are used
in a single constraint because the specified message sending
may happen in any intermediate state, not necessarily in the final
state. As an example, consider a constraint, board.square = s
and self^invalidate(), where s is a new selection. This constraint
is from the postcondition of the BoardView::onTouchEvent()
operation, and the intention is to assert that the operation sets s
as a new selection and then refresh the display. What is
specified, however, is loose in that the invalidate message may
be sent before the new selection is set; it may happen at any time
during the execution of the operation.
 We often extended the vocabulary for writing constraints,
given by OCL and the class diagram. For example, to specify
the behavior of the Game::init() operation, we introduced a new
query operation named isSolvable() that tests whether a board
configuration has a solution or not (see Section II.A). For this,
we used the OCL def constraint, in which a helper attribute or
operation is defined. We found that this feature of OCL is very
useful in writing constraints partly because unlike the let
expression it enables reuse of attributes and operations in
multiple places. We believe that, like specification-only features
of other formal specification languages such as JML [6], such

attributes and operations do not have to be implemented3, and
thus they can be used to write constraints at a higher level of
abstraction than given by the underlying UML models like class
diagrams. We also introduced locally scoped functions (query
operation) in our own extension to OCL, the where clause (see
Section II.A).
 During the design, we often encountered certain aspects of
the underlying UML model that are difficult or simply worthless
to formulate. Most of these are Android-specific detailed
designs, e.g., specifications of operations such as onCreate and
onDraw that override methods inherited from Android
framework classes. Our approach was either to write constraints
for only those aspects that are doable in OCL and worthwhile to
do so or to focus on interactions (i.e., messages to be sent) by
abstracting away from the required state changes. Thus, our
specifications are partial or incomplete, lacking the parts that
are not formalized. One desirable feature of OCL is a way to
include them in a constraint – even if they are not formally
written – to make the constraint complete. A construct similar to
the informally expression of JML [19] is desirable to escape
from formality and to combine formal and informal texts in a
single constraint. For example, one can write a constraint like
the following.

(* buttons from the current layout *)->forAll(not isEnabled())

The text enclosed in a pair of (* and *) is an informal
expression in that its meaning is not given formally. Even if the
constraint cannot be interpreted by a tool, it will be helpful for a
human reader or programmer; it is a lot better than completely
omitting it.

As said earlier, the OCL message expression was useful to
either specify the required collaboration among objects or
abstract from the required state changes. For example, the
BoardView::setBoard() operation can be specified as follows.

context BoardView::setBoard(b: Board)
pre: b <> null
post: board = b and b^addChangeListener(?: ChangeListener)

The operation sets the board to be displayed and registers a
listener to the board to refresh the display when there is a change
in the board. However, the postcondition says nothing about
refreshing the current display. It only states that the
addChangeLister operation be invoked during the execution; it
doesn’t constrain the listener itself passed as the argument. A
notation similar to the Java lambda expression [26] would be
useful for constraining the callback operation. For example, the
above conjunct may be rewritten as:

b^addChangeListener((s,v) -> post: self^invalidate())

3 The OCL standard says that a «definition» constraint is identical to

defining an attribute/operation in the UML with stereotype «OclHelper» with
an attached OCL constraint for its derivation [22].

13

 A lambda-like notation is used to specify the behavior of the
callback operation. The two argument (s, v) represents the
square whose number was changed and its old number as
declared in the ChangeListerner interface. Of course, the
lambda body consists of OCL constraints such as pre- and
postconditions. The registered listener now should invoke the
invalidate operation when a board change event occurs. A
related improvement would be to provide a way to “quote” or
refer to another constraint, e.g., the postcondition of another
operation [15]. It would allow one to assert a condition or state
change stated in another constraint without duplicating it. We
believe notations like these be very useful for modeling and
specifying Android apps. Android apps tend to become more
complex reactive systems, constantly reacting on inputs from
user interfaces or sensors as well as communicating with
different network protocols. Thus, it is essential to be able to
specify these interactions precisely in the model.
 We can also image Android platform-specific support for
writing OCL constraints. One feature of the Android platform is
its use of UI layouts written in XML. An Android activity may
be associated with multiple layouts, e.g., one for portrait mode
and another for landscape. One handy feature would be an
abstract way of referring to views contained in the current
layout, e.g., all the buttons or buttons satisfying a certain
property. For example, the following expressions can be used to
retrieve all buttons or a button with a label ‘X’.

layout->select(oclIsKindOf(Button))
layout.button->any(text = ‘X’)

Once a suitable abstraction of a layout is determined (e.g., a
set of views or a composition of views), a derived attribute or
query operation, say layout, may be introduced to the Android
Activity class so as to be inherited by all user-defined activity
classes.

VI. CONCLUSION

We performed a small case study of developing an Android
app by applying the key ideas of MDD – creation of precise
models and code generation. Our findings are mixed. There are
of course obvious benefits of creating precise models. By
writing OCL constraints, for example, one is in fact examining
and evaluating one’s models constantly even though one may
not realize it; e.g., a long or complicate constraint may indicate a
deficiency in one’s model. Thus, it is more likely that one
produces a better model in the end. Even if it is done manually,
we generated a significant amount of platform-neutral and
Android-specific code from our model, including functioning
code derived from OCL constraints and behavioral state
machines. An interesting result is that only 39% of methods are
from the operations explicitly specified in the model. The rest of
the operations are from attributes, associations, and common
subexpressions (helper operations) of constraints, all of which
are derived straightforwardly. Thus, one benefit of MDD is that
it allows one to focus on specifying and designing only

important and interesting operations; one does not have to
consider or even express in the model uninteresting detailed
design or implementation decisions such as the visibility of
features and the navigability of associations. Since Android
devices are resource-constrained in storage capacity and battery
lifetime, however, one problem with automatically generated
code is its performance, especially memory efficiency[24]. In
fact, we encountered such a problem in one of our operations
whose postcondition is directly translated to Java 8. The
generated method caused so frequent garbage collection that it
suspended all threads several times and eventually closed the
app. As in our case, performance problems seldom show up in
the model and thus hard to detect during the design; they are
revealed only when the generated code is tested. A more
fundamental question regarding performance is that
specifications are generally written with clarity in mind, not for
efficiency. Can the code generated from such specifications be
efficient on Android?

Regarding the use of OCL, we learned that OCL can be an
effective notation for writing constraints involving a single
state, e.g., invariants, derived attributes and associations, query
operations, and preconditions of update operations. However, it
lacks expressiveness for writing complete specifications of state
changes as well as being precise on the required interactions in
postconditions. Android apps are becoming highly interactive
and more complex reactive systems. For example, 43% of our
source code lines are for two Android framework-related UI and
control classes; they required most of our manual coding work.
It would be challenging to specify in OCL the rich interactions
possible on the Android platforms abstractly and at the same
time sufficiently detailed so as to generate efficient code.

Is MDD a practical approach for developing Android app?
As we did in our case study, the key components of MDD such
as precise models and code generations can certainly be
incorporated into the development of Android apps. However,
one needs to consider the effort as well as the skills needed to
create precise models. Thus, it may not be such an attractive
approach for developing typical Android apps like our Sudoku
app. However, it may be possible to reap the benefits of MDD
for a certain types of apps such as health-related apps (e.g., [4]
[8]) that require high assurance in meeting functional
correctness or satisfying appropriate safety or regulatory
requirements.

REFERENCES

[1] C. Avila, et al., Runtime constraint checking approaches for OCL, a
critical comparison, International Conference on Software Engineering
and Knowledge Engineering, July 1-3, 2010, pp. 293-398.

[2] A. Borgida, et al., “… And nothing else changes”: the frame problem in
procedure specifications, 15th International Conference on Software
Engineering, pages 303-314, Baltimore, MA, May 1993.

[3] G. Botturi, et al., Model-driven design for the development of
multi-platform smartphone applications, Specification & Design
Languages, Paris, France, September 24-26, 2013.

14

[4] M. Boulos, et al., Mobile medical and health apps: state of the art,
concerns, regulatory control and certification, Online Journal of Public
Health Informatics, 5(3):229, 2014. doi:10.5210/ojphi.v5i3.4814.

[5] A. Brown. Model driven architecture: principles and practice, Software
and System Modeling, 3(4):314-327, December, 2004.

[6] Y. Cheon, et al., Model variables: cleanly supporting abstraction in
design by contract. Software-Practice & Experience, 35(6):583-599,
May 2005.

[7] Y. Cheon, et al., Checking Design Constraints at Run-time Using OCL
and AspectJ, International Journal of Software Engineering, 2(3):5-28,
December 2009.

[8] Y. Cheon, R. Romero, and J. Garcia, HifoCap: An Android App for
Wearable Health Devices, 8-th International Conference on Applications
of Digital Information and Web Technologies, volume 295 of Frontiers in
Artificial Intelligence and Applications, pages 178-192, 2017.

[9] Eclipse Foundation, Papyrus Modeling Environment, available from
http://www.eclipse.org/papyrus/, retrieved on October 18, 2017.

[10] A. Escobar and Y. Cheon, Impacts of Java language features on the
memory performances of Android apps, Technical report 17-84,
Department of Computer Science, University of Texas at El Paso, El
Paso, TX, September 2017.

[11] E. Gamma, et al., Design Patterns, Addison-Wesley, 1994.
[12] R. B. France, et al., Model-driven development using UML 2.0: promises

and pitfalls. IEEE Computer, 39(2):59-66, February 2006.
[13] J. Gosling, et al., The Java Language Specification, Java SE 8 Edition,

February, 2015, Available from: https://docs.oracle.com/javase/specs/
jls/se8/html/index.html.

[14] H. Heitkotter, T. A. Majchrzak and H. Kuchen, Cross-platform
model-driven development of mobile applications with md2, ACM
Symposium on Applied Computing, Coimbra, Portugal, March 18-22,
2013, pages 526-533.

[15] C. B. Jones, Systematic Software Development using VDM, Prentice
Hall, 1990.

[16] F. A. Kraemer, Engineering Android applications based on UML
activities, International Conference on Model Driven Engineering
Languages, Wellington, New Zealand, October 16-21, 2011, pages
183-197.

[17] P. Kosiuczenko, Specification of invariability in OCL, Software &
Systems Modeling, 12(2):415-434, 2013.

[18] K. Lano, Model-Driven Software Development with UML and Java.
Course Technology, 2009.

[19] G. T. Leavens, A. L. Baker, and C. Ruby, Preliminary design of JML: A
behavioral interface specification language for Java, ACM SIGSOFT
Software Engineering Notes, 31(3): 1–38, March 2006.

[20] M. Linares-Vasquez, et al., How developers detect and fix performance
bottlenecks in Android apps, IEEE International Conference on Software
Maintenance and Evolution, September 2015, pages 352-361.

[21] T. O. Meservy and K. D. Fenstermacher, Transforming software
development: an MDA road map, IEEE Computer, 38(9): 52-58,
September 2005.

[22] Object Management Group, Object Constraint Language, version 2.4,
Feb. 2014. Available from http://www.omg.org/spec/OCL/.

[23] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, 2nd ed. Addison-Wesley, 2004.

[24] D. Sillars, High Performance Android Apps: Improve Ratings with
Speed, Optimizations, and Testing, O'Reilly, 2015.

[25] T. Stahl and M. Volter, Model-Driven Software Development, Wiley,
2006.

[26] R. Warburton, Java 8 Lambdas, Functional Programming for the
Masses, O’Reilly, 2014.

[27] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Addison-Wesley, 2003.

[28] K. Yaghmour, Embedded Android: Porting, Extending, and
Customizing, O'Reilly, 2013.

