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Abstract— Model driven development (MDD) shifts the focus of 
software development from writing code to building models by 
developing an application as a series of transformations on models 
including eventual code generation. Can the key ideas of MDD be 
applied to the development of Android apps, one of the most 
popular mobile platforms of today? To answer this question, we 
perform a small case study of developing an Android app for 
playing Sudoku puzzles. We use the Object Constraint Language 
(OCL) as the notation for creating precise models and translate 
OCL constraints to Android Java code. Our findings are mixed in 
that there is a great opportunity for generating a significant 
amount of both platform-neutral and Android-specific code 
automatically but there is a potential concern on the memory 
efficiency of the generated code. We also point out several 
shortcomings of OCL in writing precise and complete 
specifications for UML models and suggest a few extensions and 
improvements to make it more expressive and suitable for MDD. 
The reader is assumed to be familiar with OCL. 
 

Keywords— class invariant, model-driven development, pre and 
postconditions, Android, Object Constraint Language. 

I. INTRODUCTION 

Model driven development (MDD) is a paradigm to solve a 
number of problems associated with the development of a large 
complex application [25]. It relies on the use of models as the 
basis for software development and shifts the focus of 
development from writing code to building models. The key 
idea of MDD, in particular the Model Driven Architecture 
(MDA) of the Object Management Group (OMG) [5] [21], is to 
develop applications as series of transformations on models and 
to generate code automatically from the models. It is also 
suggested to construct models at several different abstraction 
levels, such as computation independent models (CIM), 
platform independent models (PIM), platform specific models 
(PSM), and implementation specific models (ISM). The 
underlying assumption of MDD, however, is the existence of an 
appropriate model -- a representation that is sufficiently general 
to capture the semantics of many different domains and yet 
precise enough to support eventual transformation into code. 

Android is one of the most popular mobile platforms today 
paving the way for the development of a flood of apps; the 

reported market share of Android-based smartphones in the first 
quarter of 2017 is 85.0% (http://www.idc.com). Android 
provides its own operating system, libraries, and application 
programming interfaces (API), and its apps are written in Java. 
Despite the use of Java, the Android application domain is 
sufficiently narrow with several interesting characteristics, such 
as XML-based UI, event-based reactive apps, life cycles of 
apps, and the single active app. However, one key difference is 
that Android devices are resource-constrained in storage 
capacity and battery lifetime, and thus memory efficiency is an 
important quality factor for Android apps [20] [24]. Android 
apps are also relatively small and not as complex as typical 
enterprise applications. Thus, it is natural to ask whether the 
ideas of MDD are applicable to the development of Android 
apps and whether the promised benefits of MDD such as 
productivity can be obtained even without using MDD-specific 
tools. There is no well-known commercial quality MDD tools 
for Android. 

MDA of OMG [5] [21], one of the best known MDD 
approaches, recommends to use well-defined, standard 
notations like the Unified Modeling Language (UML) [12] [23]. 
One key requirement of MDD is the availability of a precise 
model to generate working code from it. A formal notation such 
as the Object Constraint Language (OCL) [22] [27] of UML can 
play an important role to build such a precise model. OCL is a 
textual, declarative notation to specify constraints or rules that 
apply to models expressed in UML diagrams such as class 
diagrams. We would like to know whether UML/OCL is 
suitable for creating precise models that can be used as the basis 
of MDD. 
  In this paper, we perform an experiment to answer the above 
two questions. Our experiment is a small case study of applying 
the key ideas of MDD to the development of an Android app. 
However, unlike previous work on the use of MDD for mobile 
apps (e.g., [3] [14] [16]), the purpose of our study is not to 
propose new languages, techniques, methods, or toolsets. Our 
main objective is to study a practical application of the key 
components of MDD -- precise models and code generation -- in 
developing Android apps using the standard modeling notation 
UML/OCL. Another objective is to study suitability of OCL in 
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creating precise models that can be used as the basis of MDD. 
We perform our case study manually without using any specific 
MDD technology or toolset. We use only a free UML tool to 
draw UML diagrams and write and attach OCL constraints to 
the UML models [9]. But as said above, it is not our purpose to 
evaluate the support tools. 

The app we develop is for playing Sudoku puzzles, one of the 
running examples used in [18]. Sudoku is a logic-based, number 

placement puzzle for a single 
player. The objective of the game 
is to fill a 99 grid with numbers 
so that each column, row, and 33 
sub-grid that composes the grid 
contains all of the numbers from 
one to nine. Thus, the same 
number cannot appear more than 
once in the same column, row or 
sub-grid. Figure 1 shows a 
partially solved Sudoku puzzle; a 
gray square represents a number 

that is given and thus cannot be changed. A game starts with a 
partially filled grid, typically having at least 17 numbers, 
normally 22-30 numbers. A well-designed puzzle has a single 
solution. 

Our case study consists of three main steps: (a) creating a 
precise specification model, (b) creating a detailed design 
model, and (c) generating Android Java code from the design 
model. For both specification and design models, we use UML 
and OCL and create static models (class diagrams) as well as 
dynamic models (state machines). We generate functioning 
code manually but systematically from the UML models and 
accompanying OCL constraints.  

The case study steps are reflected in the structure of this 
paper. In Section II below, we create a specification model of 
our app to describe precisely what the app has to do. In Section 
III, we transform the specification model to a detailed design 
model. We incorporate design decisions to the specification 
model by extending existing classes and adding new PIM/PSM 
classes. The design model consists of an architectural design, a 
UI design and detailed designs of classes including algorithms. 
In Section IV, we generate functioning Android Java code from 
our design models manually. In Section V, we share our 
findings and lessons learned from the case study, and in Section 
VI, we provide a concluding remark. 

II. SPECIFICATION 

In this section we create a specification model for our app. Our 
specification model consists of two UML diagrams, a class 
diagram and a state machine diagram. The class diagram models 
the entities and the static structure of our app while the state 
machine diagram specifies the dynamic behavior of the app, 
specifying the allowed sequences of operation calls.  

Figure 2 show the static model. A Sudoku game consists of a 
99 grid with numbers, called a board. A 3x3 sub-grid of a 

board is called a box, and each cell of the grid is called a square. 
The association between Board and Square is derived from the 
Board-Box and the Box-Square associations; it is calculated 
from the other associations. All the classes appearing in the 
diagram will be specified in OCL later in this section.  
 

/squares

Square

x: Integer
y: Integer
number: Integer

hasNumber: Boolean()
permittedNumbers(): Set(Integer)
isConsistent(): Boolean

Box

x: Integer
y: Integer
/size: Integer

at(x: Integer, y: Integer): Square

Board

size: Integer
/boxSize: Integer

at(x: Integer, y: Integer): Square
box(x: Integer, y: Integer): Box
column(x: Integer): Set(Square)
row(y: Integer): Set(Square)
isSolved(): Boolean

Game

init() boxes

81

9

squares9

 
 

Figure 2. Class diagram 
 
Figure 3 show a dynamic model of the game. It is a protocol 

state machine for the Game class and specifies the allowed 
sequence of operation calls. 

 
 

Filling

Solved

[isSolved()]

init()/A

fill(x,y,n)[P] clear(x,y)[Q] init()/A

clear(x,y)  board.at(x,y).setNumber(0)
fill(x,y,n)  board.at(x,y).setNumber(n)
A  given = board.filledSquares()
P  not isSolved() and given->excludes(board.at(x,y))]
Q  not isSolved() and given->excludes(board.at(x,y)) 

and board.at(x,y).hasNumber()
 

Figure 3. Protocol state machine 
 

An initial board configuration, partially filled grid of 
numbers that has a solution, is created by the init() operation. 
Numbers are filled in or removed from the board until the 
puzzle is solved. The guards P and Q in the fill(x,y,n) and 
clear(x,y) transitions prevents the fixed number given by the 
initial configuration from being replaced or removed. The 
composite transition init() allows one to start a new game in any 
state. Below we specify OCL constraints for classes appearing 
in the class diagram. 

A. Game Class 

The key responsibility of the Game class is to create a new game 
by coming up with a partially filled grid of numbers. As will be 
shown later, this turns out to be one of the most complicate 
tasks. The partially filled board should have a solution -- 

 
 

Figure 1. Sudoku puzzle 
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preferably one -- and this is expressed by a newly-introduced 
operation isSolvable(). 
 
context Game::init() 
post: isSolvable() and 0 < filled and filled < n 
   where n = board.size * board.size, 
      filled = board.squares->select(hasNumber())->size() 
 
context Game 
def: isSolvable():Boolean = Board.allInstances()->exists( 
   size = self.board.size and isSolved() and 
   squares->forAll(let s = self.board.at(x, y) in s.hasNumber() 
      implies hasNumber() and number = s.number)) 
 

A board is solvable if there exists a solved version of it, a 
board with all the empty squares filled with non-conflicting 
numbers; see Section B below for the specification of the 
Board::isSolved() operations. Note that in the specification of 
Game::init() we introduced our own extension to OCL, where 
clause, to present a constraint in a more structured fashion. It is 
a syntactic sugar in that E where D can be translated to let D in E 
in the standard OCL. 

B. Board Class 

A board consists of a set of squares subdivided into boxes. The 
size attribute denotes the width and height of a board. The first 
invariant below constrains it to be a square, and the second 
invariant together with the invariant of the Square class (see 
Section C) asserts that each box is uniquely identified by its row 
and column indexes. 
 
context Board 
inv: size >= 9 and Sequence{1..size}->exists(i | i * i = size) 
inv: boxes->isUnique(Tuple{col = x, row = y}) 
 
context Board::boxSize: Integer 
derive: Sequence{1..size}->any(i | i * i = size) 
 
context Board::squares: Set(Square) 
derive: boxes.squares->asSet() 
 
 As shown above, the values of derived attributes and 
association ends are specified using the derive clause. Below we 
specify several representative operations of the Board class.  
 
context Board::at(x1: Integer, y1: Integer): Square 
pre: 0 <= x1 and x1 < size and 0 <= y1 and y1 < size 
post: result = squares@pre->any(x = x1 and y = y1) 
 
context Board::column(x1: Integer): Set(Square) 
pre: 0 <= x1 and x1 < size 
post: result = squares@pre->select(x = x1) 
 
context Board::isSolved(): Boolean 
body: squares->forAll(hasNumber() and isConsistent()) 
 

The specification of the Board::isSolved() operation states 
that a board is solved if each of its squares has a consistent or 
non-conflicting number; see Section D for the consistency of  a 
square. 

C. Box Class 

A box consists of a set of squares, each denoted by a pair of 
0-based column (x) and row (y) indexes. The size of a box is 
determined by the size of the board. 
 
context Box:: size: Integer 
derive: board.boxSize 
 
context Box 
inv: 0 <= x and x < size and 0 <= y and y < size 
inv: xys = coords where 
   xys = squares->collect(Tuple{col = x, row = y})->asSet(), 
   coords = Sequence{0..size-1}->collect(i|  

    Sequence{0..size-1}->collect(j|  
    Tuple{col = x*size + i, row = y*size + j}))->asSet() 
 
One interesting modeling choice is the indexes of squares (see 

also Section D below). They can be local and unique in each 
box, e.g. 0Box::size, or global and unique in the board, e.g. 
0Board::size. We found that use of square indexes outside the 
Box class are for the second type. This choice affects the 
formulation of the second invariant above stating that each 
square of a board be uniquely identified by its column and row 
indexes. 

D. Square Class 

A square of a board is uniquely identified by a pair of column (x) 
and row (y) indexes. A square may have a number between 1 
and Board::size, inclusive. An empty square is denoted by the 
number 0.  
 
context Square 
inv: 0 <= x and x <.board.size and 0 <= y and y <.board.size 
inv: 0 <= number and number <= board.size 
 
context Square::hasNumber(): Boolean 
body: number <> 0 
 
context Square::permittedNumbers(): Set(Integer) 
body: result = all - b - h – v where 
   all = Sequence{1..board.size}->asSet(), 
    b = box.squares->excluding(self)->collect(number), 
 h = board.row(x)->excluding(self)->collect(number), 
 v = board.column(y)->excluding(self)->collect(number) 
 
context Square::isConsistent(): Boolean 
body: b and h and v where 
   b = box.squares->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0, 
   h = board.row(y)->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0, 
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   v = board.column(x)->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0 
 

The permittedNumbers() operation returns the set of all 
non-conflicting or allowed numbers for a square. A number is 
allowed in a square if it doesn’t appear in any other squares in 
the same box, column, and row. The isConsistent() operation 
determines if a square is consistent. A square is consistent if its 
number doesn’t appear in any other squares in the same box, 
column, and row. An empty square is consistent, and this can be 
inferred from the specification. 

III. DESIGN 

In this section, we create a detailed design model for our app 
that conforms the specification model created in the previous 
section. Our design model consists of a UI design, an 
architecture, and detailed designs of classes and algorithms. We 
uses the model-view-control (MVC) architectural pattern, 
where the model (business logic) is separated from the view 
(UI) and the control code. This is a good style for Android apps 
as the UI of an app can be defined in XML (see Section IV). Our 
design model consists of all the classes from the specification 
model with some extensions. We also add several new classes. 
Although we don’t make a clear distinction between PIM and 
PSM, certain extensions to the specification classes and newly 
introduced classes are PIM while others are PSM in that they are 
Android-specific extensions or classes. 

A. UI 

Figure 4 shows the layout of the UI consisting of several buttons 
(new, delete, and numbers 1-9) and a custom view. A custom 
view is used to display the current state of the board in 2-D 
graphics as well as to select a square to fill in a new number or 
delete the current one.    
  

 
 

Figure 4. UI design 
 

We can associate UI events such as button click and screen 
touch with game operations as follows. 
 

 New button: Game::init() 

 Number buttons: Game::fill(x,y,n), where x and y is the 
indexes of the selected square and n is the label (i.e., 
the represented number) of the clicked button. 

 Delete button: Game::clear(x,y) 
 Screen touch: set the square selection 

 
With these bindings, the protocol state machine in Section II 

can be turned into a state machine describing the allowed 
sequences of user interactions. 

B. Classes 

Object-oriented design is all about refining classes from the 
analysis or specification model as well as introducing new 
classes by making decision or implementation-oriented 
decisions. The class diagram in Figure 5 depicts a portion of our 
specification model extended with several design decisions. 
 

use

Square

given: Boolean

Board

interface
SelectionListener

selected(s: Square)

BoardView

onDraw(c: Canvas)

interface
ChangeListener

filled(s: Square, o: Integer)

Game

theInstance: Game

getInstance(): Game

activity
MainActivity

onCreate()
onResume()

use

0..1

*

*

BoardModel

squares

board

 
 

Figure 5. Design class diagram 
 
 Several new classes and interfaces are introduced, and 
existing classes are extended with new attributes, associations 
and operations. In Android, an activity is an app component 
responsible for a single UI screen. An app may consist of one or 
more activities. The MainActivity class is the main entry point 
to our app. The BoardView class is a custom view class to 
display a board, and the BoardModel is a subclass of Board to 
contain view-dependent board data, e.g., the currently selected 
square that is to be displayed differently. The Observer design 
pattern [11] is used to notify changes in a BoardView and a 
Board to interested observers such as MainActivity. For this, 
two interfaces SelectionListener and ChangeListener are 
introduced. Below we explain in detail some of our design 
decisions shown in the class diagram. 

One of interesting platform-specific design decisions is to use 
the Singleton design pattern [11] for the Game class. The main 
reason is to save and restore the game state when the activity is 
destroyed and later recreated. On Android, an activity may be 
paused, stopped, and destroyed at any time by the operating 
system. For example, it is destroyed when the screen orientation 
changes or another activity is launched. When the main activity 
is (re)created, the single instance of the Game class is retrieved 
and thus maintains its previous state automatically. The 
specification of the getInstance() operation is shown below. 
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context Game::getInstance() 
post: result = theInstance and  
   (if  theInstance.oclIsUndefined()@pre 
    then theInstance.oclIsNew()  
    else theInstance = theInstance@pre endif) 
 

The MainActivity class is the controller for the app and is 
responsible for configuring the UI and creating various objects 
such as a board, boxes, and squares. Below are shown the 
specifications of its two lifecycle operations. 
 
context MainActivity::onCreate() 
post: game = Game.getInstance()  
   and self^setLayout(?: Integer)  
   and boardView^addSelectionListener(?: SelectionListener) 
   and buttons->forAll(b |  
      b^setOnClickListener(?: View::OnClickListener)) 
         
context MainActivity::onResume() 
post: game = Game.getInstance() and boardView^invalidate() 
 

The onCreate() operation is defined by the Android 
framework and is  called when an activity is newly created. It is 
responsible for configuring the UI and creating the initial state 
of the activity. The UI configuration and the event handler 
registrations are loosely specified using the OCL message 
expression. The OCL hasSent (^) operator specifies that a 
specified message should be sent during the execution of the 
operation [22]. As shown here, our approach for specifying 
Android framework operations is to focus only on the key state 
change or to gross over the state change and instead specify the 
interactions needed to achieve the change (see Section V for a 
discussion on this). The onResume() operation is called when an 
activity starts interacting with the user. It restores the state of the 
activity and refresh the board view to display the restored state. 

The BoardView class is a custom view class to display a 
board. It also responds to a touch event to select a square of the 
displayed board. The BoardView class is associated with a 
subclass of the Board class, named BoardModel, to remember 
the view-specific board data such as the currently-selected 
square.  
 
context BoardModel 
inv: square <> null implies squares->includes(square) 
 
context BoardView::onDraw(c: Canvas) 
post: self^drawLines(c) and (selected <> null implies  

 self^drawSquare(c, selected, ?: Paint)) and 
 (board.squares->forall(s| s.hasNumber() implies 

    self^drawSquare(c, s)) 
   where selected = board.square 
 
context BoardView::drawSquare(c:Canvas, s:Square, p:Paint) 
post: let w = getMeasuredWidth().min(getMeasureHeight()) 
         / board.size, x = s.x * w, y = s.y * w 

   in c^drawRect(x, y, x + board.size, y + board.size, p) and 
      (s.hasNumber() implies  
        c^drawText(s.number, ?: Real, ?: Real, ?: Paint)) 
 

The onDraw() operation is an Android framework operation 
overridden to draw a custom view such as BoardView. As 
shown in its specification, drawing a 2-D representation of a 
board involves drawing horizontal and vertical lines of the grid 
(drawLines) and drawing the numbers for all the squares of the 
board (drawSquare). The screen coordinates of a square are 
calculated from its indexes as well as the width and height of the 
screen. These operations are loosely specified using the OCL 
message expressions. Their postconditions constrain only that 
appropriates drawing messages be sent during the execution; 
they don’t say anything about the effect or state changes. 

On Android, one way to detect a touch gesture that occurs 
when a user places one or more fingers on the touch screen is to 
override the onTouchEvent() operation in a view class. As 
specified below, it determines the square displayed at the 
touched screen coordinate (see the locateSquare() operation), 
sets the square selection, refreshes the view by invaliding it, and 
notifies the new selection to all registered listeners. The 
notification of a new selection can be elegantly specified using 
the OCL message expression. 
 
context BoardView::onTouchEvent(e: MotionEvent) 
post: e.getAction() = MotionEvent.ACTION_UP implies 
   let s = locateSquare(e.getX(), e.getY()) in 
      s <> null implies board.square =  
         (if s = board.square@pre then null else s endif)  
         and self^invalidate()  
         and changeListener->forall(l| l^selected(s)) 
    
context BoardView::locateSquare(x: Real, y: Real): Square 
pre: 0 <= x and x <= getMeasuredWidth() 
pre: 0 <= y and y <= getMeasuredHeight() 
post: let w = getMeasuredWidth().min(getMeasureHeight()) 
         / board.size, m = w * board.size 
   in result = if x > m or y > m then null 
                    else board.at((x/w).floor(), (y/w).floor()) endif  
 

In our design, we didn’t make a clear distinction between 
PIM and PSM, but several newly-added classes such as 
BoardView and MainActivity are PSM while others such as 
BoardModel and listener interfaces are PIM. Similarly, the 
Game extension is PSM while the Square extension is PIM.           

C. Algorithms 

For operations whose pre and postconditions cannot be 
translated directly to executable code, we design algorithms for 
them. One such operation is the Game::init() operation to create 
an initial board configuration. It creates a partially filled grid of 
numbers such that each number 1 to 9 occupies each row, 
column and box just once. Ideally, the created grid should have 
only one solution. In this section, we design one possible 
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algorithm for the operation and describe it by drawing a 
behavioral state machine (see Figure 6). 
  Our algorithm consists of two steps: creating a solved grid of 
numbers and removing numbers repeatedly that, upon removal, 
are likely to produce a single solution. To determine the 
likelihood of one solution, a candidate number is removed from 
the board and then the board is solved again. If the solver fills 
the candidate square with the same number, it is more likely to 
have a single solution; otherwise, the candidate square is 
rejected and a new one is attempted. The key of our algorithm is 
a solver that finds a solution for an empty or partially filled 
board. Below we design a solver based on backtracking. A 
backtracking algorithm constructs a solution by making 
succession of choices. If there is no choice available, it retraces 
backwards through the choices made, undoing their effect, until 
an alternative choice is found. 
 

[c->size() < N]

/P

[c->size() > N]
/s = c->any(true); v = s.number();
s.setNumber(0); solver.solve()

A  c = board.squares->select(hasNumber())
P  [board.squares->forAll(s| c.excludes(s) implies s^setNumber(0)]

[s.number = v]
/s.setNumber(0)

[s.number <> v]
/s.setNumber(v)

entry: A

/board.clear(); solver.solve()

 
 

Figure 6. Algorithm for creating a new game 
 

 

Solver

solve():Boolean

Assignment

values: Integer[*]

perform
undo()
hasAlternative(): Boolean

Board Square
squares

*

history

{ordered}
*

Game

init()

 
Figure 7. Design of a backtracking solver 

 
As shown in Figure 7, a solver has a history of choices made, 

where a choice is an assignment of a number to a square. The 
Assignment class represents a choice as a tuple of a square and 
alternative numbers assignable to the square. Below we first 
specify Solver::solve() operation and then design its algorithm. 
 
context Solver::solve(): Boolean 
post: result = isSovable()@pre and 
   (result implies board.isSolved() and board.squares->forAll( 
    hasNumber()@pre implies number = number@pre) 
 
context Solver 

def: isSolvable():Boolean = Board.allInstances()->exists( 
   size = self.board.size and isSolved() and 
   squares->forAll(let s = self.board.at(x, y) in s.hasNumber() 
   implies hasNumber() and number = s.number)) 
 

The specification of the newly-introduced isSolverable() 
operation is similar to that of the Game class. The behavioral 
machine shown Figure 8 describes a backtracking algorithm for 
the solve() operation. 
 

/fillDetermined()

[board.isFilled()]
/result = true

[not board.isFilled()]
/s = pickSquare()

[s == null]
/ok = backtrack()

[!ok][ok]

[s <> null]
/assign(q)

[conflict()]

[not conflict()]
/history.clear()

/result = false

 
 

Figure 8. Backtracking algorithm 
 
 The key of the algorithm is first to fill all empty squares that 
have only one permitted number (fillDetermined). A number is 
permitted in a square if it doesn’t appear in the row, column, and 
box of the square. The algorithm then picks an empty square 
that has permitted numbers (pickSquare) and assigns one such 
number to the square (assign). If no square can be picked, the 
algorithm does backtracking (backtrack). Below we specify the 
helper operations introduced in the state machine diagram. 
 
context Solver 
def: conflict():Boolean =  
   board.squares->exists(not isConsistent()) 
 
context Solver::fillDetermined() 
post: board.squares->forAll(not hasNumber()@pre and  
   permittedNumbers()@pre->size() = 1 implies 
   number = permittedNumbers()@pre->any(true)) 
 
context Solver::pickSquare(): Square 
post: result = if c->size() > 0 then c->any(true) else null endif 
   where Square::isPickable():Boolean = not hasNumber()  
      and permittedNumber()->size() > 0, 
   c = board.squares@pre->collect(s| isPickable() and 
         board.squares@pre->forAll(isPickable() implies 
            permittedNumbers()->size()  
            >= s.permittedNumbers()->size()) 
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context Solver::assign(s: Square) 
post: let a = new Assignment(s)  
   in a^perform() and history = history.append(a)@pre  
 

The pickSquare() operation is specified to pick a square that 
is empty but has at least one permitted value. If there are more 
than one such square, it picks an arbitrary square with the 
smallest number of permitted values. The specification of the 
Solver::backtrack() operation is complicate and involved 
despite its straightforward algorithm, so instead of specifying it 
in OCL we design its algorithm directly (see Figure 9). 

 
 

[h->isEmpty()]
/result = false

[not a.hasAlternative()]
/a.undo();
h = h->excluding(a);

[a.hasAlternative()]
/a.perform(); 
result = true

[h->notEmpty()]
/a = h->last(); a.undo()

h  history

 
 

Figure 9. Algorithm for the backtrack operation 
 
 

The specification of the Assignment class are shown below. 
 
context Assignment::Assignment(s: Square) 
post: square = s and values = s.permittedNumbers() 
 
Assignment::perform() 
pre: values.size() > 0 
post: let n = values.any(true)@pre in 
  square.number = n and values = values->excluding(n)@pre 
 
Assignment::undo() 
post: square.number = 0 
 
Assignment::hasAlternative(): Boolean 
body: values.siz() > 0 

IV. IMPLEMENTATION 

In this section, we explain how we translate our design shown in 
the previous section to functioning Android Java code including 
both the UI and the functional core. The key of our translation 
approach is to generate code incrementally on a need basis. We 
first generate skeletal code from the class diagram considering 
only the structural aspect such as classes and their attributes. We 
then translate operations to Java methods, considering one 
operation at a time. We focus on core operations that are 
explicitly specified in the model. The underlying idea is to 
introduce additional structural elements (e.g., fields for 
associations) and behavior such as helper methods (e.g., getter 
and setters for fields and association ends) on a need basis.  This 
will let us to generate minimal code with minimal effort. 

The UI of an Android app is typically defined declaratively in 
XML, called a layout. We create our layout XML file using the 
Layout Editor of Android Studio, a visual editor for creating 
layouts by dragging widgets. We use a recently-introduced 
layout called ConstraintLayout as our base layout. It allows us 
to compose our layout file corresponding to the UI design of the 
previous section entirely by dragging and dropping (see Figure 
10). 
 

 
 

Figure 10. UI implementation 
 

We next translate our detailed design -- consisting of a class 
diagram, OCL specifications, and behavioral state machines -- 
to functioning Java source code. This involves translating both 
the structure (attributes and associations) and the behavior 
(pre/postconditions and behavioral state machines). As said 
earlier, we introduce getters and setters for attributes and role 
names (association ends) on a need basis. For this, we check for 
the readOnly property for an attribute. We also look at each 
occurrence of an attribute and a role name in OCL constraints to 
determine if it appears in a read context or a write context. 
Every occurrence in an invariant and a precondition is a read 
context. An occurrence in a postcondition is in general a write 
context unless suffixed with @pre; an unqualified feature 
denotes its new value in the post-state, which may be different 
from its pre-state value. For an attribute and an association end 
with multiplicity bigger than one, its getter returns an immutable 
view of the collection to prevent mutation, e.g., the getter of the 
squares role of the Box-Square association is defined as: 

 
   public List<Square> squares() { 
      return Collections.unmodifiableList(squares); 
   } 

 
We may also introduce additional helper operations to 

manipulate a single element of a collection, e.g., to access an 
element, add a new element, or remove an existing element. For 
an association, we determine its navigability based on its use in 
OCL constraints. In general, a derived attribute and association 
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is translated to a getter; its return value is determined by the 
OCL derive expression of the attribute and association.  

While the class diagram is used to generate the basic 
structural elements of an implementation, it is necessary to use 
OCL constraints and dynamic models like behavior state 
machines to generate the detailed functional behavior of an 
application. Operations of classes are translated to methods 
based on either their postconditions or behavioral state 
machines. A behavioral state machine can be automatically 
translated to functional code if it is written in the style used in 
this paper. For example, the behavioral state machine of the 
Solver::solve() in Section III.C can be translated to the 
following code. 
 
public boolean solve() { 
   if (conflict()) { return false; } 
   history.clear(); 
   while (true) { 
      fillDetermined(); 
      if (board.isFilled()) { return true; } 
      Square s = pickSquare(); 
      if (s != null) { assign(s); } 
      else if (!backtrack()) { return false; } 
   } 
} 
 
 When an operation doesn’t have an algorithm specified as a 
behavioral state machine. We use its postcondition to generate 
its functional code. Its precondition can also be used to generate 
a runtime check to determine whether the assumption of the 
operation is met or not [1] [7]. When the postcondition is 
written in an explicit style in which the expected change in the 
value of features are specified definitely, it can be used to derive 
code systematically. The new features of Java 8 language and 
APIs such as lambda expressions and the Stream API are of 
great help in systematically deriving concise code from 
constraints [13]. The OCL collection iterators such as forAll can 
be translated to the corresponding Java stream operations such 
as allMatch and their argument expressions to Java lambda 
expressions. For example, shown below is one possible 
translation of the Square::isConsistent() operation described in 
Section II.D. 
 
context Square::isConsistent(): Boolean 
body: b and h and v where 
   b = box.squares->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0, 
   h = board.row(y)->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0, 
   v = board.column(x)->select(s| s <> self and 
         hasNumber() and number = self.number)->size() = 0 
 
public boolean isConsistent() { 
   return isConsistent(box.squares())  
      && isConsistent(board.row(y)) 
      && isConsistent(board.column(x)); 

} 
 
private boolean isConsistent(Collection<Square> sqs) { 
   return sqs.stream().filter(s -> s != this &&  
      s.hasNumber() && s.number() == number()).count() = 0; 
} 
 
 The OCL select iterator is nicely translated to the Java stream 
method filter and its argument expression becomes a lambda 
expression in Java. The resulting code thus has a structure 
similar to that of the OCL constraint. As shown above, private 
helper methods may be introduced to factor out common 
subexpressions of constraints. 
 Generating code for update operations are more involved 
than query operations, as one needs to figure out the features 
whose values have to be changed. As an example, let us 
consider the Solver::fillDetermined() operation (see Section 
III.C). 
 
context Solver::fillDetermined() 
post: board.squares->forAll(not hasNumber()@pre and  
   permittedNumbers()@pre->size() = 1 implies 
   number = permittedNumbers()@pre->any(true)) 
 

The postcondition constrains those squares of the board that 
are empty and have exactly one permitted value in the pre-state. 
The number attributes of these squares have to be modified to 
satisfy the postcondition; that is, the modifiable features are 
uniquely determined. In spite of the use of the any operation that 
picks an arbitrary element of a collection, the post-values of the 
number attributes are not loosely specified because the 
collections are singletons. Thus, Java code can be generated 
from the postcondition as shown below. We use the forEach 
method defined on collections. 

 
private void fillDetermined() { 
    board.squares().forEach(s -> { 
        if (!s.hasNumber()   
            && s.permittedNumbers().size() == 1)  { 
            s.setNumber(s.permittedNumbers().get(0)); 
        } 
    }); 
} 

 
 We often have to address platform-specific restrictions or 
constraints during the implementation. For example, there is a 
one-to-one association between BoardView and BoardModel in 
our design model. However, this one-to-one relationship cannot 
be maintained as an invariant on Android because views are 
automatically created by the system according to the layout 
specified in XML. There is no way to provide a board object to 
the constructors of the BoardView class. Therefore, the 
multiplicity of the Board end of the association needs to be 
weakened to 0..1. And all its occurrences in OCL constraints 
need to be checked for nullness. For example, we need to 
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change the specification of the BoardView::onDraw operation 
as follow (see Section III.B). 
    
context BoardView::onDraw(c: Canvas) 
post: board <> null implies … 
 

In fact, this revised specification produces more robust code 
that works harmoniously in the Android environment. Due to 
the new non-nullness guard, the onDraw method should work 
even if there is no associated board. As the result, Android tools 
like the Layout Editor will be able to display the BoardView 
class correctly. 

As described above, we translated our specifications and 
design models to functioning Android Java code sort of 
semi-automatically without much coding effort.1 The generated 
code satisfies the constraints of our models, such as class 
invariants and operation postconditions. Table 1 provides a 
summary of the generated classes. For each field and method of 
a class, we traced its source: specified attribute/operation 
(spec), derived attributes (deri), associations (assoc), attributes 
(attr), and helper methods (help). 
 

Table 1. Summary of generated code 
 

Class 
Fields Methods 

spec deri assoc spec attr assoc help 
Game 1  1 4  2  
Board 1 1 2 5  1 6 
Box 2 1 2 1  1  
Square 4  2 3 6  5 
Solver   2 6    
Assign 1  1 3  1  
BdView 1  2 4  4 7 
BdModel   1   3  
Activity 1  4 3   9 

Total 
11 2 17 29  12 27 

30 74 
   

In our specification and design models, there are nine classes 
with ten associations among them. All nine classes appear in the 
implementation with total 30 fields and 74 methods (without 
counting constructors), and Java source code consists of 1279 
lines2. Among the 30 fields, more than half (57%; 17/30) are 
generated from associations. This is generally a good sign for an 
object-oriented program. It indicates that there exists a 
significant structure in the program. It may also mean that the 
functionalities of the program are well distributed among the 
classes. Indeed, the method spec column shows that operations 
are well distributed among the classes. One interesting 
observation is that only 39% (29/74) of methods are from the 
operations explicitly specified in the model. The rest are from 
attributes, associations, and common subexpressions of 

 
1 However, two Android framework-related classes BoardView and 

MainActivity required manual coding work; their behavior are not completely 
specified in the model. 

2About 43% (553 lines) of source code are for two Android framework 
–related classes: BoardView and MainActivity.  

operation specifications (helpers). The percentage will decease 
further with getter and setters for such attributes as size, x, and y 
of Box and Square classes that are currently translated to final 
fields. This means that one needs to focus on specifying and 
designing only interesting, core operations that account for less 
than 40% of operations, and the rest of the operations -- 
secondary, uninteresting or helper operations, which are not 
even specified as operations in the model -- can be generated 
automatically. In sum, a significant amount of code can be 
generated automatically. 

V. FINDINGS AND DISCUSSION 

A. Code Generation 

There is an opportunity for generating a significant amount of 
code automatically from models. Besides code that can be 
translated from constraints and behavioral state machines, 
operations can be derived on a need basis from the static 
structures expressed in class diagrams, e.g., operations for 
accessing attributes and traversing associations. In our app, for 
example, more than 60% of operations are of these and other 
helper operations mechanically generated from the models. It is 
also possible to automatically generate platform-specific code 
from models. An example is code to preserve the state of an app. 
Remember that when an event like screen orientation change 
occurs, an activity is destroyed and a new instance is created by 
the system. One way to preserve an activity’s state is to use the 
Singleton design pattern as we did in Section IV. A new 
Singleton class with operations to store an activity’s state and 
retrieve the stored state can be generated from a model, and 
calls to these operations can be added to appropriate framework 
methods such as onPause() and onResume(). Thus, one only 
needs to indicate in the model the attributes whose states have to 
be preserved, say, using a custom stereotype; such a stereotype 
can be defined in a UML profile. One key benefit of generating 
these kinds of code automatically is that one can focus on 
specifying and designing only more meaningful and interesting 
operations so called business logic or functional core. Another 
benefit is that one does not have to consider or even express in 
the model the detailed design or implementation decisions such 
as the visibility of features and the navigability of associations. 
The resulting model is more readable, as it doesn’t distract the 
reader with unimportant design or implementation details. 

We learned that the process of creating a precise model 
provides an opportunity for refactoring the model. In a sense, it 
forces one to review and evaluate the current model and thus 
refine and improve it. This happens naturally as part of 
formulating and writing constraints. For example, one 
functionality of the BoardView class is to let the user select a 
square to enter a new number or delete an existing one. In our 
initial design, we introduced an attribute in the BoardView class 
to store the selected square. We also introduced a corresponding 
attribute in the Game class to remember the selected square 
throughout the app’s lifecycle, e.g., when the app is destroyed 
and recreated. We immediately noticed a deficiency of this 
design when we started formulating the behavior of the activity 
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lifecycle methods such as onPause() and onResume(). Since all 
such attributes have to be stored in and restored from the game 
object one by one, the design leads to long, unstructured 
constraints. We refactored our initial design by introducing a 
view-specific subclass of the Board class named BoardModel to 
remember view-specific data (see Section III.B). This produces 
not only a clean and extensible design but also simple 
specifications for the onPause() and onResume() methods. In 
fact, no additional constraint is needed because it is done 
automatically by the singleton game object composed of a 
board.  

A precise model also facilitates evolution of an application. 
We made several enhancements to our app along with options to 

enable and disable new features: 
displaying all permitted numbers 
for empty squares, undoing and 
redoing assignments of numbers to 
squares, and the calculation of 
uniquely determined numbers for a 
set of squares (see Figure 11). The 
first enhancement didn’t require a 
significant change in our model. 
The others required new model 
classes (e.g., stacks to keep track of 
undoable/re-doable actions), new 
UI elements (e.g., undo/redo 
buttons), Android specific classes 
(e.g., PreferenceFragment and its 

activity), and changes to existing classes. Our models provided 
us a good guidance in developing these enhancements by 
allowing us to identify the required change along with its impact 
in the models and the source code as well, e.g., modification of 
specifications, modification of the design to satisfy the modified 
specifications, and consequent modification of the source code. 
The preciseness of the model helped us to come up with an 
extended design with minimal change in order to support the 
enhancements. 
 One potential concern for automatically-generated code, 
however, is its runtime performance. Since Android devices are 
resource-constrained in storage capacity and battery lifetime, 
performance is always a concern in developing an app [24]. It is 
even said that identifying an app’s performance bottlenecks and 
addressing them is critical to the success of the app [20]. For 
example, Android has a memory conservation mechanism 
known as Low Memory Killer (LMK) that, upon shortage of 
memory, starts killing background and inactive processes to 
reclaim their memory [28]. Another concern is that a 
performance problem hardly show up in the model. It is 
revealed only after the model is transformed to code and 
executed. In fact, we encountered such a performance problem 
in one of our operations whose constraints was directly 
translated to Java 8. The Solver::pickSquare() operation picks a  
square to fill in a number (see Section III.C), and its OCL 
specification and translated code are shown below. 
 
context Solver::pickSquare(): Square 

post: result = if c->size() > 0 then c->any(true) else null endif 
   where Square::isPickable():Boolean = not hasNumber()  
      and permittedNumber()->size() > 0, 
   c = board.squares@pre->collect(s| isPickable() and 
         board.squares@pre->forAll(isPickable() implies 
            permittedNumbers()->size()  
            >= s.permittedNumbers()->size()) 
 
private Square pickSquare() { 
   List<Square> c = board.squares().stream() 
      .filter(this::isPickable).collect(Collectors.toList()); 
   Square result = null; 
   if (c.size() > 0) { 
      int m = c.stream().mapToInt(s -> 
           s.permittedNumbers().size()).min().getAsInt(); 
      c = c.stream().filter(s-> s.permittedNumbers().size() == m) 
           .collect(Collectors.toList()); 
      result = c.get(random.nextInt(c.size())); 
   } 
   return result; 
} 
 
private boolean isPickable(Square s) { 
   return !s.hasNumber() && s.permittedNumbers().size() > 0; 
} 
 

As said in the previous section, we use Java 8 features such as 
lambda expressions and the Stream API to generate code from 
OCL constraints. The OCL collection iterators such as collect 
are mapped to the Java stream operations such as filter and their 
argument expressions to lambda expressions. The code is a 
direct translation of the postcondition except for some 
performance improvements; e.g., in order to pick a square that 
has the least number of permitted values, it calculates the 
smallest size of permitted values of all squares and stores it in a 
local variable instead of comparing a candidate square to all 
other squares. The above code, however, failed to create a new 
game. There were too frequent garbage collections (see Figure 
12), suspending all threads several times and eventually closing 
the app. 

 

 
 

Figure 12. Pattern of garbage collection events 
 

We rewrote our initial code to make it more memory efficient 
by reducing the number of garbage collections. Since stream 
operations create hidden objects and cause significant memory 
overheads [10], we refactored our code to remove them as 
shown below. 
  
private Square pickSquare() { 
   Square result = null; 

 
 

Figure 11. Enhanced UI 
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   int min = Integer.MAX_VALUE; 
   for (Square s: board.emptySquares()) { 
       int c = s.permittedNumbers().size(); 
       if (c == 0) { return null; } // not solvable! 
       if (c < min || (c == min && random.nextBoolean())) { 
           min = c; result = s; 
       } 
   } 
   return result; 
} 
 
 This new code fixed our problem. When a new game is 
created, it triggers only one or two garbage collection events 
without causing all threads be suspended. However, we soon 
learned that the real cause of our problem was not the use of 
streams though it aggravated the problem. Our new code fixed 
the problem accidently by the way it was written -- i.e., a case 
analysis on the number of permitted values. When there is an 
empty square with no permitted number, it returns null. Thus, it 
forces backtracking as soon as the board becomes unsolvable 
without performing sort of exhaustive search for other empty 
squares. When we made this fix to our original code, it worked 
although its memory performance was not as good as the new 
code. We revisited our specification of the Solve::pickSquare 
operation to admit only this more efficient code as shown 
below. 
  
result = if board.squares@pre->exists(not hasNumber() and 
   permittedNumber() = 0) or c->size() = 0  then null else …  

 
We learned that developing a good model is an iterative 

process. As shown above, coding can be an effective way to find 
a problem in a model and improve it. It is difficult to verify and 
validate a model alone while it is often rather straightforward to 
generate code from a specification and to observe its runtime 
behavior. Unlike the above example, however, it doesn’t have to 
be a performance-related issue. As an example, consider the 
Solver::fillDetermined() operation from Section III.C. 
 
context Solver::fillDetermined() 
post: board.squares->forAll(not hasNumber()@pre and  
   permittedNumbers()@pre->size() = 1 implies 
   number = permittedNumbers()@pre->any(true)) 
 

It is supposed to fill all the empty squares that have a single 
permitted number. The specification looked good to us though 
there is some incompleteness (see below). However, when we 
ran the generated code, the solver behaved strangely. We were 
able to track the cause to the fillDetermined() method, whose 
code is a simple, direct translation of its specification and is 
indeed correct (see Section IV). There was a problem in the 
specification itself. Missing in the specification is a key 
constraint asserting all the newly assigned squares have to be 
remembered for backtracking. We fixed our specification as 
follows. 

 

context Solver::fillDetermined() 
post: board.squares->forAll(s| not hasNumber()@pre and  
   permittedNumbers()@pre->size() = 1 implies 
   number = permittedNumbers()@pre->any(true) and 
   history^append(new Assignment(s))) 
 

We used the OCL message expression (^) to add the new 
constraint. Note that it is also possible to simplify the whole 
consequent of the implication (the implies operation) to 
self^assign(s). Ironically, while tracking the cause of the 
problem, we also came up with a more efficient algorithm. 
Filling a number in a square may make other squares to be 
“determined”, and we can fill these squares too as shown below. 
 
private void fillDetermined() { 
    boolean[] found = { false }; 
    do { 
       found[0] = false; 
    board.squares().forEach(s -> { 
          if (!s.hasNumber()  
              && s.permittedNumbers().size() == 1)  { 
             assign(s); found[0] = true; 
          } 
       }); 
   } while (found[0]); 
} 
 

B. OCL 

Is OCL a good notation for constructing a precise model for 
MDD approaches? Our finding is that it is expressive and 
reasonably good for writing single-state assertions such as class 
invariants, derived attributes and associations, and behavior of 
query operations. However, it is hard to write complete 
specifications in OCL for update operations and constraints 
involving multiple states, often called history constraints. For 
example, the specification of the Solver::fillDetermined() 
revised in the previous subsection is still incomplete. It 
constraints only the number attributes of those squares that are 
empty and have a single permitted value in the pre-state. What 
should be the new values of other attributes? What about other 
squares of the board or the board itself? What is missing in OCL 
is a built-in language construct for specifying the so-called 
frame axiom that essentially says “and nothing else changes” 
[2]. Some common but potentially imprecise approaches are to 
assume that only those objects mentioned in the postcondition 
are allowed to change, and objects that are not specified to 
change in the postcondition do not change [17]. We also found 
that it is often more intuitive and straightforward to design a 
step-by-step algorithm than to write pre and postconditions for 
an operation. For example, instead of writing an OCL 
constraint, we drew a behavioral state machine to express the 
behavior of the Solver::backtrack() operation that does 
backtracking. In general, when a constraint involves side effects 
on a series of hidden internal states, it is hard to formulate it 
because, besides the frame problem, there is no direct way to 
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refer to the hidden internal states to order or accumulate the side 
effects. Another example is the improved version of the 
fillDetermined() operation in the previous subsection whose 
behavioral machine produces a more concise and clearer 
description. We also learned that OCL are not effective in 
specifying the behavior of Android framework classes and their 
operations involving user interactions or collaborations among 
objects (see below). 
 We found that OCL message expressions are useful in 
specifying certain behavior of operations. One common use is to 
specify in a postcondition that a certain interaction should 
happen, e.g., invoking a callback operation or notifying an event 
to an observer. The OCL hasSent (^) operator allows one to 
specify this elegantly at a higher level of abstraction, i.e., 
without worrying about the state change due to the interaction. 
As described in Section III.B, for example, the 
BoardView::onTouchEvent() operation should notify to its 
observers when a square is touched and selected, and this 
behavior is specified as: listeners->forAll(l | l^selected(s)), 
where s is the selected square. In fact, it is impossible to specify 
the state change caused by the callback operation such as 
selected in this example because each observer may implement 
it differently and thus have different behavior. Another common 
use of the OCL message expression in our specifications is 
when we know how to achieve the required state change but 
specifying it is too involved or worthless. For example, the 
BoardView::onTouchEvent() operation has to refresh its display 
when a square is selected (see Section III.B). This behavior can 
be succinctly specified as: self^invalidate(); the invalidate 
operation is an Android framework method to force a view to 
draw itself. As shown above, judicious use of the message 
expressions in postconditions can improve the clarity and 
readability of the constraints. However, one has to be cautious 
when both query expressions and message expressions are used 
in a single constraint because the specified message sending 
may happen in any intermediate state, not necessarily in the final 
state. As an example, consider a constraint, board.square = s 
and self^invalidate(), where s is a new selection. This constraint 
is from the postcondition of the BoardView::onTouchEvent() 
operation, and the intention is to assert that the operation sets s 
as a new selection and then refresh the display. What is 
specified, however, is loose in that the invalidate message may 
be sent before the new selection is set; it may happen at any time 
during the execution of the operation. 
 We often extended the vocabulary for writing constraints, 
given by OCL and the class diagram. For example, to specify 
the behavior of the Game::init() operation, we introduced a new 
query operation named isSolvable() that tests whether a board 
configuration has a solution or not (see Section II.A). For this, 
we used the OCL def constraint, in which a helper attribute or 
operation is defined. We found that this feature of OCL is very 
useful in writing constraints partly because unlike the let 
expression it enables reuse of attributes and operations in 
multiple places. We believe that, like specification-only features 
of other formal specification languages such as JML [6], such 

attributes and operations do not have to be implemented3, and 
thus they can be used to write constraints at a higher level of 
abstraction than given by the underlying UML models like class 
diagrams. We also introduced locally scoped functions (query 
operation) in our own extension to OCL, the where clause (see 
Section II.A). 
 During the design, we often encountered certain aspects of 
the underlying UML model that are difficult or simply worthless 
to formulate. Most of these are Android-specific detailed 
designs, e.g., specifications of operations such as onCreate and 
onDraw that override methods inherited from Android 
framework classes. Our approach was either to write constraints 
for only those aspects that are doable in OCL and worthwhile to 
do so or to focus on interactions (i.e., messages to be sent) by 
abstracting away from the required state changes. Thus, our 
specifications are partial or incomplete, lacking the parts that 
are not formalized. One desirable feature of OCL is a way to 
include them in a constraint – even if they are not formally 
written – to make the constraint complete. A construct similar to 
the informally expression of JML [19] is desirable to escape 
from formality and to combine formal and informal texts in a 
single constraint. For example, one can write a constraint like 
the following. 
 
(* buttons from the current layout *)->forAll(not isEnabled()) 
 

The text enclosed in a pair of (* and *) is an informal 
expression in that its meaning is not given formally. Even if the 
constraint cannot be interpreted by a tool, it will be helpful for a 
human reader or programmer; it is a lot better than completely 
omitting it. 

As said earlier, the OCL message expression was useful to 
either specify the required collaboration among objects or 
abstract from the required state changes. For example, the 
BoardView::setBoard() operation can be specified as follows. 
 
context BoardView::setBoard(b: Board) 
pre: b <> null 
post: board = b and b^addChangeListener(?: ChangeListener) 
 

The operation sets the board to be displayed and registers a 
listener to the board to refresh the display when there is a change 
in the board. However, the postcondition says nothing about 
refreshing the current display. It only states that the 
addChangeLister operation be invoked during the execution; it 
doesn’t constrain the listener itself passed as the argument. A 
notation similar to the Java lambda expression [26] would be 
useful for constraining the callback operation. For example, the 
above conjunct may be rewritten as: 

 
b^addChangeListener((s,v) -> post: self^invalidate()) 
 

 
3 The OCL standard says that a «definition» constraint is identical to 

defining an attribute/operation in the UML with stereotype «OclHelper» with 
an attached OCL constraint for its derivation [22]. 
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 A lambda-like notation is used to specify the behavior of the 
callback operation. The two argument (s, v) represents the 
square whose number was changed and its old number as 
declared in the ChangeListerner interface. Of course, the 
lambda body consists of OCL constraints such as pre- and 
postconditions. The registered listener now should invoke the 
invalidate operation when a board change event occurs. A 
related improvement would be to provide a way to “quote” or 
refer to another constraint, e.g., the postcondition of another 
operation [15]. It would allow one to assert a condition or state 
change stated in another constraint without duplicating it. We 
believe notations like these be very useful for modeling and 
specifying Android apps. Android apps tend to become more 
complex reactive systems, constantly reacting on inputs from 
user interfaces or sensors as well as communicating with 
different network protocols. Thus, it is essential to be able to 
specify these interactions precisely in the model.  
 We can also image Android platform-specific support for 
writing OCL constraints. One feature of the Android platform is 
its use of UI layouts written in XML. An Android activity may 
be associated with multiple layouts, e.g., one for portrait mode 
and another for landscape. One handy feature would be an 
abstract way of referring to views contained in the current 
layout, e.g., all the buttons or buttons satisfying a certain 
property. For example, the following expressions can be used to 
retrieve all buttons or a button with a label ‘X’. 
 
layout->select(oclIsKindOf(Button)) 
layout.button->any(text = ‘X’)  
 

Once a suitable abstraction of a layout is determined (e.g., a 
set of views or a composition of views), a derived attribute or 
query operation, say layout, may be introduced to the Android 
Activity class so as to be inherited by all user-defined activity 
classes. 

VI. CONCLUSION 

We performed a small case study of developing an Android 
app by applying the key ideas of MDD – creation of precise 
models and code generation. Our findings are mixed. There are 
of course obvious benefits of creating precise models. By 
writing OCL constraints, for example, one is in fact examining 
and evaluating one’s models constantly even though one may 
not realize it; e.g., a long or complicate constraint may indicate a 
deficiency in one’s model. Thus, it is more likely that one 
produces a better model in the end. Even if it is done manually, 
we generated a significant amount of platform-neutral and 
Android-specific code from our model, including functioning 
code derived from OCL constraints and behavioral state 
machines. An interesting result is that only 39% of methods are 
from the operations explicitly specified in the model. The rest of 
the operations are from attributes, associations, and common 
subexpressions (helper operations) of constraints, all of which 
are derived straightforwardly. Thus, one benefit of MDD is that 
it allows one to focus on specifying and designing only 

important and interesting operations; one does not have to 
consider or even express in the model uninteresting detailed 
design or implementation decisions such as the visibility of 
features and the navigability of associations. Since Android 
devices are resource-constrained in storage capacity and battery 
lifetime, however, one problem with automatically generated 
code is its performance, especially memory efficiency[24]. In 
fact, we encountered such a problem in one of our operations 
whose postcondition is directly translated to Java 8. The 
generated method caused so frequent garbage collection that it 
suspended all threads several times and eventually closed the 
app. As in our case, performance problems seldom show up in 
the model and thus hard to detect during the design; they are 
revealed only when the generated code is tested. A more 
fundamental question regarding performance is that 
specifications are generally written with clarity in mind, not for 
efficiency. Can the code generated from such specifications be 
efficient on Android?  

Regarding the use of OCL, we learned that OCL can be an 
effective notation for writing constraints involving a single 
state, e.g., invariants, derived attributes and associations, query 
operations, and preconditions of update operations. However, it 
lacks expressiveness for writing complete specifications of state 
changes as well as being precise on the required interactions in 
postconditions. Android apps are becoming highly interactive 
and more complex reactive systems. For example, 43% of our 
source code lines are for two Android framework-related UI and 
control classes; they required most of our manual coding work. 
It would be challenging to specify in OCL the rich interactions 
possible on the Android platforms abstractly and at the same 
time sufficiently detailed so as to generate efficient code. 

Is MDD a practical approach for developing Android app? 
As we did in our case study, the key components of MDD such 
as precise models and code generations can certainly be 
incorporated into the development of Android apps. However, 
one needs to consider the effort as well as the skills needed to 
create precise models. Thus, it may not be such an attractive 
approach for developing typical Android apps like our Sudoku 
app. However, it may be possible to reap the benefits of MDD 
for a certain types of apps such as health-related apps (e.g., [4] 
[8]) that require high assurance in meeting functional 
correctness or satisfying appropriate safety or regulatory 
requirements. 
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