

Multiplatform Application Development

for Android and Java

Yoonsik Cheon

TR #19-42

April 2019

Keywords: multiplatform application, platform difference, software development, software engineering,

Android, Java

2012 ACM CCS: • Software and its engineering ~ Software design engineering • Software and its

engineering ~ Agile software development • Software and its engineering ~ Reusability • Information

systems ~ Mobile information processing systems • Human-centered computing ~ Mobile computing

To appear in the 17th IEEE/ACIS International Conference on Software Engineering Research,

Management and Applications, Honolulu, Hawaii, May 29-31, 2019.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

1

Multiplatform Application Development

for Android and Java

Yoonsik Cheon

Department of Computer Science

The University of Texas at El Paso

El Paso, Texas, U.S.A.

ycheon@utep.edu

Abstract—Software developers of today are under increasing

pressure to support multiple platforms, in particular mobile

platforms. However, developing a multiplatform application is

difficult and challenging due to a variety of platform differences.

We propose a native approach for developing a multiplatform

application running on two similar but different platforms, Java

and Android. We address practical software engineering concerns

attributed to native multiplatform application development, from

configuration of tools to software design and development process.

Our approach allows one to share 37%~40% of application code

between the two platforms as well as improving the quality of the

application. We believe our approach can also be adapted to

transforming existing Java applications to Android applications.

Keywords—multiplatform application, platform difference,

software development, software engineering, Android, Java

I. INTRODUCTION

Android and Java applications can be written in the same
programming language. However, the similarity almost ends
there, as there are significant differences between the two
popular platforms of today in terms of application programming
interfaces (APIs), software development kits (SDKs) and
runtimes. A subtle platform difference can cause an application
to malfunction or show a radically different behavior. Android
applications are smaller than traditional applications with the
average size of 5.6 kLOC [8], and the development of mobile
applications tends to be driven by a single developer [14].

 In this paper we propose an approach for developing an
application that runs on both the Android platform and the Java
platform. A multiplatform application is an application that is
developed for and runs on multiple platforms. We use the term
platform broadly to mean operating systems, runtimes, SDKs
including APIs, and even design guidelines. We first identify
and describe the software engineering challenges associated
with multiplatform application development. The platform
differences are of course the number one cause of all the
challenges, and thus we identify various types of platform
differences and variations between Android and Java. We then
propose a development approach to address the challenges and
identified platform differences.

Our proposed approach includes a development process, an
overall application architecture and configuration of tools (see
Section IV). Our process is iterative and incremental to better
address the diversity of platforms as well as uncertainty of
platform differences. Each build is incremental and a working

build is delivered after each iteration. Our design approach is to
separate platform-specific parts from the rest of the application.
An application is decomposed into two distinct parts: a platform-
independent part (PIP) and a platform-dependent part (PDP).
The PIP is shared across platforms, and a separate PDP is written
for each platform. Several techniques are suggested to separate
the two parts cleanly and encapsulate platform differences in
PDPs. We suggest to configure a development environment
consisting of several platform-specific integrated development
environments (IDEs) to support continuous integration [13].

We applied our approach to the development of a small but
realistic application (see Section V). The finished application
consists of 36~40 classes and 4604~4987 lines of manually-
written Java source code. We were able to achieve 37%~40%
code reuse in spite of the application being user interface-
intensive. The case study confirmed that code reuse indeed
depends heavily on the degree of API similarity, with a wide
range of reuse percentages (52%~92%). We also learned that
our approach supports the separation of concerns very well and
provides valuable opportunities for improving the quality of an
application. The configuration of tools was effective in
supporting continuous integration and testing. It lets us to work
on multiple projects simultaneously by simply switching
between the platform-specific IDEs. In sum, our approach works
well for a single developer and a small team of developers.

The rest of this paper is organized as follows. In the next two
sections we identify and describe challenges associated with
multiplatform application development, focusing on platform
differences. In Section IV we explain our development
approach, including a process, an application architecture, and
tool support. In Section IV we evaluate our approach by
performing a small case study. In Section VI we mention related
work, and we conclude our paper in Section VII.

II. CHALLENGES

In this section we identity and describe briefly some of the
software engineering challenges associated with multiplatform
application development. We use the term platform broadly to
mean a set of frameworks and tools to create a complete
application.

• Platform difference. This is the fundamental reason why
multiplatform application development is different from
other development approaches. An application has to
run on multiple platforms, and there are a variety of

2

platform differences and variations, including APIs,
constraints, and even design guidelines (see Section III).

• Design for difference. The biggest design challenge is to
accommodate platform differences and variations as
well as maximizing code reuse across platforms. We
need a software design model that supports variations as
well as code reuse. Established software engineering
principles and concepts like software components [2],
software product lines [11], and design patterns [7] may
be adapted and applied in the design of a multiplatform
application. However, it is not clear exactly how they
can be adapted and applied to various types of platform
differences. A subtle platform difference may have a
significant impact on the design of an application.

• Configuration of tools. It is crucial to have adequate tool
support for any software development. Since multiple
versions (variations) of an application are constructed—
one for each platform—it is likely that a combination of
platform-specific tools be used for multiplatform
application development. The challenge here is to create
sort of an integrated environment consisting of several
platform-specific tools working in harmony. One key
requirement for a development environment is to
propagate changes made by one tool to the others
immediately. Ideally, the environment should assist a
programmer in detecting platform-related issues,
identifying their causes, and propagating the fixes.

• Development process. We need to work on multiple

projects, one for each platform and a library project.

The library project is for developing the common code

to be shared across platforms. We need a conceptual

model to manage platform differences, work on

multiple projects, and to incorporate variations as one

of the key development elements.

III. PLATFORM DIFFERENCES

Android applications are written in Java; they can be written
in other languages such as Kotlin and C/CC+, but Java is the
most popular language at the time of writing. The APIs of Java
and Android are similar for common libraries such as
collections. However, the graphical user interface (GUI)
frameworks of Java and Android are completely different, as
Android offers its own framework for GUI programming.
Android also introduces quite a few concepts and framework
classes specifically for mobile applications. In this section we
describe some of the noticeable differences between the two
platforms from a programmer’s perspective. We can categorize
API differences in several ways, including:

• Syntactic vs. semantic. The difference can be purely
syntactic, semantic, or both. We use the term a syntactic
interface to mean the syntactic aspect of an API such as
names and signatures, and a semantic interface to mean
its behavior or meaning.

• Built-in vs. third-party. The difference can exist
between APIs of the platform SDKs or third-party
libraries and frameworks. There are several different
ways to support third-party libraries and frameworks.

• Restrictions and constraints. A platform can restrict the
way its APIs are used. These restrictions and constraints
can be enforced by the platform either statically at
compile time or dynamically at runtime.

• Design guidelines. Each platform has its own design
guidelines—a set of principles and recommendations
along with supporting APIs. The guidelines are most
often about the design of UI but also pertain to the use
of APIs and other features of the platform SDK.

An example of the syntactic/sematic difference is requesting
the UI thread, called the event dispatch thread in Java, to
perform an action or task. Java provides a static method named
SwingUtilities.invoakeLater(Runnable) while Android defines a
non-static method Activity.runOnUiThread(Runnable). These
seemingly equivalent operations also have a subtle semantic
difference. If the current thread is the UI thread, the requested
action is executed immediately on Android; in Java, however, it
is deferred until all pending events have been processed. This
kind of subtle semantic differences often causes more trouble
than a missing API, another common form of API differences.

Besides the APIs of the platform SDK, third-party libraries
and frameworks are used heavily in application development,
especially in Android applications [8]. Interestingly, there are
also differences in the ways third-party libraries and frameworks
are supported by platforms: (a) bundled in the platform SDK, (b)
integrated with the platform SDK, and (c) provided as a separate
platform-specific SDK. Examples include Android’s support for
JSON, SQLite databases, and Google Firebase cloud storage,
respectively. Java SDK provides no direct support for JSON or
SQLite, and Google offers a Java-specific Firebase SDK.

Perhaps, the two most noticeable constraints of the Android
APIs are network operations and UI updates. Android disallows
network operations on the main (UI) thread. The Android
runtime throws a NetworkOnMainThreadException when an
application attempts to make a network operation on its main
thread. Android also prevents background threads from updating
the UI. An application’s main thread is solely responsible for
updating the UI. There are no such restrictions enforced in Java.

An example of the design guidelines is string externalization.
Android recommends one to externalize UI strings—to store
them in XML files in special resource directories—so that it can
pick an appropriate definition depending on the current language
setting of the device. In fact, Android defines more than a dozen
resource types, including color, image, layout, menu, string,
style and animation, and provides a way to refer them. It is good
practice to use the Android resource framework to separate the
localized aspects of an application from the core functionality
coded in Java. There is no such, or similar, resource framework
offered by the Java SDK.

IV. OUR APPROACH

In this section we propose to develop a multiplatform
application incrementally and iteratively by continuously
integrating and testing its code written on different platforms.
We describe our proposed approach, including a process, an
application architecture, and tool support.

3

A. Process

A subtle difference of platforms can have a big impact on the
design of a multiplatform application. Due to the diverse nature
of platform differences and variations—not only their types but
also their complexities and delicacies—it is hard, or sometimes
impossible, to identify and know all the platform differences at
early stages of the development. We therefore propose an
iterative and incremental approach in which each software build
is incremental in terms of features and a working build is
delivered after each iteration (see Fig. 1). The final build of
course implement all the required features.

Fig. 1. Iterative development

Each iteration consists of four different activities. Each

iteration starts with a platform analysis activity to identify
differences and variations of the platform APIs for the feature
under development in that iteration. This activity provides a
basis for the other three activities, all of which are concerned
with design and coding. In each iteration we need to work on
three different projects: an Android project, a Java project, and
a library project. The library project is for developing the
common code to be shared between platform-specific versions,
or variations, of the application. Our approach allows different
sequences in which the three projects can be performed,
including of course simultaneous work. The development
environment to be configured later in this section allows us to
work on all three projects at the same time by switching
between platform-specific IDEs. However, we found that two
sequences work best: (a) library and then platforms and (b)
platform, library, and then platform. The library first approach
works well for familiar features with little platform difference,
and the platform-library-platform for other cases. The
underlying idea of the second approach is to first develop an
increment for one platform, derive reusable code (library) from
it, and then apply the library to the development of the other
platform. The strength of this approach is that it lets us to tackle
a concrete and specific problem first and then generalize the
solution to solve similar problems. Designing reusable classes is
more difficult and time consuming than designing classes for
one specific problem [1].

B. Application Architecture

The architecture and design of a multiplatform application
should accommodate platforms differences and variations as
well as maximizing code reuse across platforms. A natural
architecture therefore is to separate platform-specific parts from

the rest of the application. We suggest to decompose an
application into two distinct parts: a platform-independent part
and a platform-dependent part. The platform-independent part
(PIP) is the part of an application that doesn’t depend on
specifics of a particular platform. In the model-view-controller
(MVC) architecture, the model is a good candidate for the PIP.
The platform-dependent part (PDP) is the part of an application
that does depend on a specific platform, e.g., the view and view-
specific controller of MVC. The PIP code is written once and
shared across platforms whereas different PDP code is written
for each platform.

Fig. 2. Architecture for multiplatform applications

Fig. 2 shows our suggested architecture for a multiplatform

application. The most noticeable PDP is the UI of an application.
Remember that Android provides its own GUI framework along
with Android-specific concepts and framework classes. The
other PDP encapsulates platform differences and variations of
the application for the PIP. The PIP is the functional core, or
business logic, of the application and may also include storage
and network. As expected, the PIP doesn’t depend on PDPs. We
suggest several techniques to accommodate platform differences
and variations in the design. The guiding principle is to have
clearly defined interfaces and employ loose coupling between
the two parts.

• Required interface. The PIP needs to interact with the
PDP. We let the PIP depends on an abstraction of the
PDP, not its concrete implementation, by applying the
dependency inversion principle [6]. The assumption
that the PIP makes about the PDP is coded explicitly in
the form of a required interface [2]. In a sense, we plug
in platform-specific code—a class that implements the
required interface—to the platform-neutral framework.

• Inheritance and hook. The PIP provides an abstract
class with hook methods to be overridden by a subclass
in the PDP. That is, the PIP defines a skeleton algorithm
and lets the PDP fill out the details in a platform-specific
way. This can be coded by applying several well-known
design patterns such as template method, strategy,
factory method [7].

• Parameterization. A platform difference or variation
can be parameterized. The PIP, instead of accessing a
PDP feature directly, receives it as a parameter. The
parameters can be simple values, structured data and
objects, and behaviors (lambdas). The required interface
can be viewed as a special form of parameterization.

• Interface cloning. This is a simple technique to get rid
of a platform difference. If an API is provided only in
one platform, we can clone it in the other platform—

PDP: user interface (UI)

PIP:

business logic,

storage and network

PDP:

plugins and

extensions

4

define a class of the same syntactic interface but coded
in a platform-specific way. The API now become a
common feature of both platforms and thus can be used
in the implementation of the PIP.

• Interface unification. The APIs of the two platforms can
be merged and unified to get rid of their differences.
This is a generalization of the interface cloning above.

C. Tool Support

It is crucial to have adequate tool support for multiplatform
application development. Since two versions of an application
are developed, the development environment logically consists
of three IDEs: two platform-specific IDEs and one for
developing the PIP. Thus, it is very likely that a combination of
several tools be used for multiplatform application development.
We configure a custom multiplatform application development
environment by composing platform-specific IDEs and tools as
suggested in [13].

Fig. 3. Example development environment

 Fig. 3 shows one possible configuration of a development
environment consisting of Eclipse and Android Studio. One key
requirement for incremental and iterative development of a
multiplatform application is to propagate changes immediately
from one IDE to others. We can use Apache Maven, a software
project management and build tool, to share code and propagate
changes in the form of a library [13]. Both the Java project and
the library project in Eclipse are Maven projects, and the library
project produces a library jar file, called an artifact in Maven, of
the common code. The library jar file is installed in the Maven
local repository and becomes available immediately to the
Android project. The Gradle build tool of Android Studio
understands Maven repositories. For the Java project we can
also make it reference, or depend on, the library project.

V. EVALUATION

We performed a small but realistic case study to evaluate our
approach both quantitatively and qualitatively. We developed an
application to watch over the fluctuating prices of online
products and thus help a user to figure out the best time to
purchase them (see Fig. 4). We developed the application
iteratively in several increments: single item, multiple items,
data persistence, and network. We used the library-first
approach for the first increment and the platform-first approach
for the others. Our development environment consisted of
Eclipse and Android Studio as shown in Fig. 3 (see Section
IV.C), and the library project was developed in Eclipse. The
environment was effective for supporting continuous integration

and testing, especially the integration of the PIP to the two PDPs.
We oftentimes worked on all three projects simultaneously—
e.g., to refine the PIP and test it on both platforms—by switching
between Eclipse and Android Studio.

Fig. 4. Screenshots of Price Watcher (Java and Android)

The complete Android application consists of 40 classes and

4987 lines of source code (LOC), and the Java versions consists
of 36 classes and 4604 LOC. The PIP accounts for 37% and 40%
of the Android and the Java application code, respectively (see
Table 1). That is, we achieved 37% and 40% code reuse for
Android and Java, respectively. Android version has 8% more
code than Java.

Table 1. Sizes of application code

App Part
No. of No. of Lines

Classes Percent (%)

Android
PDP 24 3162 63

PIP 16 1825
37

Java
40

PDP 20 2779 60

Fig. 5. Code sizes of different data persistence schemes

How do the API differences affect code reuse? To study this,
we implemented three different data persistence schemes: file,
database (SQLite) and cloud storage (Google Firebase).

Eclipse

Android Studio

Java project

Library project

Android project

Maven local repository

lib.jar

lib.jar

5

Fig. 5 shows the amount of code written for each of these
data persistence schemes. We were able to achieve a high degree
of code reuse for the file (83%) and the cloud storage (92%). For
these two schemes, only small amount of code was written on
each platform (PDP), because their Android and Java APIs are
very similar. For the database, however, more code (52%) was
written in PDPs. As said previously, Android offers SQLite
databases integrated with its framework, and thus its API is
significantly different from the JDBC-based SQLite of Java.

The PIP/PDP architecture slightly increased the size of the
application code. Monolithic versions—code written without
the PIP/PDP separation—have less classes and lines of code,
and the size overheads of the PIP/PDP separation are 14% and
13% for Android and Java, respectively.

Our development approach provided valuable opportunities
for improving the quality of an application. Android platform
features such as screen orientation changes allowed us to explore
and test our application in a way that would be impossible or
unnecessary for a Java application, often exposing potential
issues or problems in our application. We worked on, or
reviewed, the same or derived code (PIP and PDPs) several
times, each with a different perspective—either as a service
provider or a consumer. Multiplatform development encouraged
us to generalize our APIs, especially those of the PIP, to address
and accommodate platform differences and variations. In fact,
even platform restrictions and constraints contributed positively
to the creation of a more reusable and extensible application.
However, one downside of our PIP/PDP separation is that the
PIP is written in the common denominators, or shared traits, of
the both platforms. That is, the PIP platform is the intersection
of the two platforms, Java and Android.

VI. RELATED WORK

The diversity of mobile devices and platforms made native
development of mobile applications challenging and costly, thus
approaches like cross-platform development have emerged to
reuse code across different mobile platforms by using various
techniques such as cross-compilation, virtual machines, and web
technologies [5] [12]. Unlike these approaches, our work is
concerned with native development of a mobile application and
sharing code with its desktop version written in the same
programming language, where the development processes and
practices can be quite different [8] [14]. It is said that the practice
of software reuse is high among mobile application developers
[9]. One study even reported that 61% of Android application
classes appeared in two or more other applications [10].
However, we found no publish work measuring code reuse
between Android and Java applications.

 Our notions of PIP and PDP are similar to a platform-
independent model and a platform-specific model, respectively,
of model-driven software development [3]. Our approach is also
related with the software product line development that aims to
create a collection of similar software systems, called a product
family, from a shared set of software assets using a common
means of production [11]. The key is to identify the
commonalities and variabilities within a family of products [4].
In our approach, the PIP is a shared asset, and the platform APIs
are the variabilities.

VII. CONCLUSION

We proposed an approach for developing a multiplatform
application for Java and Android. We showed that the two
seemingly equivalent platforms of Java and Android have
significant API differences that pose challenges in application
development. Our solution to the challenges is to develop an
application incrementally and iteratively by including an
analysis of platform differences as a key component of the
development process. We showed the effectiveness of our
approach by applying it to a small but realistic case study. Our
approach not only allowed us to achieve 37%~40% code reuse
but also provided valuable opportunities for improving the
quality of the application. It was also shown that code reuse
across platforms depends heavily on the similarity of platform
APIs. The main contributions of our work include (a)
identification of various platform differences between Java and
Android, (b) design techniques for accommodating platform
differences, (c) notions of a platform independent part (PIP) and
a platform dependent part (PDP), (d) an application architecture
based on the PIP/PDP, and (e) configuration of a development
environment consisting of a set of platform-specific tools.

REFERENCES

[1] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
Object-Oriented Programming, vol. 1, no. 2, pp. 22-35, June/July 1988.

[2] F. Bronsard, et al., “Toward software plug-and-play,” Symposium on
Software Reusability (SSR ’97), Boston, MA, May 1997, pp. 19-29.

[3] A. W. Brown, “Model driven architecture: Principles and practice,”
Software and Systems Modeling, vol. 3, no. 4, pp. 314–327, Dec. 2004.

[4] J. Coplien, D. Hoffman and D. Weiss, “Commonality and variability in
software engineering,” IEEE Software, vol. 15, no. 6, pp. 37–45, 1998.

[5] H. Heitkotter, S. Hanschke and T. A. Majchrzak, “Evaluating cross-
platform development approaches for mobile applications,” Web
Information Systems and Technologies, pp. 120–138, Springer, 2013.

[6] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices, Prentice Hall, 2003.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1994.

[8] P. Minelli and M. Lanza, “Software analytics for mobile applications --
insights & lessons learned,” European Conference on Software
Maintenance and Reengineering, Genova, Itally, 2013, pp. 144–153.

[9] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger and A.E.
Hassan, “A large-scale empirical study on software reuse in mobile apps,”
IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[10] I. J. Mojica, M. Nagappan, B Adams and A. E. Hassan, “Understanding
reuse in the Android market,” IEEE International Conference on Program
Comprehension (ICPC), pp. 113–122, 2012.

[11] L. M. Northrop, “SEI’s software product line tenets,” IEEE Software, vol.
19, no. 4, pp. 32–40, 2002.

[12] M. Palmieri, I. Singh and A. Cicchetti, “Comparison of cross-platform
mobile development tools,” International Conference on Intelligence in
Next Generation Networks, pp. 179–186, 2016.

[13] T. Speicher and Y. Cheon, “Composing a cross-platform development
environment using Maven,” Workshop on Regional Consortium for
Foundations, Research and Spread of Emerging Technologies in
Computing Sciences, Juarez, Mexico, Nov. 8-9, 2018, pp. 68-80.

[14] M. D. Syer, M. Nagappan, A. E. Hassan and B. Adams, “Revisiting prior
empirical findings for mobile apps: An empirical case study on the 15
most popular open-source Android apps,” Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’13, pp. 283–
297, Riverton, NJ, 2013.

