
Code Reuse Between Java and Android Applications

Yoonsik Cheon, Carlos V. Chavez and Ubaldo Castro

TR #19-50
May 2019

Keywords: code reuse, multiplatform application, platform difference, software devel-
opment, Android, Java

2012 ACM CCS: • Software and its engineering ∼ Software design engineering • Soft-
ware and its engineering ∼ Agile software development • Software and its engineering ∼
Reusability • Information systems ∼ Mobile information processing systems • Human-
centered computing ∼ Mobile computing

An extended version of the paper to be presented at the 14th International Conference
on Software Technologies (ICSOFT 2019), Prague, Czech Republic, July 26–28, 2019.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Code Reuse Between Java and Android Applications

Yoonsik Cheon, Carlos V. Chavez and Ubaldo Castro
Department of Computer Science, The University of Texas at El Paso, El Paso, Texas, U.S.A.

ycheon@utep.edu, {cvchavez2, ucastro}@miners.utep.edu

Keywords: Code reuse, multiplatform application, platform difference, Android, Java

Abstract: Java and Android applications can be written in the same programming language. Thus, it is natural to ask
how much code can be shared between them. In this paper, we perform a case study to measure quantitatively
the amount of code that can be shared and reused for a multiplatform application running on the Java platform
and the Android platform. We first configure a development environment consisting of platform-specific tools
and supporting continuous integration. We then propose a general architecture for a multiplatform applica-
tion under a guiding design principle of having clearly defined interfaces and employing loose coupling to
accommodate platform differences and variations. Specifically, we separate our application into two parts, a
platform-independent part (PIP) and a platform-dependent part (PDP), and share the PIP between platform-
specific versions. Our key finding is that 37%–40% of code can be shared and reused between the Java and
the Android versions of our application. Interestingly, the Android version requires 8% more code than Java
due to platform-specific constraints and concerns. We also learned that the quality of an application can be
improved dramatically through multiplatform development.

1 INTRODUCTION

Java is one of the most popular programming lan-
guages in use today for developing a wide spectrum
of applications running on a range of platforms from
mobile and desktop to server (TIOBE, 2019). The
Android operating system is the dominating mobile
platform of today (IDC, 2019), and Android applica-
tions can be written in Java albeit some differences
between the Java application programming interface
(API) and the Android API. Source code reuse is con-
sidered as a fundamental part of software develop-
ment (Abdalkareem et al., 2017). Thus, it is natural
to ask how much code can be shared and reused be-
tween Java and Android applications. In this paper,
we study and answer this question.

Our research question is: how much code can be
shared and reused in developing multiplatform appli-
cations written in the same programming language?
A multiplatform application is an application that is
developed for and runs on multiple platforms. In this
paper, we use the term platform loosely to mean op-
erating systems, runtimes including virtual machines,
and software development kits (SDKs). We include
SDK in the platform, as our research is focused on
code reuse and we are also interested in studying the
impact and complications caused by API differences

of SDKs. The two specific platforms that we consider
in this paper are Java SDK for desktop applications
and Android Java SDK. At the time of writing, Java is
the primary language for developing Android applica-
tions; Android tools also support other programming
languages such as Kotlin and C/C++.

We answer the above research question by per-
forming an experiment to measure quantitatively the
degree of code reuse possible between Java and An-
droid versions of an application. Our experiment is a
case study developing a Java application and its An-
droid version running on mobile devices like smart-
phones and tablets. The application is small in Java
but is a typical Android application of an average
size (Minelli and Lanza, 2013), requiring a graphi-
cal user interface (GUI), data persistence, network-
ing, and a bit of multithreading. The application
helps a user to figure out the best time to purchase
products by watching over fluctuating online prices
(see Section 2). We develop the application incre-
mentally and iteratively with continuous integration
and testing by switching instantly between platform-
specific integrated development environments (IDEs).
For this, we configure a custom multiplatform appli-
cation development environment by sort of gluing in-
dividual platform-specific tools and IDEs. It propa-
gates immediately changes made on the shared code

1

using one IDE to other IDEs and platforms. We
attempt to maximize code reuse between two ver-
sions of the application. Our design approach is to
decompose an application into two different parts:
a platform-independent part (PIP) and a platform-
dependent part (PDP). The PIP is the part of an ap-
plication that does not depend on platform specifics
and thus can be reused on different platforms. The
guiding design principle is to have clearly defined in-
terfaces and employ loose coupling between the two
parts to accommodate platform differences and varia-
tions. To determine code reuse, we measure the size
of our code with a simple metric counting the number
of lines of code (LOC). We also share other findings
and lessons that we learned from our case study.

One difference of Android from Java is that its
devices are resource-constrained in storage capacity
and battery lifetime, and thus memory efficiency is
an important quality factor for Android applications
(Cheon et al., 2017) (Sillars, 2015). The performance
constraints may affect the design and coding of an ap-
plication and thus its code reuse. In this paper, how-
ever, we don not consider the performance in the im-
plementation of the Android version of our applica-
tion.

The rest of this paper is structured as follows. In
Section 2, we describe our case study application, in-
cluding the third party libraries and frameworks we
use for its implementation. In Section 3, we explain
our development of the application, starting with the
configuration of tools and some design challenges
along with our solutions. In Section 4, we assess
our development in terms of code reuse by measuring
our code quantitatively and interpreting the measure-
ments. In Section 5, we mention few related work,
and we conclude this paper in Section 6.

2 CASE STUDY

As mentioned in the previous section, we perform a
small but realistic case study to find an answer to our
research question on multiplatform code reuse. The
primary objective of our case study thus is to measure
quantitatively the amount of code reuse possible be-
tween a Java application and its Android version. The
secondary objective is to learn any complications or
issues associated with multiplatform application de-
velopment. They may be related with not only the de-
sign and coding of an application but also configura-
tion of tools for incremental application development
with continuous integration.

In our case study, we develop a Java desktop ap-
plication and its Android mobile version, named Price

Figure 1: Screenshots of Price Watcher (Java and Android)

Watcher. The application tracks the prices of prod-
ucts, or items, extracted from their webpages (see Fig-
ure 1 for sample screenshots). The application helps a
user to figure out the best time to buy items by watch-
ing over fluctuating prices. As the prices are scraped
from webpages, the watch list may consist of items
from different online stores or websites.

Most applications of today are built with libraries
or frameworks that are either provided by the plat-
forms themselves or acquired from third parties.
These libraries and frameworks may introduce ad-
ditional complications to the development of multi-
platform applications. To study their implications in
the code reuse, we use several different libraries and
frameworks in our development. The APIs of Java
and Android Java are very similar for common li-
braries such as collections, file I/O, and networking.
However, graphical user interface (GUI) frameworks
of Java and Android are completely different, as An-
droid offers its own framework for GUI program-
ming. Interestingly, there are also differences in the
ways third-party libraries and framework are provided
or supported by platforms.

• Plain old Java objects (POJOs). A library or
framework is written in the ordinary Java, not
bound by any special restriction other than those
of the Java language specification. It is often bun-
dled in the SDK. For instance, Android SDK in-
cludes one particular open source JSON library
while Java SDK does not. An open-source li-
brary or framework can also be tightly integrated
into the platform and be part of the platform’s
APIs. That is, it is provided as a built-in fea-
ture of the platform, often modified significantly
through the integration. A good example is An-
droid’s support for SQLite, a lightweight, server-
less relational database system (SQLite Consor-
tium, 2019). There are noticeable differences be-

2

tween the Android-specific SQLite API and the
JDBC-based Java SQLite API.

• Platform-specific SDK. A third party frame-
work is often provided as a platform specific
SDK. An example relevant to our case study
is Google’s Firebase Database, a cloud-hosted
database (Google LLC, 2019). Google provides
different Firebase SDKs for different platforms,
and the APIs of Android and Java (Firebase Ad-
min Java SDK) are similar but with some subtle
syntactic and semantic differences.

We will use three different approaches in our case
study to persist the items being watched: a local file
(JSON), a SQLite database, and a Firebase cloud stor-
age. As said above, the main reason for doing this is
to study their implications in the code reuse.

3 DEVELOPMENT

We develop our application incrementally—one fea-
ture at a time—and iteratively by continuously inte-
grating and testing code written on different platforms
(Cheon, 2019). In this section, we first show how to
configure a multiplatform development environment
supporting our development approach. The key re-
quirement is to immediately propagate changes made
on the shared code to other IDEs and platforms so that
we can switch between IDEs and platforms for simul-
taneous work on multiple projects. We then point out
some of the design challenges associated with multi-
platform applications and describe our solutions. Our
primary design goal is to maximize code reuse be-
tween two versions of our application, and toward that
goal we propose a general architecture for multiplat-
form applications that recognizes and separates plat-
form specifics. Our guiding design principle is to have
clearly defined interfaces and employ loose coupling
to accommodate platform differences and variations.

3.1 Tools

It is crucial to have adequate tool support for multi-
platform application development. Since we develop
two versions of an application, one for each plat-
form, our development environment logically con-
sists of three IDEs: two platform-specific IDEs and
one for developing the common, sharable code. For
Android, we of course use Android Studio, the of-
ficial IDE from Google for Android application de-
velopment built on JetBrain’s Java IDE called IntelliJ
IDEA. For the development of both the Java applica-
tion and the common code, any reasonable Java IDE

Eclipse

Android Studio

Java project

Library project

Android project

Maven local repository

lib.jar

lib.jar

Figure 2: Development environment

including IntelliJ IDEA will work. However, since
we are also interested in learning complexities and is-
sues caused by diversity of tools, we opt for Eclipse.
It is very likely that a combination of several tools be
used for multiplatform application development. We
configure our own multiplatform application devel-
opment environment by composing a few platform-
specific tools or IDE as suggested in (Speicher and
Cheon, 2018).

Figure 2 shows our development environment
consisting of Eclipse and Android Studio. We de-
velop our application incrementally and iteratively
with continuous integration and testing. One key re-
quirement for incremental development of a multi-
platform application is to propagate changes imme-
diately from one IDE to the other. We use Apache
Maven (Apache Software Foundation, 2019), a soft-
ware project management and build tool, to share
code and propagate changes in the form of a library,
a Java archive (jar) file. Both the Java project and
the Library project in Eclipse are Maven projects, and
the Library project produces a library jar file, called
an artifact in Maven, of the common code. The li-
brary jar file is installed in the Maven local reposi-
tory and becomes available instantaneously to the An-
droid project. Android Studio uses the Gradle build
tool that understands Maven repositories. For the Java
project we can also make it reference, or depend on,
the Library project by changing its build path, as both
are Eclipse projects. This allows us to also use Eclipse
to build the Java project.

3.2 Design

Our primary design goal is to maximize code reuse
between Java and Android versions of the applica-
tion. For this, we decompose our application into two
parts: a platform-independent part and a platform-
dependent part. The platform-independent part (PIP)
is the part of an application that does not depend on
specifics of implementation platforms like platform-
specific APIs (Cheon, 2019). In the model-view-
controller (MVC) architecture, the model is a good

3

User interface (UI)

Shared model:
business logic, storage

and network

Plugins,
extensions
and utilities

Figure 3: Application architecture

candidate for the PIP. The platform-dependent part
(PDP) is the part of an application that does depend
on a specific platform, e.g., the view and view-specific
controller of MVC (Cheon, 2019). We make this dis-
tinction to share the PIP code across platforms while
developing a specific PDP on each target platform.
Thus, the key criterion on identifying and determin-
ing the PIP of an application is whether the code can
be shared on all the target platforms of the applica-
tion. Our notions of PIP and PDP are similar to those
of platform-independent models (PIM) and platform-
specific models (PSM) in model-driven software de-
velopment (Brown, 2004) (Meservy and Fensterma-
cher, 2005). As said earlier, Maven plays a central
role in our development by immediately propagating
changes made on the PIP to other tools and IDEs.

One challenge in the design and coding of our ap-
plication is to cleanly separate the PIP from the PDP
while minimizing code duplication. It is easy to say
and difficult to do. We need to identify common-
alities and differences between the two target plat-
forms in terms of the APIs and libraries needed for
the implementations of the application. The PIP—the
common, shared code—has to accommodate the plat-
form differences and variations. Figure 3 shows the
high level design of our application. The box labeled
“Shared model” is the PIP and the other two are the
PDP. Since Android provides its own GUI framework
along with Android-specific concepts such as activi-
ties and fragments, the biggest platform difference is
the UI. The other is to encapsulate platform differ-
ences and variations for the PIP (more on this below
and later sections). As expected, the PIP does not de-
pend on the PDP.

How does the PIP accommodate platform differ-
ences and variations? In a single platform applica-
tion, the PIP and the PDP code are often interwo-
ven and tangled. For a multiplatform application, we
need to separate them and make the dependencies be-
tween them clean and explicit. In particular, we need
to eliminate any dependency of the PIP on the PDP.
There are several different techniques and approaches
possible, such as required interface, inheritance and
hook, parameterization, interface cloning, and inter-
face unification (Cheon, 2019).

Item

ItemListModel

ItemManager

JList

ListModel

*

RecyclerView

RecyclerAdapter

Java UI Android UI

Shared model

Figure 4: Plugin-based approach

3.2.1 Plug-ins via Required Interfaces

The implementation of the PIP often depends on that
of the PDP. As an example, consider the case when a
new item is added to the watch list through the UI or
externally through the shared cloud storage. The no-
tions of items and the watch list can be coded once in
the PIP and thus the PIP will be responsible for adding
the item to the watch list. The PIP however cannot
display the newly added item. Instead, it has to tell the
UI (PDP) to display the newly added item, and each
platform provides a different way of telling the UI to
update its display. We eliminate this kind of depen-
dencies by applying the dependency inversion princi-
ple, a specific form of decoupling program modules
(Martin, 2003). We let the PIP depend on an abstrac-
tion of the PDP, not its concrete implementation. The
assumption that the PIP makes on the PDP or its envi-
ronment is coded explicitly in the form of a required
interface (F. Bronsard, et al., 1991), an interface that
is defined by a service provider of an interaction that
specifies what a service consumer or client needs to
do so that it can be used in that interaction. In a sense,
this approach allows one to plug in platform-specific
code to the PIP by providing a class that implements
the required interface.

Figure 4 shows an application of this approach.
A model class named ItemListModel manages the
items that are currently displayed by the UI, and it de-
fines a required interface to interact with a platform-
specific UI. Both the Java and the Android applica-
tions provide an implementation of the required inter-
face coded using platform-specific APIs. In the fig-
ure these are shown using the socket/lollipop notation.
In a sense, the platform-specific UI is a plug-in that
can be inserted into the PIP. The class diagram also
shows how we maximize code reuse and minimize
code duplication. The UI needs to display the items
being watched, and each platform of course provides
a different view, or widget, for displaying a collection
of data, e.g., JList in Java and RecyclerView in An-
droid. This so-called container view stores the data

4

differently in a view-specific model classes, e.g., List-
Model and RecyclerAdapter, providing a different set
of operations. However, there is enough commonal-
ity in the set of operations, including grouping, filter-
ing, sorting, and searching, that need be implemented
for our application. Therefore, our design decision
is to introduce a platform-neutral model class, Item-
ListModel, in the PIP and let platform-specific model
classes in the PDP to delegate their operations to it.

3.2.2 Templates via Inheritance

Another way to accommodate platform differences
and variations is to provide a skeleton algorithm, or
code, in the PIP and let the PDP fill out the de-
tails in a platform-specific way. For this we use
well-known software design patterns such as template
method, strategy, factory method, and abstract factory
(Gamma et al., 1994). This approach gives less free-
dom to the PDP than the previous approach, as the
PDP has to follow the skeleton algorithm defined in
the PIP, but more code is shared and reused. Figure 5
shows an application of this approach, our design
for storing the items in a cloud storage from Google
called Firebase (Google LLC, 2019). We define a spe-
cial item manager class to store all items in a cloud
storage. The idea is to override all mutation methods
inherited from its superclass to make the items persis-
tent by storing them in a cloud storage. As mentioned
in the previous section, Firebase is supported in sev-
eral different platforms including Android and Java.
However, Google provides different Firebase SDKs
for different platforms, and the APIs of Android and
Java (Firebase Admin Java SDK) have subtle differ-
ences (Google LLC, 2019). In a Java application, for
example, one has to write code to authenticate and
initialize the application to use Firebase, which on
Android is taken care of by the system. We encap-
sulate this platform difference in a separate, abstract
class named FireBaseHelper and let the PDP com-
plete it through subclassing. The abstract class de-
fines a skeleton algorithm, or a sequence of steps, for
using a Firebase database in terms of hook methods
that can be overridden by a platform-specific subclass
like the JavaFireBaseHelper shown in the figure. A
similar approach is used to persist items using a local
file and a SQLite database.

3.2.3 Building Blocks via Classes

Instead of providing a set of well-defined extension
points in the form of pluggable interfaces or abstract
classes with hook methods as described above, we can
provide platform-neutral complete classes to be used
as building blocks, or components, by the PDP. The

ItemItemManager *

FirebaseItemManagerFirebaseHelper FirebaseItem

JavaFirebaseHelper
Java application

Shared model

Figure 5: Template-based approach

PIP provides minimal support for PDP, but the PDP
has full control over the use of the provided compo-
nents. This approach can be a good alternative if there
are big API differences among the target platforms or
it is hard to come up with a well-designed, unified
API for all platforms. In our application, for example,
the list of supported online stores, or websites, can be
different on each platform, and the website list can be
used in several platform-specific ways, e.g., creating
UI elements such as menu and action items. Some
website attributes like icons are also stored and ma-
nipulated in platform-specific ways. We thus decide
to define an enum type in the PIP that gives all web-
sites that are supported by both platforms. Each web-
site of the enum type defines only common, platform
neutral attributes and operations, including its name,
URL, and a command object to find the price of an
item from its webpage. The PDP defines a platform-
specific enum type by adding platform-specific at-
tributes like website icons to the enum values pro-
vided by the PIP and, if any, adding platform-specific
websites.

There are also several other techniques that can
be used to address platform differences, and some of
which will be mentioned and described in Section 4.3.

3.3 Implementation

We performed iterative and incremental development
in our case study for two different reasons. First,
we were not familiar with multiplatform application
development and thus wanted to take advantage of
what we learned during the development of earlier
increments or versions of our application. Second,
we wanted to refine our experiment as the develop-
ment progresses by adding new application features
partly based on the preliminary findings from the
early increments. This was the exact reason that we
ended up supporting three different persistent storages
(file, database, and cloud storage) even if only one is
needed for our application. Our initial plan was to
store item data in a local database.

For each increment we need to work on three dif-
ferent projects: two Java projects in Eclipse and one
Android project in Android Studio. The way our

5

Table 1: PIP classes and their sizes

Class No. of Lines
Item 150
ItemListModel 295
ItemManager 246
FileHelper 12
FileItem 45
FileItemManager 106
SqliteDatabaseHelperable 19
SqliteItem 28
SqliteItemManager 114
FirebaseHelper 137
FirebaseItem 93
FirebaseItemManager 129
PriceFinder 35
WebPriceFinder 64
WebStoreBase 317
Log 35

Total 1825

development environment is configured allows us to
work on all three projects at the same time by moving
the mouse back and forth between Eclipse and An-
droid Studio. However, it is more productive to first
develop an application for one platform, create or de-
rive a PIP from the application by refactoring its code,
and then refine the PIP by writing the application for
the other platform. The reason is that the PDP cap-
tures what is specific or unique on each platform, and
the PIP is a generalization of all platforms. The PIP
is coded by identifying and specifying algorithms and
data that are common on all platforms. The complete
Java application consists of 36 classes and 4604 lines
of source code, and the Android version consists of 41
classes and 4987 lines of source code. In the next sec-
tion we will measure our code to analyze code reuse
between the two versions.

4 ASSESSMENT

In this section we first measure the size of our code
with a simple metric counting the number of lines of
code (LOC) including comments and blank lines that
our classes take up in the source code files. We then
analyze and interpret the measured LOCs. We also
describe other findings and lessons that we learned
from our development.

4.1 PIP

The PIP consists of 16 Java classes and 1825 lines of
source code (see Table 1). Nested classes and inter-
faces are not included in the number of classes, but
their code were of course counted in the number of

%

0

5

10

15

20

25

30

35

40

Item File Database Cloud Network Other

37.86

8.93 8.82

19.67
22.79

1.92

Figure 6: Distribution of PIP code

source code lines. We can group the PIP classes into
four different categories for use later in our analysis.

• Items: Classes in this group implement the core
business logic of our application and include Item,
ItemManager and ItemListModel. They store
information about the items being watched and
manage the watch list by providing operations
such as adding, removing, updating, filtering, and
sorting.

• Storage: As mentioned in the previous sections,
we support three different approaches to persist
item data: file, database, and cloud storage. For
each data persistence approach, we provide three
classes: a manager as a subclass of ItemManager,
a helper to encapsulate platform differences of the
storage APIs, and a special item class as a sub-
class of Item to store storage-specific item infor-
mation such as a database id or cloud key.

• Network: These are network-related classes in-
cluding classes for online stores, or websites, and
for finding an item’s price from its webpage. We
define a price finder class for each online store.

• Others: Utility and miscellaneous classes.

It would be very interesting to see how the code
is distributed among these groups of classes (see Fig-
ure 6). The item-related classes account for 38% of
our code, the storage 38%, and the network 23%. If
we look further into the items group, 43% (295 lines)
of source code belong to the ItemListModel class. Re-
member this is a UI-specific model class that we intro-
duced to maximize code reuse (see Section 3.2). The
class helps the UI to display watched items in many
different ways; it is not really a core business logic
class. Therefore, we can infer that our application
is UI-intensive. Another thing we can quickly learn
from the graph is that the three data persistence ap-
proaches have varying code sizes: file (9%), database
(9%), and cloud (20%). This may indicate either the
complexities of the approach themselves or the de-
grees of their code reuse possible. We will discuss

6

Table 2: Sizes of application code

App Part No. of No. of Lines
Classes Percent (%)

Java
PIP 16 1825 40
PDP 20 2779 60
All 36 4604 100

Android
PIP 16 1825 37
PDP 25 3162 63
All 41 4987 100

more on this later in this section.

4.2 PDP

Table 2 shows the sizes of both the Java and the
Android versions of our application including their
PDPs. The source code lines of the Android PDP
include only manually-written Java code; they do
not include so-called resource files such as GUI lay-
outs written in XML or automatically generated Java
source code files. The last column of the table shows
the percentage that each part accounts for the whole
application code, calculated using a formula, x / (PIP
+ PDP) * 100, where x is either PIP or PDP. The PIP
takes 40% and 37% of the Java and the Android ap-
plication code, respectively. That is, 37%–40% of
code are reused in our application despite being UI-
intensive. One side finding is that the Android PDP
requires 14% ((3162 - 2779) / 2779 * 100) more code
than Java. This may be partly because the Android
version provides a few additional features. However,
Android applications generally require more coding
to address Android-specific concerns such as appli-
cation lifecycles and screen orientation changes. The
overall size of the Android version is 8% larger than
the Java version.

How many lines of code are needed to interface
with the PIP? Table 3 lists platform-specific classes
along with the numbers of source code lines written
to interface with the PIP. Note that some of the classes
are named the same as those of the PIP, but they are
platform-specific subclasses defined in the PDPs. The
last row shows the percentages of the interfacing code
in the PDPs, 14% for Java and 22% for Android.
As mentioned before, Android requires more coding,
and this is clearly shown in the table. Two bulky
classes are RecyclerAdapter and WebStore. The first
class addresses Android-specific UI concern, e.g., re-
cycling widgets to display multiple items. The addi-
tional code of the second class is mainly due to one
more online store supported in the Android version;
Android-specific features were used for this. Another
thing to notice is the relative amount of code for three
data persistence approaches. The database approach

Table 3: PDP code for interfacing with PIP

Class No. of Lines
Java Android

ItemListModel 78 N/A
RecyclerAdpater N/A 237
FileHelper 32 38
SqliteDatabaseHelper 187 117
SqliteItemManager N/A 20
FirebaseHelper 39 22
WebStore 47 90
WebPriceFinder N/A 36
Total 383 560
Percent (%, total/PDP) 14 18

��

��

���

��

��

���

��

���

��

���

	��

���

���

�	�

���

�

�

�

�

	

�

��
��� �������� ����� �������

���� !����� "�"

LOC

Figure 7: PIP features and their interfacing code in the num-
bers of lines

requires 3–6 times more code (see below for more dis-
cussion on this).

It would be very interesting and instructive to see
how the platform differences of the same API affect
reuse of the PIP code. If we combine the data from
Table 1 and Table 3, we can estimate the amount of
code that has to be written to reuse the major features
of the PIP. Figure 7 shows this by plotting the sizes
of the PIP classes and the corresponding PDP code
for three features: UI, storage and network. The PDP
code of course includes only the interfacing code—
code written to interface with the PIP feature in ques-
tion. Figure 8 shows the same information but in
percentages. As shown, the percentages vary widely
from 6% (of Android cloud) to 58% (of Java database)
among the PIP features; the average is 18% for Java
and 25% for Android. Th LOC numbers in Figure 7
generally indicate the degrees of code reusability as
well as the easiness of reuse. For example, the first bar
says one needs to write only 78 lines of Java code in-
stead 619 (= 78 + 541) lines to manage watched items
and help the UI to display them. For each PIP feature
the size of its interfacing code is marginal compared
to coding the whole logic in the PDP.

However, there is one exception. Among the

7

13 16

58

10 11

87 84

42

90 89

30
19

46

6
25

70
81

54

94
75

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

UI File Database Cloud Network

Java PIP Android

Figure 8: PIP and interfacing code in percentages

Table 4: Complexity of data persistence in LOC

Storage Java Android Average
File 195 201 198

Database 387 298 343
Cloud 398 381 390

three data persistence approaches of file, database and
cloud storage, the database approach requires more
code in the PDP side—58% for Java and 46% for An-
droid (see Figure 8). Before we look into this un-
usual case, let us first measure the complexity of each
of the persistence approach in terms of source code
lines. As shown in Table 4, the file-based approach is
smaller than the database that requires somewhat less
code than the cloud storage.

One thing that the table does not show is the simi-
larity of the platform APIs between Java and Android.
The Android File (I/O) APIs are exactly the same as
those of Java except for additional notations for de-
noting different kinds of storages (internal and exter-
nal) and directories (download, documents, etc.). The
Google’s Firebase APIs for Java and Android are also
very similar albeit some subtle differences in some
of the operations provided. However, the story is
completely different for the SQLite database. An-
droid supports it as sort of a built-in feature with an
API tightly integrated with its own framework. For
Java, there is an open-source, JDBC-based library for
SQLite databases. Due to this difference of platform
APIs, we had to push more code to the PDPs, and that
is why more code was written in the PDPs. In short,
the platform APIs and their commonalities and differ-
ences greatly affect the development of the PIP and
its reusability.

How does the separation of PIP and PDP affect
the size of an application? Is there an increase in the
code size caused by the separation, and if so, how
much? The way we develop our application allows
us to answer this question with minimal effort. We

Table 5: Overheads of PIP and PDP separation

App Part No. of No. of Overhead
classes lines (%)

Java PIP + PDP 36 4604 14Monolithic 27 4031

Android PIP + PDP 40 4987 13Monolithic 31 4418

wrote our application incrementally by writing com-
plete code on one platform for the feature under de-
velopment and then refactored the code to derive a
reusable PIP. As a result, we have two versions of our
application, written with and without using the PIP.
Table 5 shows the sizes of different versions of our ap-
plication. As guessed, the monolithic versions—the
ones written without using the PIP—have less classes
and lines of code, and the size overheads of PIP/PDP
are 14% and 13% for Java and Android, respectively.

4.3 Other Findings and Lessons

We learned both positive and negative sides of mul-
tiplatform application development through our case
study. Besides the obvious benefit of code reuse,
perhaps, the most important side benefit from a de-
veloper’s point of view is that it provides opportu-
nities for improving the quality of an application.
We have to address diversity of platforms by consid-
ering platform-specific restrictions or concerns. In
addition we have to work on, or review, the same
or derived code several times, each with a different
perspective—either as a service provider or a con-
sumer. We first prototyped a new application fea-
ture in one of the platforms, refactored the monolithic
code into a reusable library (PIP) and the PDP of that
platform, and apply the library in the other platform.
The implementation of a feature required several iter-
ations with continuous integration and testing on two
platforms. This development process allowed us to
notice issues and problems from simple mistakes like
naming inconsistency to more serious ones.

To be more specific we found that Android-
specific features allowed us to explore and test our
application in a way that would be impossible or un-
necessary for a typical Java application, often expos-
ing a potential issue or problem in the application. An
example is device orientation change. The screen on
an Android device can switch between portrait and
landscape mode in response to the way one holds the
device or when the device is rotated. Our application
allows the user to filter items to be displayed in sev-
eral different ways, e.g., based on online stores, item
groups and keyword search. An item can belong to
a user-named group, but not all items have to belong

8

to a group. The filtering feature was first introduced
to the Java version, and it worked correctly. When
the feature was added to the Android version, how-
ever, the device orientation change causes the appli-
cation to show only those items that do not belong to
any item group. We soon learned that this strange be-
havior was caused by an incorrect re-initialization of
the application. A re-initialization occurs when the
screen orientation changes because Android creates a
new instance of a framework class upon screen orien-
tation change; no such re-initialization is needed for
the Java version. We fixed the problem by modifying
the PIP. We also added a new UI element in both PDPs
to provide an option for displaying all those items that
do not belong to any item group. This option was
overlooked in the initial design of the filtering feature.

Multiplatform application development encour-
ages one to generalize APIs, especially those of the
PIP, to address and accommodate platform differ-
ences and variations. In fact, even platform-specific
restrictions or constraints contribute positively on the
creation of a more reusable and extensible applica-
tion. The initial design of our network module done
on the Java platform provided synchronous opera-
tions, and a special return value was used to notify
when the invoked operations fail. On Android, how-
ever, the provided network operations were always
called in background threads created by the UI be-
cause Android does not allow any network operation
on the UI thread (while Java does). This made us to
create a new version of the network module that also
provides asynchronous operations implemented using
the Observer design pattern (Gamma et al., 1994).
Due to the use of this design pattern, the error han-
dling was also improved by creating a separate call-
back method in the observer, or listener, interface.
The error reporting is separated from the main logic,
and thus more detailed information about the error is
provided to the caller. Android’s emphasis on applica-
tion responsiveness also made us to improve the user
experience of our application by providing additional
features such as setting network timeouts and cancel-
ing network operations.

We noticed different kinds of platform differences
and variations, including APIs (both syntactic and
semantic), literal constant definitions and external-
ization, and use of external resources such as im-
ages. We used a range of techniques to accommodate
these platform differences, including required inter-
faces, callbacks, delegation, parameterization, opera-
tion cloning, and design patterns like template meth-
ods, factory methods and strategy patterns (see Sec-
tion 3.2).

One obvious downside of the PIP-PDP separa-

tion is that the PIP has to be written using the com-
mon denominators, or shared traits, of the both plat-
forms. That is, the platform for the PIP is the intersec-
tion of the two target platforms. A common platform
feature has to provide the same syntactic interface—
operation name and signature, class, and package—
as well as the semantics. Otherwise, it cannot be
directly used in the PIP implementation and has to
be pushed to the PDPs. Let us consider a very sim-
ple example. All GUI frameworks provide a way to
perform a task on the UI thread, as they are single
threaded. However, its syntactic interface may be dif-
ferent, e.g., SwingUtilities.invokeLater(Runnable) in
Java and Activity.runOnUiThread(Runnable) in An-
droid.1 A UI-specific PIP module such as ItemList-
Model (see Section 3.2) sometimes needs to perform
a task on the UI thread, but it cannot use the above
methods directly. Our solution was to include it in
the required interface of the module and let the PDP
provide a platform-specific operation.

It is common practice to use the print statement
as a simple and quick tool to trace the flow of exe-
cution and print interesting values. This use of the
print statement is often referred to as print debugging.
On Android, however, the recommended style is to
use a utility class named Log that offers several static
methods.2 The log messages are fed from an Android
device to Android Studio and can be viewed with a
tool called LogCat. We addressed this issue of an API
mismatch by cloning the Log class on the Java plat-
form, which involves (a) defining a stub class in the
PIP with the same syntactic interface as the Android
and (b) providing an implementation in the Java PDP
written in terms of the Java print statements. Note
that the stub class is just for compiling the PIP and
is not included in the distribution, the library jar file.
We had to use a similar approach when a third party
library is provided in the SDK of one platform but not
in the other. An example is JSON, which was used
to store items in a local file. An open-source JSON
library is included in the Android SDK but not in the
Java SDK.

Regarding debugging, we found it is a really good
idea to include source code files in the snapshot li-
brary jar file during the development. Android Studio
uses them, instead of the skeleton code decompiled
from the bytecode, to show stack trace of an excep-
tion, thus providing better support for debugging the

1There is also a subtle semantic difference when the
method is called on the UI thread.

2In fact, the Java coding style of the Android Open
Source Project states that the print statements should never
be used (https://source.android.com/setup/contribute/code-
style).

9

Android PDP code.

5 RELATED WORK

We found no published work measuring code reuse
between Java and Android applications. However,
source code reuse in Android applications recently re-
ceived much attention from researchers. One interest-
ing report is that the practice of software reuse is high
among mobile application developers (Mojica et al.,
2014). One study even reported that 61% of Android
application classes appeared in two or more other
applications (Ruiz et al., 2012). Unfortunately, the
significant code reuse also indicates illegal cloning
of classes, code piracy, or even repackaging of ap-
plications (Linares-Vásquez et al., 2014) (Gonzalez
et al., 2015). Code reuse also impacts the quality
of an application, particularly when code is reused in
the copy-and-paste manner from online question-and-
answer websites such as Stack Overflow (Abdalka-
reem et al., 2017). Unlike these existing work, our
study investigated code reuse between a mobile appli-
cation and a desktop application written in the same
programming language, where the development pro-
cesses and practices can be quite different (Minelli
and Lanza, 2013) (Syer et al., 2013).

The diversity of mobile devices and platforms
made native development of mobile applications
challenging and costly, thus approaches like cross-
platform development have emerged to reuse code
across different mobile platforms by using various
techniques including cross-compilation, virtual ma-
chines, and web technologies and platforms (Palmieri
et al., 2012) (Heitkötter et al., 2013). Our case study,
unlike the cross-platform development approach, was
concerned with native development and sharing code
with a desktop version of the application.

There are various types of software reuse possi-
ble (Ambler, 1998). Our study focused only on the
reuse of source code in the form of a library or frame-
work. However, the notions and concepts that we
introduced in our case study for a multiplatform ap-
plication development, such as PIP, PDP, and plat-
form differences and variations (Cheon, 2019), are
related with those of the established software engi-
neering. For example, PIP and PDP are similar to
a platform-independent model (PIM) and a platform-
specific model (PSM), respectively, in model-driven
software development (Brown, 2004). A PIM is a
software model that is independent of the specific
technological platform used to implement it, and is
translated to a PSM, a model that is linked to a spe-
cific technological platform (Meservy and Fensterma-

cher, 2005). Software product line development has
been widely adopted in professional software devel-
opment to create a collection of similar software sys-
tems, known as a product family, from a shared set
of software assets using a common means of produc-
tion (Northrop, 2002). Several architectural styles are
proposed for developing software product lines of An-
droid applications (Durschmid et al., 2017). One core
idea of the software product line development is iden-
tifying the commonalities and variabilities within a
family of products (Coplien et al., 1998). In our case
study, we used the commonality and variability anal-
ysis to identify platform differences and variations as
well as the platform for the PIP.

6 CONCLUSION

We performed a small but realistic case study to mea-
sure quantitatively the degree of code reuse possible
between Java and Android versions of an application.
The case study application watches over the fluctu-
ating prices of online products and thus helps a user
to figure out the best time to purchase the products.
To share code between the two platforms, we decom-
posed our application into two parts: the platform-
independent part (PIP) and the platform-dependent
part (PDP). The PIP is shared between the two plat-
forms, and each platform has its own PDP to address
platform-specific concerns. To determine code reuse
achieved in our application, which is the main contri-
bution of our work, we measured the size of our code
with a simple metric counting the number of lines of
code. Our finding is very promising in that we were
able to achieve 40% and 37% code reuse for Java and
Android versions, respectively, for a UI-intensive ap-
plication. We also learned that the Android version
requires 8% more code than the Java version. The de-
gree of code reuse, of course, depends heavily on the
types and degrees of platform differences and vari-
ations. We noticed several types of platform differ-
ences, each requiring a different technique to cope
with it. It would be interesting future work to study
the platform differences systematically to categorize
them, to measure quantitatively their impacts on the
code reuse, and suggest effective techniques to ad-
dress them. As a side benefit, we also learned that
multiplatform application development can improve
the quality of an application dramatically. A platform-
specific restriction or constraint may provide an op-
portunity to explore and test an application in a way
that would be impossible or unnecessary on another
platform, often exposing a potential issue or prob-
lem in the application. Platform differences and vari-

10

ations also encourage one to generalize APIs, espe-
cially those of the PIP, to accommodate them, thus
making the code more reusable and extensible.

It is only fair that we should mention the over-
heads associated with multiplatform application de-
velopment that we learned in our case study, such
as configuration of tools, writing stub code, con-
stant attention to subtle platform differences, and code
size. In term of code size, our PIP/PDP multiplatform
application requires 13% (Java) and 14% (Android)
more lines of code than the single platform, mono-
lithic versions.

REFERENCES

Abdalkareem, R., Shihab, E., and Rilling, J. (2017). On
code reuse from StackOverflow: an exploratory study
on Android apps. Information and Software Technol-
ogy, 88:148 – 158.

Ambler, S. (1998). A realistic look at object-oriented reuse.
Software Development, 6(1):30–38.

Apache Software Foundation (2019). Apache Maven
project. https://maven.apache.org/, Last accessed on
February 19, 2019.

Brown, A. W. (2004). Model driven architecture: Princi-
ples and practice. Software and Systems Modeling,
3(4):314–327.

Cheon, Y. (2019). Multiplatform application development
for Android and Java. In 17th IEEE/ACIS Interna-
tional Conference on Software Engineering, Manage-
ment and Applications, May 29-31, 2019, Honolulu,
Hawaii. To appear.

Cheon, Y., Romero, R., and Garcia, J. (2017). HifoCap: an
android app for wearable health devices. In Advances
in Digital Technologies, Proceedings of the 8th Inter-
national Conference on Applications of Digital Infor-
mation and Web Technologies, volume 295 of Fron-
tiers in Artificial Intelligence and Applications, pages
178–192. IOS Press.

Coplien, J., Hoffman, D., and Weiss, D. (1998). Common-
ality and variability in software engineering. IEEE
Software, 15(6):37–45.

Durschmid, T., Trapp, M., and Dollner, J. (2017). Towards
architectural styles for Android app software product
lines. In 2017 IEEE/ACM 4th International Confer-
ence on Mobile Software Engineering and Systems
(MOBILESoft), pages 58–62.

F. Bronsard, et al. (1991). Toward software plug-and-play.
In Proceedings of the 1997 Symposium on Software
Reusability (SSR ’97), Boston, MA, pages 19–29.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley.

Gonzalez, H., Kadir, A. A., Stakhanova, N., Alzahrani,
A. J., and Ghorbani, A. A. (2015). Exploring reverse

engineering symptoms in Android apps. In Proceed-
ings of the Eighth European Workshop on System Se-
curity, EuroSec ’15, pages 7:1–7:7, New York, NY,
USA. ACM.

Google LLC (2019). Firebase realtime database.
https://firebase.google.com/products/realtime-
database/, Last accessed on February 19, 2019.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2013).
Evaluating cross-platform development approaches
for mobile applications. In Cordeiro, J. and Krem-
pels, K.-H., editors, Web Information Systems and
Technologies, pages 120–138, Berlin, Heidelberg.
Springer Berlin Heidelberg.

IDC (2019). Smartphone market share.
https://www.idc.com/promo/smartphone-market-
share/os, Last accessed on March 13, 2019.

Linares-Vásquez, M., Holtzhauer, A., Bernal-Cárdenas, C.,
and Poshyvanyk, D. (2014). Revisiting Android reuse
studies in the context of code obfuscation and library
usages. In Proceedings of the 11th Working Confer-
ence on Mining Software Repositories, MSR 2014,
pages 242–251, New York, NY, USA. ACM.

Martin, R. C. (2003). Agile Software Development, Princi-
ples, Patterns, and Practices. Prentice Hall.

Meservy, T. O. and Fenstermacher, K. D. (2005). Trans-
forming software development: an MDA road map.
IEEE Computer, 38(9):52–58.

Minelli, P. and Lanza, M. (2013). Software analytics for
mobile applications-insights & lessons learned. In
European Conference on Software Maintenance and
Reengineering, Genova, Itally, pages 144–153. IEEE.

Mojica, I. J., Adams, B., Nagappan, M., Dienst, S., Berger,
T., and Hassan, A. E. (2014). A large-scale empirical
study on software reuse in mobile apps. IEEE Soft-
ware, 31(2):78–86.

Northrop, L. M. (2002). SEI’s software product line tenets.
IEEE Softw., 19(4):32–40.

Palmieri, M., Singh, I., and Cicchetti, A. (2012). Compar-
ison of cross-platform mobile development tools. In
2012 16th International Conference on Intelligence in
Next Generation Networks, pages 179–186.

Ruiz, I. J. M., Nagappan, M., Adams, B., and Hassan, A. E.
(2012). Understanding reuse in the Android market.
In 2012 20th IEEE International Conference on Pro-
gram Comprehension (ICPC), pages 113–122.

Sillars, D. (2015). High Performance Android Apps: Im-
prove Ratings with Speed, Optimizations, and Testing.
O’Reilly.

Speicher, T. and Cheon, Y. (2018). Composing a cross-
platform development environment using Maven. In
Proceedings of the RCCS+SPIDTEC2 Workshop on
Regional Consortium for Foundations, Research and
Spread of Emerging Technologies in Computing Sci-
ences, Juarez, Mexico, pages 68–80. IOS Press.

SQLite Consortium (2019). Sqlite. https://www.sqlite.org/,
Last accessed on February 19, 2019.

11

Syer, M. D., Nagappan, M., Hassan, A. E., and Adams, B.
(2013). Revisiting prior empirical findings for mobile
apps: An empirical case study on the 15 most popu-
lar open-source Android apps. In Proceedings of the
2013 Conference of the Center for Advanced Stud-
ies on Collaborative Research, CASCON ’13, pages
283–297, Riverton, NJ, USA.

TIOBE (2019). TIOBE index for March 2019.
https://www.tiobe.com/tiobe-index/, Last accessed on
March 13, 2019.

12

