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_:S Introduction

Dynamic Adaptability in Support of Extreme Scale

* Linux 2.6 provides four I/O schedulers:
Anticipatory (AS), deadline, completely
fair queuing (CFQ), and noop

* Selection at
— boot time: one scheduler for all drives
— runtime: one scheduler per drive

 Default: AS
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:S Motivation-1

Dynamic Adaptability in Support of Extreme Scale

* Expected admissible response time for
/O requests

— Streaming read in background (forgot to kill it)

— Timing Linux source tree read
— HUGE RESPONSE TIME

Insight by Accident
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_:S Motivation-2

Dynamic Adaptability in Support of Extreme Scale

* Questions
— Is AS the problem?
— Does AS starve processes?

— If so, can we extend AS?
Do the extensions work?

— Do other schedulers give better response
times?
— If so, can the best scheduler be selected
dynamically and automatically?
« What metrics can be used to guide selection?
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-:S Project Goal

Dynamic Adaptability in Support of Extreme Scale

Enhanced Performance

Generalized Customized
resource management

Fixed Dynamically Adaptable
OS/runtime services
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L9 Project Challenges

Dynamic Adaptability in Support of Extreme Scale

Determining
What to adapt
When to adapt
How to adapt

How to measure effects of adaptation
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RN Project Methodology

Dynamic Adaptability in Support of Extreme Scale

characterize workload
resource usage patterns

identify adaptation
targets

potentially profitable adaptation targets off line

determine/redetermine feasible adaptation ranges

off "'_19/ define/adapt metrics/heuristics
run time to trigger adaptation

generate/adapt monitoring, triggering and
adaptation code, and attach it to OS

monitor application execution,
assessing performance (gain) and
triggering adaptation as necessary
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S Outline

Dynamic Adaptability in Support of Extreme Scale

* |/O Schedulers in Linux

* Problems with Anticipatory Scheduler
» Cooperative Anticipatory Scheduler

* Performance Evaluation

 |/O Characterization for Dynamic &
Automatic Scheduler Selection

« Questions for me and for you
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_:S Introduction

Dynamic Adaptability in Support of Extreme Scale

 Linux provides four I/O schedulers:
— anticipatory scheduler (AS)
— deadline
— completely fair queuing (CFQ)
— noop
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_:S Deadline Scheduler

Dynamic Adaptability in Support of Extreme Scale

* Work conserving

e |dea:

— Requests are queued: sorted by block
number and fifo

— At request completion:
» schedule expired requests from fifo queue

» schedule requests from sorted queue
 In between schedule some write requests
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_ Deadline Scheduler
‘:S Deceptive Idleness

Dynamic Adaptability in Support of Extreme Scale

« Work-conserving nature forces head to move to
next selected block

* Deceptive idleness reduces throughput

« Example: multiple synchronous requests

generated by different processes to disjoint disk
blocks

T1 T4 ... T2T5... T3 T6 ...
~ .|| -
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- Linux Anticipatory
LS Scheduler (LAS)

Dynamic Adaptability in Support of Extreme Scale

* Non work conserving
« (Goal: seek reduction

e |dea:

— Per-process anticipation: wait for requests to nearby
blocks; periodically evaluate anticipation period

— Keep head idle during anticipation
— Balance seek time and anticipation time

 Anticipation improves performance only if it is
correct and anticipation time < seek time
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g — LAS
-:S When Not to Anticipate

Dynamic Adaptability in Support of Extreme Scale

o Anticipated processes keep dying

— What if the requests are to nearby blocks
from a group of processes?

* Process just started I/O
* Process requests large seeks
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- LAS
‘:S Problems

Dynamic Adaptability in Support of Extreme Scale
* Inadmissible turnaround time

— Two processes: one a good candidate for
anticipation, the other beats anticipation

— Example: Stream read and chunk read, each
chunk by a different process

* Poor throughput: deceptive idleness due
to anticipation failure
— Both processes beat anticipation
— Example: two chunk reads
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Sy — Cooperative Anticipatory
‘:S Scheduler (CAS)

Dynamic Adaptability in Support of Extreme Scale

» Detect cooperative processes and
anticipate accordingly

* |dea:
— Per-process anticipation

— Process group anticipation: if a process just
starting 1/O belongs to a group, start
anticipation

— Processes requesting nearby blocks belong
to a group: one or more can be dead -- still
the group exists
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- CAS
‘:S Solution to AS Problems

Dynamic Adaptability in Support of Extreme Scale

« Admissible turnaround time
— Stream read and chunk read, combination beats
anticipation; chunk reads are identified as a group
* Poor throughput: deceptive idleness due to
anticipation failure
— Both processes beat anticipation; two chunk reads —
two groups !!!!
* Does CAS really work??

* Results on an array of application profiles with
different I/O characteristics — web server, malil
server, file server, meta data operations
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_:S Experimental Evaluation

Dynamic Adaptability in Support of Extreme Scale

* Does CAS really work??

* Results on few microbenchmarks
— Streaming writes and chunk reads
— Streaming reads and chunk reads
— Chunk reads
* Results on a set of application profiles with

different I/O characteristics — web server, malil
server, file server, meta data operations
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=\ —S Experimental Evaluation
== Platform

Dynamic Adaptability in Support of Extreme Scale

e Dual processor Pentium 4 Xeon — single
processor is used

e 1GB memory and 1MB L2 cache
e 2.6.9 Linux Kernel

e 7,200 RPM Maxtor 20 GB IDE disk —
separate from OS drive

e Ext3 file system; similar results for xfs file
system
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— S Experimental Evaluation
— Workload

Dynamic Adaptability in Support of Extreme Scale

 Microbenchmarks that defeat anticipation

 Flexible File System Benchmark (FFSB) workload
generator

— Profiles simulating web server, mail server, file server and
meta data operations

— Each profile creates 100,000 files; each file ranges in size from
4 KB to 64KB

— Four concurrent threads makes 80,000 operations
— All operations are random
—  Capture time for 80,000 operations
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—S Experimental Evaluation
— Metrics

Dynamic Adaptability in Support of Extreme Scale

 Execution Time: User perspective

* Throughput: System architect
perspective
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- Experimental Evaluation
:S Streaming Reads & Writes

Dynamic Adaptability in Support of Extreme Scale

* Mixed workload: “important” Program 1:
reads, “not so important” 'gzlle Frus
writes dd if=/dev/zero of=file \
. ' £t=2048 bs=1M
* Is LAS better than deadline? |, ~— 7
* Deliberately delay Program 2:
asynChrOnOUS writes time cat 200mb-file = /dev/null
Scheduler | Execution Time | Throughput | ¢ LAS and CAS provide better
(sec.) (MB/s) response times
Deadline 129 25 . .
TAS 0 = * Deadline alternates serving
CAS 0 33 reads and writes (several

times) hence seeks;

Table 1: Performance of Programs | and 2 un- . .
der the Deadline Scheduler, LAS., and CAS eliminated in LAS and CAS
 Thus better MB/s
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- Experimental Evaluation
:S Streaming & Chunk Reads

Dynamic Adaptability in Support of Extreme Scale

« A: all requests from single Program A: -
while true
process do
« B: every file read by different L CRE Praiile = Jdev/muld
one
process
 Anticipation works well for A, Program B: i
_ time find . -type f -exec \
but what happens with B? cat ‘{}’ ;" > /dev/null
Scheduler | Execution | Throughput * B:inadmissible time using LAS
Time (sec.) | (MB/s) * Deadline has too many seeks
Deadli 297 9 : e
eLrlA;ne 4767 3% « CAS provides anticipation on a
CAS 355 B per-group basis; thus seeks

reduced and throughput
Table 2: Performance of Program A and B un- improved
der the Deadline Scheduler, LAS, and CAS
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- Experimental Evaluation
:S Multiple Chunk Reads

Dynamic Adaptability in Support of Extreme Scale

* J|llustrates reduced disk
throughput problem

« Two instances of chunk reads
to disjoint disk blocks

» Anticipation fails for both

» Results for reading Linux
source tree

« Deadline and LAS have horrible

Scheduler Throughput (MB/s) throughput
| Instance | 2 Instances ] .
Deadline 123 10 « There is some seeking, but CAS
LAS [5.5 4.0 does not seek as much as others
CAS 15.5 11.6
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-5

Experimental Evaluation

Web Server Profile

Dynamic Adaptability in Support of Extreme Scale

Read requests to randomly
selected files

Simulates a web server

Scheduler | Web
Server
Deadline 024
LAS 863
CAS 855
CFQ 03]
noop 910

There is very little anticipation
— may be on 8 KB - 64 KB files

LAS has execution time
comparable to CAS

Deadline, CFQ, and noop tralil
CAS by 8%, 8.9%, and 6.5%
respectively

Deviation less than 4%
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- Experimental Evaluation
:S Mail Server Profile

Dynamic Adaptability in Support of Extreme Scale

. Scheduler Mail
« 40% reads, 40% file creates Server
and 20% file delete operations Deadline 18
« Operations are on random files LAS L77
CAS 109
CFQ 112
noop 125

* Deviation is less than 3.5%
except for LAS which has 11%

» CAS has best execution time
 LAS has worst performance

. ¢ LAS, deadline, CFQ, and noop
o trail CAS by 62%, 8%, 3%, and
14%, respectively
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-5

Dynamic Adaptability in Support of Extreme Scale

Experimental Evaluation
File Server Profile

80% reads, 20% writes
Operations are on random files

Scheduler File
Server
Deadline 1127
LAS 916
CAS 890
CFQ 1099
noop 1127

Deviation is less than 4.5%
CAS has best execution time
LAS is very close — less than
3%

Others trail CAS by at least
23%
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- Experimental Evaluation
:S Meta Data Profile

Dynamic Adaptability in Support of Extreme Scale

- 40% create, 40% write - Scheduler 1;)1::::
append, and 20% file delete Deadline 305
operations LAS 295

CAS 288
CFQ 253
noop 319

« Maximum deviationis 7.7%
« CFQ has best execution time

 CAS, LAS, deadline, and noop
trail CFQ by as much as 26%

wea® Similar results for xIf file system
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Dynamic Adaptability in Support of Extreme Scale

;S Summary so far.

* |dentified an important performance
problem with LAS and offered a solution

 Introduced the concept of cooperative
processes and making scheduling
decisions based on groups of processes

 Compared performance on a set of
microbenchmarks and applications
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;S Motivation

Dynamic Adaptability in Support of Extreme Scale

« Questions |
— Is AS the problem? 4 '
— Does AS starve processes?

— If so, can we extend AS?
* Do the extensions work?

— Do other schedulers give better response
times?
— If so, can the best scheduler be selected
dynamically and automatically?
« What metrics can be used to guide selection?
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[ < Further Interesting Work

Dynamic Adaptability in Support of Extreme Scale

 Dynamic I/O scheduler selection

* Dynamic parameter tuning to maximize
performance

* Inclusion of learning algorithms

* Perhaps, genetic and neural network
combinations
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:S /O Scheduler Selection

Dynamic Adaptability in Support of Extreme Scale

 Vendors moved from AS to CFQ as the default
scheduler

« Steven Pratt’'s [LINUX2004] paper: scheduler
selection is a complicated issue at best

— Summary: Scheduler selection is a function of
« Workload, e.g., sequential, random, etc.,
» File system, e.g., xfs, ext3, raiserfs, etc.,
« Storage system, e.g., single drive, raid, etc.,

o Selection is difficult for:

— Workloads with orthogonal requirements

— Mixed workloads, e.g., file server and a web server
on the same system or applications with multiple /O
behaviors
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- /O Scheduler Selection
—:S First Steps

Dynamic Adaptability in Support of Extreme Scale

« Scheduler selection based on execution
characteristics

« Scheduler selection guided by a priori
measurements

— Benchmark for a priori measurements -- cover entire
range of metric

f (metric)—— scheduler

— Recomputef transparent to system software and
hardware
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— I/O Scheduler Selection
‘:S Preliminary Approach-1

Dynamic Adaptability in Support of Extreme Scale

» Goal: maximize disk throughput, ¢
— Metric: request size, r

— Benchmark: For each scheduler, s , generate
random reads/writes across range of 7

t=f,(r)

— Scheduler selected, §§, = maX fs(r)

— Average request size generated by workload
indexes into S'S
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— I/O Scheduler Selection
:S Preliminary Approach-2

Dynamic Adaptability in Support of Extreme Scale

Comparison of Different 'O Schedulers on RAID-O

« 2.6.11 kernel -
« Ext3 file system

- Raid-0 with 4 drives

§,” points of mtaasts
« Assumption: g"
Throughput monotonic ,
witﬁ rgquest size | e 1;;:(3——»
« CAS is not integrated " - T e - -

* In general, AS is best
 For small random choice varies between CFQ and deadline
« Favors applications with large read/write sizes
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b~ S /O Scheduler Selection
— Questions

Dynamic Adaptability in Support of Extreme Scale

e [s §§ the best scheduler for current
workload?

* Why random reads/writes?
— Do they cover all possible cases?

* |Is request size a good metric?
— What other metrics should be considered?

* Is throughput the only goal of interest?

« How does ratio of reads/writes factor into
scheduler selection?
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Dynamic Adaptability in Support of Extreme Scale
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Legal Stuff

Dynamic Adaptability in Support of Extreme Scale
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Ly~ — I/O Scheduler Selection
£S5 Questions

Dynamic Adaptability in Support of Extreme Scale

e Is 83 the best scheduler for current
workload?

* Why random reads/writes?
— Do they cover all possible cases?

* |Is request size a good metric?
— What other metrics should be considered?

* Is throughput the only goal of interest?

« How does ratio of reads/writes factor into
scheduler selection?
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