crc

Dynamic Adaptability in Support of Extreme Scale

Enhancements to Linux 1/O
Scheduling

Seetharami R. Seelam, UTEP
Rodrigo Romero, UTEP
Patricia J. Teller, UTEP

William Buros, IBM-Austin

21 July 2005 Linux Symposium 2005

_:S Introduction

Dynamic Adaptability in Support of Extreme Scale

* Linux 2.6 provides four I/O schedulers:
Anticipatory (AS), deadline, completely
fair queuing (CFQ), and noop

* Selection at
— boot time: one scheduler for all drives
— runtime: one scheduler per drive

 Default: AS

21 July 2005 Linux Symposium 2005 2

:S Motivation-1

Dynamic Adaptability in Support of Extreme Scale

* Expected admissible response time for
/O requests

— Streaming read in background (forgot to kill it)

— Timing Linux source tree read
— HUGE RESPONSE TIME

Insight by Accident

21 July 2005 Linux Symposium 2005 3

_:S Motivation-2

Dynamic Adaptability in Support of Extreme Scale

* Questions
— Is AS the problem?
— Does AS starve processes?

— If so, can we extend AS?
Do the extensions work?

— Do other schedulers give better response
times?
— If so, can the best scheduler be selected
dynamically and automatically?
« What metrics can be used to guide selection?

21 July 2005 Linux Symposium 2005 4

-:S Project Goal

Dynamic Adaptability in Support of Extreme Scale

Enhanced Performance

Generalized Customized
resource management

Fixed Dynamically Adaptable
OS/runtime services

21 July 2005 Linux Symposium 2005 5

L9 Project Challenges

Dynamic Adaptability in Support of Extreme Scale

Determining
What to adapt
When to adapt
How to adapt

How to measure effects of adaptation

21 July 2005 Linux Symposium 2005 6

RN Project Methodology

Dynamic Adaptability in Support of Extreme Scale

characterize workload
resource usage patterns

identify adaptation
targets

potentially profitable adaptation targets off line

determine/redetermine feasible adaptation ranges

off "'_19/ define/adapt metrics/heuristics
run time to trigger adaptation

generate/adapt monitoring, triggering and
adaptation code, and attach it to OS

monitor application execution,
assessing performance (gain) and
triggering adaptation as necessary

21 July 2005 Linux Symposium 2005 7

S Outline

Dynamic Adaptability in Support of Extreme Scale

* |/O Schedulers in Linux

* Problems with Anticipatory Scheduler
» Cooperative Anticipatory Scheduler

* Performance Evaluation

 |/O Characterization for Dynamic &
Automatic Scheduler Selection

« Questions for me and for you

21 July 2005 Linux Symposium 2005 8

_:S Introduction

Dynamic Adaptability in Support of Extreme Scale

 Linux provides four I/O schedulers:
— anticipatory scheduler (AS)
— deadline
— completely fair queuing (CFQ)
— noop

21 July 2005 Linux Symposium 2005 9

_:S Deadline Scheduler

Dynamic Adaptability in Support of Extreme Scale

* Work conserving

e |dea:

— Requests are queued: sorted by block
number and fifo

— At request completion:
» schedule expired requests from fifo queue

» schedule requests from sorted queue
 In between schedule some write requests

21 July 2005 Linux Symposium 2005 10

_ Deadline Scheduler
‘:S Deceptive Idleness

Dynamic Adaptability in Support of Extreme Scale

« Work-conserving nature forces head to move to
next selected block

* Deceptive idleness reduces throughput

« Example: multiple synchronous requests

generated by different processes to disjoint disk
blocks

T1 T4 ... T2T5... T3 T6 ...
~ .|| -

21 July 2005 Linux Symposium 2005 11

- Linux Anticipatory
LS Scheduler (LAS)

Dynamic Adaptability in Support of Extreme Scale

* Non work conserving
« (Goal: seek reduction

e |dea:

— Per-process anticipation: wait for requests to nearby
blocks; periodically evaluate anticipation period

— Keep head idle during anticipation
— Balance seek time and anticipation time

 Anticipation improves performance only if it is
correct and anticipation time < seek time

21 July 2005 Linux Symposium 2005 12

g — LAS
-:S When Not to Anticipate

Dynamic Adaptability in Support of Extreme Scale

o Anticipated processes keep dying

— What if the requests are to nearby blocks
from a group of processes?

* Process just started I/O
* Process requests large seeks

21 July 2005 Linux Symposium 2005 13

- LAS
‘:S Problems

Dynamic Adaptability in Support of Extreme Scale
* Inadmissible turnaround time

— Two processes: one a good candidate for
anticipation, the other beats anticipation

— Example: Stream read and chunk read, each
chunk by a different process

* Poor throughput: deceptive idleness due
to anticipation failure
— Both processes beat anticipation
— Example: two chunk reads

21 July 2005 Linux Symposium 2005 14

Sy — Cooperative Anticipatory
‘:S Scheduler (CAS)

Dynamic Adaptability in Support of Extreme Scale

» Detect cooperative processes and
anticipate accordingly

* |dea:
— Per-process anticipation

— Process group anticipation: if a process just
starting 1/O belongs to a group, start
anticipation

— Processes requesting nearby blocks belong
to a group: one or more can be dead -- still
the group exists

21 July 2005 Linux Symposium 2005 15

- CAS
‘:S Solution to AS Problems

Dynamic Adaptability in Support of Extreme Scale

« Admissible turnaround time
— Stream read and chunk read, combination beats
anticipation; chunk reads are identified as a group
* Poor throughput: deceptive idleness due to
anticipation failure
— Both processes beat anticipation; two chunk reads —
two groups !!!!
* Does CAS really work??

* Results on an array of application profiles with
different I/O characteristics — web server, malil
server, file server, meta data operations

21 July 2005 Linux Symposium 2005 16

_:S Experimental Evaluation

Dynamic Adaptability in Support of Extreme Scale

* Does CAS really work??

* Results on few microbenchmarks
— Streaming writes and chunk reads
— Streaming reads and chunk reads
— Chunk reads
* Results on a set of application profiles with

different I/O characteristics — web server, malil
server, file server, meta data operations

21 July 2005 Linux Symposium 2005 17

=\ —S Experimental Evaluation
== Platform

Dynamic Adaptability in Support of Extreme Scale

e Dual processor Pentium 4 Xeon — single
processor is used

e 1GB memory and 1MB L2 cache
e 2.6.9 Linux Kernel

e 7,200 RPM Maxtor 20 GB IDE disk —
separate from OS drive

e Ext3 file system; similar results for xfs file
system

21 July 2005 Linux Symposium 2005 18

— S Experimental Evaluation
— Workload

Dynamic Adaptability in Support of Extreme Scale

 Microbenchmarks that defeat anticipation

 Flexible File System Benchmark (FFSB) workload
generator

— Profiles simulating web server, mail server, file server and
meta data operations

— Each profile creates 100,000 files; each file ranges in size from
4 KB to 64KB

— Four concurrent threads makes 80,000 operations
— All operations are random
— Capture time for 80,000 operations

21 July 2005 Linux Symposium 2005 19

—S Experimental Evaluation
— Metrics

Dynamic Adaptability in Support of Extreme Scale

 Execution Time: User perspective

* Throughput: System architect
perspective

21 July 2005 Linux Symposium 2005 20

- Experimental Evaluation
:S Streaming Reads & Writes

Dynamic Adaptability in Support of Extreme Scale

* Mixed workload: “important” Program 1:
reads, “not so important” 'gzlle Frus
writes dd if=/dev/zero of=file \
. ' £t=2048 bs=1M
* Is LAS better than deadline? |, ~— 7
* Deliberately delay Program 2:
asynChrOnOUS writes time cat 200mb-file = /dev/null
Scheduler | Execution Time | Throughput | ¢ LAS and CAS provide better
(sec.) (MB/s) response times
Deadline 129 25 . .
TAS 0 = * Deadline alternates serving
CAS 0 33 reads and writes (several

times) hence seeks;

Table 1: Performance of Programs | and 2 un- . .
der the Deadline Scheduler, LAS., and CAS eliminated in LAS and CAS
 Thus better MB/s

21 July 2005 Linux Symposium 2005 21

- Experimental Evaluation
:S Streaming & Chunk Reads

Dynamic Adaptability in Support of Extreme Scale

« A: all requests from single Program A: -
while true
process do
« B: every file read by different L CRE Praiile = Jdev/muld
one
process
 Anticipation works well for A, Program B: i
_ time find . -type f -exec \
but what happens with B? cat ‘{}’ ;" > /dev/null
Scheduler | Execution | Throughput * B:inadmissible time using LAS
Time (sec.) | (MB/s) * Deadline has too many seeks
Deadli 297 9 : e
eLrlA;ne 4767 3% « CAS provides anticipation on a
CAS 355 B per-group basis; thus seeks

reduced and throughput
Table 2: Performance of Program A and B un- improved
der the Deadline Scheduler, LAS, and CAS

21 July 2005 Linux Symposium 2005 22

- Experimental Evaluation
:S Multiple Chunk Reads

Dynamic Adaptability in Support of Extreme Scale

* J|llustrates reduced disk
throughput problem

« Two instances of chunk reads
to disjoint disk blocks

» Anticipation fails for both

» Results for reading Linux
source tree

« Deadline and LAS have horrible

Scheduler Throughput (MB/s) throughput
| Instance | 2 Instances] .
Deadline 123 10 « There is some seeking, but CAS
LAS [5.5 4.0 does not seek as much as others
CAS 15.5 11.6

21 July 2005 Linux Symposium 2005 23

-5

Experimental Evaluation

Web Server Profile

Dynamic Adaptability in Support of Extreme Scale

Read requests to randomly
selected files

Simulates a web server

Scheduler | Web
Server
Deadline 024
LAS 863
CAS 855
CFQ 03]
noop 910

There is very little anticipation
— may be on 8 KB - 64 KB files

LAS has execution time
comparable to CAS

Deadline, CFQ, and noop tralil
CAS by 8%, 8.9%, and 6.5%
respectively

Deviation less than 4%

21 July 2005

Linux Symposium 2005 24

- Experimental Evaluation
:S Mail Server Profile

Dynamic Adaptability in Support of Extreme Scale

. Scheduler Mail
« 40% reads, 40% file creates Server
and 20% file delete operations Deadline 18
« Operations are on random files LAS L77
CAS 109
CFQ 112
noop 125

* Deviation is less than 3.5%
except for LAS which has 11%

» CAS has best execution time
 LAS has worst performance

. ¢ LAS, deadline, CFQ, and noop
o trail CAS by 62%, 8%, 3%, and
14%, respectively

21 July 2005 Linux Symposium 2005 25

-5

Dynamic Adaptability in Support of Extreme Scale

Experimental Evaluation
File Server Profile

80% reads, 20% writes
Operations are on random files

Scheduler File
Server
Deadline 1127
LAS 916
CAS 890
CFQ 1099
noop 1127

Deviation is less than 4.5%
CAS has best execution time
LAS is very close — less than
3%

Others trail CAS by at least
23%

21 July 2005

Linux Symposium 2005 26

- Experimental Evaluation
:S Meta Data Profile

Dynamic Adaptability in Support of Extreme Scale

- 40% create, 40% write - Scheduler 1;)1::::
append, and 20% file delete Deadline 305
operations LAS 295

CAS 288
CFQ 253
noop 319

« Maximum deviationis 7.7%
« CFQ has best execution time

 CAS, LAS, deadline, and noop
trail CFQ by as much as 26%

wea® Similar results for xIf file system

21 July 2005 Linux Symposium 2005 27

Dynamic Adaptability in Support of Extreme Scale

;S Summary so far.

* |dentified an important performance
problem with LAS and offered a solution

 Introduced the concept of cooperative
processes and making scheduling
decisions based on groups of processes

 Compared performance on a set of
microbenchmarks and applications

21 July 2005 Linux Symposium 2005

28

;S Motivation

Dynamic Adaptability in Support of Extreme Scale

« Questions |
— Is AS the problem? 4 '
— Does AS starve processes?

— If so, can we extend AS?
* Do the extensions work?

— Do other schedulers give better response
times?
— If so, can the best scheduler be selected
dynamically and automatically?
« What metrics can be used to guide selection?

21 July 2005 Linux Symposium 2005 29

[< Further Interesting Work

Dynamic Adaptability in Support of Extreme Scale

 Dynamic I/O scheduler selection

* Dynamic parameter tuning to maximize
performance

* Inclusion of learning algorithms

* Perhaps, genetic and neural network
combinations

21 July 2005 Linux Symposium 2005 30

:S /O Scheduler Selection

Dynamic Adaptability in Support of Extreme Scale

 Vendors moved from AS to CFQ as the default
scheduler

« Steven Pratt’'s [LINUX2004] paper: scheduler
selection is a complicated issue at best

— Summary: Scheduler selection is a function of
« Workload, e.g., sequential, random, etc.,
» File system, e.g., xfs, ext3, raiserfs, etc.,
« Storage system, e.g., single drive, raid, etc.,

o Selection is difficult for:

— Workloads with orthogonal requirements

— Mixed workloads, e.g., file server and a web server
on the same system or applications with multiple /O
behaviors

21 July 2005 Linux Symposium 2005 31

- /O Scheduler Selection
—:S First Steps

Dynamic Adaptability in Support of Extreme Scale

« Scheduler selection based on execution
characteristics

« Scheduler selection guided by a priori
measurements

— Benchmark for a priori measurements -- cover entire
range of metric

f (metric)—— scheduler

— Recomputef transparent to system software and
hardware

21 July 2005 Linux Symposium 2005 32

— I/O Scheduler Selection
‘:S Preliminary Approach-1

Dynamic Adaptability in Support of Extreme Scale

» Goal: maximize disk throughput, ¢
— Metric: request size, r

— Benchmark: For each scheduler, s , generate
random reads/writes across range of 7

t=f,(r)

— Scheduler selected, §§, = maX fs(r)

— Average request size generated by workload
indexes into S'S

21 July 2005 Linux Symposium 2005 33

— I/O Scheduler Selection
:S Preliminary Approach-2

Dynamic Adaptability in Support of Extreme Scale

Comparison of Different 'O Schedulers on RAID-O

« 2.6.11 kernel -
« Ext3 file system

- Raid-0 with 4 drives

§,” points of mtaasts
« Assumption: g"
Throughput monotonic ,
witﬁ rgquest size | e 1;;:(3——»
« CAS is not integrated " - T e - -

* In general, AS is best
 For small random choice varies between CFQ and deadline
« Favors applications with large read/write sizes

21 July 2005 Linux Symposium 2005 34

b~ S /O Scheduler Selection
— Questions

Dynamic Adaptability in Support of Extreme Scale

e [s §§ the best scheduler for current
workload?

* Why random reads/writes?
— Do they cover all possible cases?

* |Is request size a good metric?
— What other metrics should be considered?

* Is throughput the only goal of interest?

« How does ratio of reads/writes factor into
scheduler selection?

21 July 2005 Linux Symposium 2005 35

L9 Acknowledgements

Dynamic Adaptability in Support of Extreme Scale

 We thank:

— Nick Piggin: answering questions and sharing ideas
— Steven Pratt, IBM LTC: valuable discussions

— Sonny Rao, IBM LTC: help with FFSB

— Jay Suresh, UTEP: help with experimentation

— DOE (Grant # DE-FG02-04ER25622), IBM, and
UTEP: financial support

— Linux Symposium committee for organizing this great
event

— You: for your interest

21 July 2005 Linux Symposium 2005 36

Legal Stuff

Dynamic Adaptability in Support of Extreme Scale

This work represented the view of the authors, and does
not necessarily represent the view of University of Texas-El
Paso or IBM.

IBM is a trademark of International Business Machines
Pentium is a trademark of Intel corporation

Other company, product, and service names may be
trademarks or service marks of others

All benchmarking was conducted for research purpose

only, under laboratory conditions

Results will not be realized in all computing environments

21 July 2005 Linux Symposium 2005 37

; S References

Dynamic Adaptability in Support of Extreme Scale

Robert, C., Private Communications, 2005.

Borril, J., J. Carter, L. Oliker, D. Skinner, and R.
Biswas, “Integrated Performance Monitoring of
a Cosmology Application on Leading HEC
Platforms,” Proceedings of the 2005
International Conference on Parallel Processing
(ICPP-05), June 2005.

Pratt, S., and D. Heger, IBM-Austin, “Workload
Dependent Performance Evaluation of Linux 2.6

/O Schedulers,” Linux Symposium, 2, July
2004, pp. 425-448.

http://www.sourceforge.net/projects/ffsb

21 July 2005 Linux Symposium 2005 38

Ly~ — I/O Scheduler Selection
£S5 Questions

Dynamic Adaptability in Support of Extreme Scale

e Is 83 the best scheduler for current
workload?

* Why random reads/writes?
— Do they cover all possible cases?

* |Is request size a good metric?
— What other metrics should be considered?

* Is throughput the only goal of interest?

« How does ratio of reads/writes factor into
scheduler selection?

21 July 2005 Linux Symposium 2005 39

