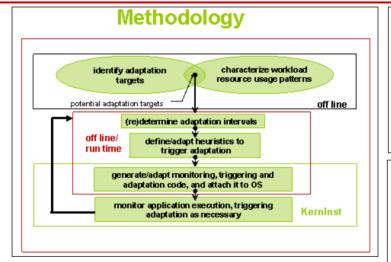
Dynamic Adaptability in Support of Extreme Scale

Jayaraman Suresh (M.S. Candidate), Seetharami Seelam (Ph.D. Candidate), Luis Ortiz (Ph. D. Candidate), Rodrigo Romero (Ph. D.), Patricia J. Teller, Ph.D. Department of Computer Science, University of Texas at El Paso Sponsor: Department of Energy (DOE)

Generalized Customized resource management Fixed Dynamically Adaptable OS/runtime services Enhanced Performance


Challenges

Determining

- · What to adapt
- When to adapt
- How to adapt
- How to measure effects of adaptation

Deliverables

- Develop mechanisms to dynamically sense, analyze, and adjust common performance metrics, fluctuating workload situations, and overall system environment conditions
- Demonstrate, via Linux prototypes and experiments, dynamic self-tuning/provisioning in HPC environments
- Develop a methodology for general-purpose OS adaptation

Sample Adaptations Notice with a few and on transfer or control o

Example Adaptations

Customization of

- process scheduling parameters and algorithms, e.g., scheduling policy for different job types (prototype in process)
- · file system cache size and management
- disk cache management
- · size of OS buffers and tables
- I/O, e.g., checkpoint/restart
- memory allocation and management parameters and algorithms

