
  

 
Just how accurate are performance counters? 

 
 
 
 
 
 

 

Abstract 

The wide use of performance counters by 
application developers and benchmarking teams gives 
evidence that performance counters are well worth the 
silicon and design time required to include them on 
modern microprocessors. These counters provide 
rudimentary performance measurements that may or 
may not be accurate. This paper presents our 
methodology for determining the accuracy of these 
counters as well as preliminary results of a study that, 
using this methodology, evaluates the accuracy of the 
R12000 performance counters with respect to eight of  
30 measurable events. The results indicate that care 
must be taken when using data generated by 
performance counters because, in some cases, this 
data may lead to erroneous conclusions. This can 
occur when the granularity of the measured code is 
not sufficient to ensure that the overhead introduced 
by counter interfaces does not dominate the event 
counts. 

1.0 Introduction 
Performance counters are used to measure events 

that occur during program execution. Some events that 
can be measured are the number of instructions, loads, 
stores, and cycles executed, and the number of cache 
misses. Due to the counters being on-chip, counter 
updates do not perturb program execution or the 
recorded event counts. The MIPS R12000 is one of 
several processors that support this hardware feature. 
Other processors with performance counters include 
the DEC Alpha Series [7], the IBM PowerPC series 
[10, 11], the Intel P6 and Pentium series [9], and the 
Sun UltraSPARC series [12]. An event–monitoring 
device driver needs to be provided by the operating 
system in order to use any of these counters. In the 
case of the MIPS R12000, IRIX 6.5.2 provides 
software interfaces such as perfex and libperfex to 
access the counters. 

For several years, on-chip performance counters 
have been used with confidence for performance 
analysis of applications [3, 4, 11, 13]. For example, in 
[3], different methods, including performance counters 
used in combination with SpeedShop [11], are used to 
tune the performance of an Alternating Direction 
Implicit (ADI) method for solving three-dimensional 
partial differential equations. In [13], cache results 
generated by performance counters that profile cache 
misses and other measurement methods are used to 
tune the application and attain a speedup of 1.3. In the 
following quotation, the authors summarize the 
perceived importance of performance counters: “the 
counters were well worth the silicon and design time 
to include them.” The authors believe that “counter 
data is important for application developers, and that 
counters should be documented and supported by 
high-level tools.” Addressing this need, [3] makes 
available to the computer science and engineering 
communities an API, or application programming 
interface, that facilitates access to on-chip hardware 
counters. These research efforts and others that utilize 
performance counters focus on enhancing the 
performance of applications by using the counters, 
assuming that they afford a reasonable degree of 
accuracy. In contrast, this paper investigates their 
accuracy.    

Our interest in performance counters relates to our 
goal of studying application resource demands and 
formulating models that predict application execution 
time. These models are for use in the Performance 
Oriented End-to-end Modeling System (POEMS), a 
problem-solving environment that spans application 
software, operating system and runtime system 
software, and hardware architecture for end-to-end 
performance analysis of complex parallel/distributed 
systems [1]. To use performance counters in this work, 
we must understand their degree of accuracy. Since 
there is a lack of published documentation on the 
accuracy of this hardware feature, we developed a 

Gilbert Castillo 
IBM 

Austin, TX 
castillog@netzero.com 

Wendy Korn and Patricia J. Teller 
The University of Texas at El Paso 

The Department of Computer Science 
El Paso, TX 79968-0518 

{wcard,pteller}@cs.utep.edu 



methodology for determining the accuracy of on-chip 
performance counters.  

In this paper we demonstrate our methodology by 
presenting: 1) three microbenchmarks used to study 
eight of 30 measurable MIPS R12000 events, 2) our 
experimental design, 3) predicted and collected data, 
and 4) analysis of results. The results indicate that 
under certain circumstances, performance counter data 
can be very inaccurate. Such a situation can occur 
when the granularity of the measured code is not 
sufficient to ensure that the event counts associated 
with the counter interface do not dominate the 
reported total event counts (i.e., the event counts 
associated with the measured code and those 
associated with the interface). 

The paper is organized as follows. 
Section 2 presents the methodology used to 
evaluate performance counter accuracy, 
including a description of the studied events, 
a discussion of the microbenchmarks for 
estimation and measurement of the events, an 
overview of the MIPS R12000 performance 
counters and the perfex and libperfex 
interfaces, and a brief description of sim-
outorder [4], the simulator used to collect 
comparative event counts. The predicted and 
collected data are presented and analyzed in 
Section 3. Finally, in Section 4, conclusions 
are made about the accuracy of the 
performance counters and future research is 
discussed. 
2.0 Methodology 

The methodology used to study the accuracy of 
performance counters is an extension of that used in 
[6], a master’s project report of one of the authors. [6] 
effectively studies the accuracy of only some of the 
targeted events of the MIPS R10000, i.e., issued 
instructions, loads, and stores, cycles, and decoded 
branches.  For other events, i.e., cache misses, 
performance data was compromised because of 
perturbations introduced by multiprogramming and 
network services. As a result, the study discussed in 
this paper uses the same methodology but in a single-
user, stand-alone environment based on an SGI O2 
running IRIX 6.5.2 on a MIPS R12000 with a clock 
speed of 250 MHz. The compiler is gcc, version 2.8.1. 

The methodology comprises five phases:  

1. creation of microbenchmarks for studying 
event counter accuracy, 

2. prediction of event performance data, 
3. collection of event performance data from the 

MIPS R12000 performance counters via 
perfex and libperfex, 

4. collection of event performance data via a 
MIPS R12000 simulator, and 

5. comparison of event performance data from 
phases 2, 3, and 4. 

The measured events and the microbenchmarks 
are presented and discussed in Sections 2.1 and 2.2, 
respectively. The MIPS R12000 performance counters 
and the interfaces used to access the counters are 
described in Section 2.3 and the MIPS R12000 
simulator is discussed in Section 2.4.  

2.1 Measured Events 

The two criteria used to select the measured 
events of interest were 1) the events are reasonably 
predictable and 2) they are measurable by the MIPS 
R12000 simulator. To be reasonably predictable 
means that, for a given set of benchmarks, the event 
counts can be estimated easily. For example, given the 
code size and structure of a benchmark as well as the 
size and organization of the primary (L1) cache, the 
analyst can estimate the number of L1 cache misses 
that program will generate. To be measurable by the 
simulator means that the simulator can be configured 
to generate the targeted event count.  

 
Table 1: Event Numbers 

Event Type 
Event Number 

decoded instructions 1 

decoded loads 2 

decoded stores 3 

conditional resolved branches 6 

primary (L1) data cache (D-
cache) misses 

25 

L1 instruction cache (I-cache) 
misses 

9 

secondary (L2) D-cache misses 26 

L2 I-cache misses 10 

Translation Lookaside Buffer 
(TLB) misses 

23 



 
According to these criteria, nine out of the 

available 30 events [8], defined in Table 1, were 
selected for study. Since the MIPS R12000 L2 cache 
is unified, events 10 and 26 are combined when 
evaluating the accuracy of the performance counters. 

2.2 Microbenchmarks 

The microbenchmarks used in this study were 
designed to facilitate relatively easy prediction of the 
event counts and to vary the number of event 
occurrences. Evidence provided in [6] indicates that 
the accuracy of  the counters depends on the number 
of events generated by the measured program as 
compared to the number of events contributed by the 
counter interface. By varying the number of event 
occurrences, the influence of the interface on the event 
counts can be determined and, when possible, the 
counts can be adjusted accordingly. 

2.2.1. Linear Microbenchmark  

The Linear Microbenchmark is used to measure 
only the L1 I-cache miss event. It was designed 
initially to measure the number of decoded instruction, 
load, and store events, as well as the L1 I-cache miss 
event.  However, as discussed in Section 3, the Loop 
Microbenchmark is more effective in measuring the 
decoded instruction, load, and store events.  

 
 
 
 
 
 
 
 
 
 

Figure 1. Linear Microbenchmark Code 
Segment 

 
As shown in Figure 1, the Linear 

Microbenchmark consists of a repeated sequence of 
simple add instructions that use three variables. In 
order to allow accurate L1 I-cache count prediction, 
the benchmark was designed to include no branches, 
avoiding the effects of speculative execution, and to 
force data dependences that ensure in-order instruction 

execution and prevent instruction elimination by the 
compiler. 

Several versions of the benchmark were used to 
determine its effectiveness; the versions differ in terms 
of the number of times the instruction sequence is 
repeated.  

2.2.2 Loop Microbenchmark  

The Loop Microbenchmark is used to measure the 
number of decoded instruction, load, and store events, 
as well as the number of resolved conditional branch 
events. The benchmark consists of a for-loop with a 
body equivalent to the Linear Microbenchmark with 
100 instructions. Several versions of the benchmark 
are used in the study; the versions differ in terms of 
the number of loop iterations. Predicting the number 
of decoded instructions, loads, and stores and resolved 
branches is elementary using the grep and wc (word 
count) Unix tools (e.g., grep lw testx.s | wc).  

2.2.3 Array Microbenchmark  

The Array Microbenchmark is used to measure 
the number of L1 D-cache, L2 cache, and TLB miss 
events. The other two microbenchmarks do not access 
enough data elements to generate a sufficient number 
of these events. This benchmark consists of a for-loop 
with a body that reads, increments, and writes 
elements of an integer array in sequence.  Figure 2 
presents the general format of the benchmark. Several 
versions of the benchmark were used in the study; the 
versions differ in terms of array size, which is passed 
as an input parameter.   

 
 

 

 

 

 

Figure 2. Array Microbenchmark 

2.3 MIPS R12000 Performance Counters  

The R12000 performance counters are two 32-bit 
registers that can count up to 30 unique events. The 
counters can be accessed via the IRIX operating 
system using two interfaces: perfex and libperfex [8].  
perfex is the command-line interface used for counting 
events during the execution of an entire binary file, 

a = 1; 
b = 1; 
c = 1; 
a = b + 1; 
b = a + 1; 
c = a + b; 
a = b + c; 
b = a + c; 
c = a + b; 

#define MAXSIZE 1000000 
int main (int argc, char *argv[]) { 
int a[MAXSIZE], ARRAYSIZE, i; 
  ARRAYSIZE = atoi(argv[1]); 
  for (i=0; i<ARRAYSIZE;i++) 
    a[i] = a[i] + 1; 
  } 
} 



while libperfex provides easy to access C and Fortran 
functions that are inserted in the program code to 
count events in specific code sections. The overall 
functionality of libperfex is a subset of that provided 
by perfex.  

In the study presented in this paper, perfex and 
libperfex were used to collect data generated by the 
performance counters during execution of the 
microbenchmarks described in Section 2.2. For each 
benchmark type, i.e., Linear, Loop, and Array, 
approximately 25 versions were created and run. As 
mentioned above, the versions differ in terms of 
number of instructions, number of iterations, and 
number of array elements, respectively.  Because 
event counts vary with each execution of a version of 
a microbenchmark, each version was run 100 times 
and the results averaged. The accuracy of event counts 
was evaluated by comparing the average event counts 
to the predicted event counts. 

2.4 Sim-outorder 

The simulator used in this study is sim-outorder, 
which is included in the SimpleScalar [5] tool set. sim-
outorder allows complex modeling of the processor 
core, memory hierarchy, and branch prediction. It is 
capable of simulating superscalar processors such as 
the MIPS R12000. As shown in Section 3, the sim-
outorder model of the MIPS R12000 is very effective 
in verifying our predicted event counts.  

3.0 Study Results 
Comparisons of the predicted and collected event 

counts for the three microbenchmarks are presented in 
Sections 3.1-3.5, Table 2, and Figures 3-10. Section 
3.1, Table 2, and Figures 3-6 relate to the events for 
which the Loop Microbenchmark is most effective in 
demonstrating agreement between predicted counts 
and counts generated by the performance counters, 
i.e., decoded instruction, decoded load, decoded store, 
and conditional resolved branch counts. Section 3.2 
and Figure 7 relate to the event for which the Linear 
Microbenchmark is used most effectively, i.e., the L1 
I-cache miss counts. And, Sections 3.3-3.5 and Figures 
8-10 relate to the events for which the Array 
Microbenchmark is most effective, i.e., L1 D-cache 
miss, L2 cache miss, and TLB miss counts.   The 
legend for Figures 3-10 appears below. 

 
 

 

 

3.1 Decoded Instructions, Loads, and Stores 
and Conditional Resolved Branches 

For the Linear Microbenchmark, there are very 
large discrepancies between the libperfex and perfex 
decoded instruction, decoded load, decoded store, and 
conditional resolved branch event counts and the 
predicted counts. For example, the difference between 
libperfex decoded instruction event counts and the 
predicted counts is between 57% and 925% and the 
difference between perfex decoded instruction event 
counts and the predicted counts is even larger. For  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.  Loop Microbenchmark: 

Decoded Loads 
 

Figure 5. Loop Microbenchmark: Decoded 

Stores 
 

 

 

 



decoded load event, at a code size of 100,000 
instructions, the difference between predicted and 
libperfex (perfex) counts is 71.8% (75.9%). For 
decoded stores, the perfex error begins at 10,000% and 
decreases as the code size increases, achieving a 
difference of 34% when the code comprises 50,000 
instructions. For conditional resolved branches, perfex 
counts are very inflated; the error, w.r.t. predicted 
counts, ranges from –43.3% to 66,339%.  

In contrast, as depicted in Figures 3-6 and Table 
2, the differences between the predicted counts and the 
decoded instruction, decoded load, decoded store, and 
conditional resolved branch counts for the Loop 
Microbenchmark as measured by perfex, libperfex, 
and sim-outorder decrease as the number of iterations 
executed increases. For the first three events, the 
counts generated by libperfex and sim-outorder agree 
very well with the predicted counts, while the counts 
generated by perfex do not come within 10% of the 
predicted counts until the number of loop iterations in 
the benchmark is fairly large. For the conditional 
resolved branch event, when the number of loop 
iterations is greater than 2,000, the difference between 
libperfex and predicted counts ranges from –42% to –
50%; in these cases, libperfex has an event count of 
approximately ½ of the predicted counts.  

Table 2 presents more detailed comparative data 
generated using the Loop Microbenchmark for the 
decoded instruction, decoded load, decoded store, and 
conditional resolved branch events. Using the decoded 
instruction event as an example, Table 2 should be 
read as follows: 
1) The counts generated by libperfex are within 5% of 
the predicted counts when the number of loop 
iterations in the benchmark is at least 250, i.e., the 
value in column 1. 
2) The counts generated by perfex are within 5% of 
the predicted counts when the number of loop 
iterations in the benchmark is at least 100,000, i.e., the 
value in column 2. 
3) The counts generated by perfex are within 10% of 
the predicted counts when the number of loop 
iterations in the benchmark is at least 30,000, i.e., the 
value in column 3.  
4) For all or almost all versions of the benchmark, 
sim-outorder event counts are within .3%, i.e., the 
value in column 4, of the predicted counts. 
5) The error range for perfex is 9.7-1086% for 30,000 
to 250 iterations (value in column 5).  

6) The perfex overhead is approximately 830,000 
(value in column 6) instructions for 10,000 loop 
iterations. 

Figure 6. Loop Microbenchmark: Conditional 
Resolved Branches 

 

Figure 7. Linear Microbenchmark: L1 I-cache 
Misses 

3.2 L1 I-cache Misses 

The MIPS R12000 L1 I-cache is a 32-KB two-
way set-associative cache with 16-word blocks. Since 
the instruction size is four bytes, the expected number 
of L1 I-cache misses is  n/16 , where n is the number 
of instructions that comprises the Linear 
Microbenchmark. Figure 7 compares the L1 I-cache 
miss counts for the Linear Microbenchmark as 
measured by perfex, libperfex, and sim-outorder to the 
predicted counts. Like the counts for decoded 
instructions, loads, and stores, the counts for L1 I-
cache misses generated by sim-outorder agree very 
well with the predicted counts, whereas the counts 

 

 



generated by libperfex (perfex) do not come within 
10% of the predicted counts until the number of 
instructions is fairly large, i.e., 6,000 (100,000). In all 
cases sim-outorder event counts are within less than 
10% of the predicted counts. libperfex counts are 
within 600% of the predicted counts in all cases, while 
perfex counts have an error from 8,061% to 1.7% 
between 100 and 500,000 instructions. According to 
the results, perfex has an overhead of approximately 
1,600 misses.  

Figure 8. Array Microbenchmark: L1 D-
Cache Misses 

3.3 L1 D-cache Misses 

The MIPS R12000 L1 D-cache is a 32-KB two-
way set-associative cache with eight-word blocks. 
Since the Array Microbenchmark sequentially 
accesses four-byte words that are stored consecutively 
in the memory hierarchy, a cache miss is generated 
upon the access of element i*8 of the array, where i = 
0, …, n-1 (where n is the size of the array).  Thus, the 
expected number of L1 D-cache misses is  n/8 . 
Figure 8 compares the L1 D-cache miss counts for the 
Array Microbenchmark as measured by perfex, 
libperfex, and sim-outorder to the predicted counts. 
The sim-outorder counts are within 5% of the 
predicted counts for array sizes from 250 to 1,000,000. 
From array sizes 2,000 to 1,000,000 the error is less 
than 1%. libperfex counts are never within 10% of the 
predicted counts. After the array size reaches 3,000 the  
libperfex counts are within 25% of the predicted 
counts. Only when the array size becomes 100,000 or 

greater do the perfex counts come within 25% of the 
predicted counts. 

Figure 9. Array Microbenchmark: L2 
Misses 

3.4 L2 Cache Misses 

The MIPS R12000 L2 cache is a 1-MB two-way 
set-associative unified cache with 32-word blocks. The 
L2 cache is large enough to store all instructions in the 
Array Microbenchmark.  Every primary instruction 
(data) cache miss that misses the L2 cache causes two 
(four) L1 I- (D-) cache blocks to be brought into the 
L2 cache. Therefore, the expected number of L2 cache 
misses is equal to (L1 I-cache misses)/2 + (L1 D-
cache misses)/4, assuming that the instruction and 
data misses do not conflict. Figure 9 compares the L2 
cache miss counts for the Array Microbenchmark as 
measured by perfex, libperfex, and sim-outorder to the 
predicted counts. The sim-outorder counts are within 
5% of the predicted counts for array sizes from 800 to 
7,000. From array sizes 100 to 700 the error ranges 
from 44% to 5.1%. libperfex generates a count that is 
within 10% of the predicted count only for the array 
size of 250. From array size 500 to array size 7,000 the 
difference ranges from –54% to 96%. Only when the 
array size is from 30,000 to 50,000 does the perfex 
counts come within 30% of the predicted counts. 

3.5 TLB Misses 

The R12000 translation-lookaside buffer, TLB, 
contains 64 entries, each of which maps a pair of 
virtual pages and can select a page size ranging from 
4-KB to 16-MB, inclusive, in powers of 4 [8]. The 
getpagesize() function indicates that the page size for 
the experimental platform is 4-KB.  Note that the man 
page for getpagesize states that the page size returned 



by the function is a system page size, which may not 
be the same as the underlying hardware page size 
(frame). In addition, the man page states that in 
systems with multiple page sizes, like the R12000 with 
seven, the base page size is returned; the base page 
size is the smallest page size used by the system. 
Figure 10 compares the TLB miss counts for the Array 
Microbenchmark as measured by perfex, libperfex, 
and sim-outorder to the predicted counts. The sim-
outorder counts are within 5% of the predicted counts 
for array sizes from 30,000 to 1,000,000. libperfex 
generates a count that is within 5% only for an array 
size of 100,000. With this exception, the error for 
libperfex ranges from 31% to 2712% for array sizes 
from 1,000,000 to 1,000. Only when the array size 
becomes 1,000,000 does the perfex count come within 
6% of the predicted counts. Since predicted and sim-
outorder event counts both are based on a fixed size 
page, it is not possible to determine the accuracy of the 
TLB miss event counts generated by the performance 
counters. 

4.0 Conclusions and Future Research 
As this paper demonstrates, performance counters 

can be very accurate or very inaccurate. As shown, 
their accuracy depends upon the interface used, the 
application being measured, and the event being 
measured. For the MIPS R12000 performance 
counters, this paper demonstrates that three of the 
eight studied events can be measured accurately with 
the libperfex interface and the Loop Microbenchmark: 
decoded instructions, loads, and stores. One event, i.e., 
the L1 I-cache miss event, can be measured accurately 
with the libperfex interface and the Linear 
Microbenchmark if the body size is at least 6,000 
instructions. Conditional resolved branches cannot be 
measured accurately by either libperfex or perfex. The 
L1 D-cache and L2 cache miss events are not 
measured accurately by the R12000 performance 
counters via libperfex and the Array Microbenchmark. 
The accuracy of the counters via the perfex interface 
depends heavily on the granularity of the code that is 
being measured. The accuracy of perfex and libperfex 
counts for the TLB miss event cannot be determined 
since multiple page sizes are used and prediction and 
simulation counts are based on a fixed page size. 

To ascertain how performance counters behave on 
large applications, for which we cannot predict event 
counts, in [6] the event counts of the R10000 

performance counters were compared to the event 
counts generated by sim-outorder for Sweep3D, a 
neutron transport application used as a benchmark in 
the ASCI program [2]. For the decoded instruction 
event, libperfex counts were approximately 25% 
higher than sim-outorder counts—this error is higher 
than for the Loop Microbenchmark. For the decoded 
load (store) event, libperfex counts were 
approximately 33% (.5%) higher (lower) than sim-
outorder counts—again this error is higher than for the 
Loop Microbenchmark. For the conditional resolved 
branch event, libperfex counts were approximately 
.8% lower than sim-outorder counts—a much smaller 
error than for the Loop Microbenchmark. For the L1 I-
cache (D-cache) miss event, libperfex counts were 
approximately 100% (12%) higher than sim-outorder 
counts—much higher (lower) than for the Linear 
(Array) Microbenchmark. And, finally, for the L2 
cache miss event, libperfex counts were approximately 
40% higher than Sim-outorder counts—as error prone 
as the counts for the Array Microbenchmark. 

As our results indicate, this is a topic that requires 
further investigation. Accordingly, our future research 
includes using an extended methodology to study and 
compare the accuracy of the performance counters of 
other microprocessor architectures. The extended 
methodology will include an enhanced set of 
microbenchmarks, event count comparisons such as 
the one described above using Sweep3D, and the use 
of the PAPI [14] interface, which some commonality 
among the varying architectures.  

 
Acknowledgements 

This work was supported by DARPA/ITO under 
contract N66001-97-C-8533, "End-to-End 
Performance Modeling of Large Heterogeneous 
Adaptive Parallel/Distributed 
Computer/Commmunication Systems," 10/97-12/00,  

 and by National Science Foundation under 
contract CDA-9522207, "CISE Minority Institutions 
Infrastructure: Building Affinity Groups to Enable and 
Encourage Student Success in Computing," 9/95-8/01, 
and contract EIA-9729990, "A  
Multiprocessor Platform for Cross-Disciplinary 
Research in Parallel Systems." 

 
 
 
 



References 

[1] Adve, V., R. Bagrodia, J. Browne, E. Deelman, A. Dube, 
E. Houstis, J. Rice, R. Sakellariou, D. Sundaram-Stukel, P. 
Teller, and M. Vernon, “POEMS: End-to-end Performance 
Design of Parallel Adaptive Computational Systems,” 
Transactions on Software Engineering, November 2000. 

[2] The ASCI Sweep3D Benchmark: 
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/ 

[3] Browne, S., J. Dongarra, N. Garner, K. London, and P. 
Mucci, “A Scalable Cross-Platform Infrastructure for 
Application Performance Tuning Using Hardware 
Counters,” Proceedings of SC ‘00, November 2000.  

[4] Buck, B., and J. Hollingsworth, “Using Hardware 
Performance Monitors to Isolate Memory Bottlenecks” 
Proceedings SC ’00, November 2000. 

[5] Burger, D., and T. Austin, “The SimpleScalar Tool Set, 
Version 2.0,” http://www.cs.wisc.edu/ 

[6] Castillo, G., “A Feasibility Study on the Use of the MIPS 
R10000 Processor Performance Counters,” Master’s Project 
Report, Department of Computer Science, The University of 
Texas at El Paso, January 4, 2000. 

[7] DEC Alpha 21164 Hardware Reference Manual: 
http://ftp.digital.com/pub/Digital/DECinfo/semiconductor/lit
erature/l64hrm.pdf  

[8] MIPS R12000 Reference Manual: 
http://www.sgi.com/processors/r12k/manual.html 

[9] Pentium III Intel Architecture Software Developer’s 
Manual: http://www.intel.com/design/PentiumIII/manuals/  

[10] PowerPC 604e RISC Microprocessor User’s Manual: 
http://www.chips.ibm.com/products/powerpc/chips/six
04.html 

[10b] PowerPC 705 RISC Processor Technical Summary: 
http://www.chips.ibm.com:80/products/powerpc/chips/750_t
s.pdf 

[11] Silicon Graphics Inc., SpeedShop User’s Guide, 1998. 

[12] Sun Microsystem’s Dual Processor System Controller 
(DSC) User’s Manual: 
http://www.sun.com/microelectronics/manuals/802-7511.pdf 

[13] Zagha, M., Larson, B., Turner, S., Itzkowitz, M., 
“Performance Analysis Using the MIPS R10000 
Performance Counters”, Proceedings of Supercomputing 
’96, November 1996. 

Figure 10. Array Microbenchmark: TLB Misses 

 

 # of loop 
iterations at 
which 
libperfex vs. 
predicted 
counts are 
w/in 5% 

# of loop 
iterations at 
which 
perfex vs. 
predicted 
counts are 
w/in 5% 

# of loop 
iterations at 
which 
perfex vs. 
predicted 
counts are 
w/in 10% 

upper bound 
error Sim-
outorder vs. 
predicted for 
majority of # 
of loop 
iterations 

perfex vs. 
predicted error 
range for 
30,000-250 
loop iterations 

approx. perfex 
overhead in # of 
instructions for 
1,0000 loop 
iterations 

Decoded 
Instructions 

250 100,000 30,000 0.3% 9.7-1086%  

 

830,000  

Decoded 
Loads 

250 40,000 20,000 0.1% 5.6-663% 

 

230,000  

Decoded 
Stores 

250 10,000 5,000 0.1% 1.7-193.5% 69,000  

Conditional 
Resolved 
Branches 

NA NA NA 3.0% 172.4-
26585.8% 

219,000  

Table 2: Loop Benchmark Comparative Data

 



 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

   


