Just how accur ate ar e per for mance counter s?

Wendy Korn and Patricia J. Teller
The University of Texas at El Paso
The Department of Computer Science

El Paso, TX 79968-0518
{wcard,pteller} @cs.utep.edu

Abstract

The wide use of performance counters by
application developers and benchmarking teams gives
evidence that performance counters are well worth the
silicon and design time required to include them on
modern microprocessors. These counters provide
rudimentary performance measurements that may or
may not be accurate. This paper presents our
methodology for determining the accuracy of these
counters as well as preliminary results of a study that,
using this methodology, evaluates the accuracy of the
R12000 performance counters with respect to eight of
30 measurable events. The results indicate that care
must be taken when using data generated by
performance counters because, in some cases, this
data may lead to erroneous conclusions. This can
occur when the granularity of the measured code is
not sufficient to ensure that the overhead introduced
by counter interfaces does not dominate the event
counts.

1.0 Introduction

Performance counters are used to measure events
that occur during program execution. Some events that
can be measured are the number of instructions, loads,
stores, and cycles executed, and the number of cache
misses. Due to the counters being on-chip, counter
updates do not perturb program execution or the
recorded event counts. The MIPS R12000 is one of
several processors that support this hardware feature.
Other processors with performance counters include
the DEC Alpha Series [7], the IBM PowerPC series
[10, 11], the Intel P6 and Pentium series [9], and the
Sun UltraSPARC series [12]. An event—monitoring
device driver needs to be provided by the operating
system in order to use any of these counters. In the
case of the MIPS R12000, IRIX 6.5.2 provides
software interfaces such as perfex and libperfex to
access the counters.

Gilbert Castillo
IBM
Austin, TX
castillog@netzero.com

For several years, on-chip performance counters
have been used with confidence for performance
analysis of applications [3, 4, 11, 13]. For example, in
[3], different methods, including performance counters
used in combination with SpeedShop [11], are used to
tune the performance of an Alternating Direction
Implicit (ADI) method for solving three-dimensional
partial differential equations. In [13], cache results
generated by performance counters that profile cache
misses and other measurement methods are used to
tune the application and attain a speedup of 1.3. In the
following quotation, the authors summarize the
perceived importance of performance counters: “the
counters were well worth the silicon and design time
to include them.” The authors believe that “counter
data is important for application developers, and that
counters should be documented and supported by
high-level tools.” Addressing this need, [3] makes
available to the computer science and engineering
communities an API, or application programming
interface, that facilitates access to on-chip hardware
counters. These research efforts and others that utilize
performance counters focus on enhancing the
performance of applications by using the counters,
assuming that they afford a reasonable degree of
accuracy. In contrast, this paper investigates their
accuracy.

Our interest in performance counters relates to our
goa of studying application resource demands and
formulating models that predict application execution
time. These models are for use in the Performance
Oriented End-to-end Modeling System (POEMYS), a
problem-solving environment that spans application
software, operating system and runtime system
software, and hardware architecture for end-to-end
performance analysis of complex parallel/distributed
systems[1]. To use performance counters in this work,
we must understand their degree of accuracy. Since
there is a lack of published documentation on the
accuracy of this hardware feature, we developed a

methodology for determining the accuracy of on-chip
performance counters.

In this paper we demonstrate our methodology by
presenting: 1) three microbenchmarks used to study
eight of 30 measurable MIPS R12000 events, 2) our
experimental design, 3) predicted and collected data,
and 4) analysis of results. The results indicate that
under certain circumstances, performance counter data
can be very inaccurate. Such a situation can occur
when the granularity of the measured code is not
sufficient to ensure that the event counts associated
with the counter interface do not dominate the
reported total event counts (i.e, the event counts
associated with the measured code and those
associated with the interface).

The paper is organized as follows.

Section 2 presents the methodology used to
evaluate performance counter accuracy,
including a description of the studied events,
adiscussion of the microbenchmarks for
estimation and measurement of the events, an
overview of the MIPS R12000 performance
counters and the perfex and libperfex
interfaces, and a brief description of sim-
outorder [4], the ssmulator used to collect
comparative event counts. The predicted and
collected data are presented and analyzed in
Section 3. Finally, in Section 4, conclusions
are made about the accuracy of the
performance counters and future research is
discussed.

2.0 Methodology

The methodology used to study the accuracy of
performance counters is an extension of that used in
[6], a master’s project report of one of the authors. [6]
effectively studies the accuracy of only some of the
targeted events of the MIPS R10000, i.e., issued
instructions, loads, and stores, cycles, and decoded
branches. For other events, i.e, cache misses,
performance data was compromised because of
perturbations introduced by multiprogramming and
network services. As a result, the study discussed in
this paper uses the same methodology but in a single-
user, stand-alone environment based on an SGI O2
running IRIX 6.5.2 on a MIPS R12000 with a clock
speed of 250 MHz. The compiler is gcc, version 2.8.1.

The methodology comprises five phases:

1. creation of microbenchmarksfor studying
event counter accuracy,
prediction of event performance data,

3. collection of event performance data from the
MIPS R12000 performance counters via
perfex and libperfex,

4. collection of event performance dataviaa
MIPS R12000 simulator, and

5. comparison of event performance data from
phases 2, 3, and 4.

The measured events and the microbenchmarks

are presented and discussed in Sections 2.1 and 2.2,
respectively. The MIPS R12000 performance counters
and the interfaces used to access the counters are
described in Section 2.3 and the MIPS R12000
simulator is discussed in Section 2.4.

2.1 Measured Events

N

The two criteria used to select the measured
events of interest were 1) the events are reasonably
predictable and 2) they are measurable by the MIPS
R12000 simulator. To be reasonably predictable
means that, for a given set of benchmarks, the event
counts can be estimated easily. For example, given the
code size and structure of a benchmark as well as the
size and organization of the primary (L1) cache, the
analyst can estimate the number of L1 cache misses
that program will generate. To be measurable by the
simulator means that the simulator can be configured
to generate the targeted event count.

Table 1: Event Numbers

Event Type Event Number

decoded instructions 1

decoded loads

2
decoded stores 3
conditional resolved branches 6

primary (L1) data cache (D-

. 25
cache) misses
L1 instruction cache (I-cache) 9
misses
secondary (L2) D-cache misses 26
L2 I-cache misses 10
Translation Lookaside Buffer 23

(TLB) misses

According to these criteria, nine out of the
available 30 events [8], defined in Table 1, were
selected for study. Since the MIPS R12000 L2 cache
is unified, events 10 and 26 are combined when
evaluating the accuracy of the performance counters.

2.2 Microbenchmarks

The microbenchmarks used in this study were
designed to facilitate relatively easy prediction of the
event counts and to vary the number of event
occurrences. Evidence provided in [6] indicates that
the accuracy of the counters depends on the number
of events generated by the measured program as
compared to the number of events contributed by the
counter interface. By varying the number of event
occurrences, the influence of the interface on the event
counts can be determined and, when possible, the
counts can be adjusted accordingly.

2.2.1. Linear Microbenchmark

The Linear Microbenchmark is used to measure
only the L1 I-cache miss event. It was designed
initially to measure the number of decoded instruction,
load, and store events, as well as the L1 I-cache miss
event. However, as discussed in Section 3, the Loop
Microbenchmark is more effective in measuring the
decoded instruction, load, and store events.

Lyl el o

TP ooTw
oo
o
+
=

=a+1;
c=a+b;
a=b+c;
b=a+c¢;
c=a+h:

Figure 1. Linear Microbenchmark Code
Segment

As shown in Figure 1, the Linear
Microbenchmark consists of a repeated sequence of
simple add instructions that use three variables. In
order to allow accurate L1 I-cache count prediction,
the benchmark was designed to include no branches,
avoiding the effects of speculative execution, and to
force data dependences that ensure in-order instruction

execution and prevent instruction elimination by the
compiler.

Several versions of the benchmark were used to
determine its effectiveness; the versions differ in terms
of the number of times the instruction sequence is
repeated.

2.2.2 L oop Microbenchmark

The Loop Microbenchmark is used to measure the
number of decoded instruction, load, and store events,
as well as the number of resolved conditiona branch
events. The benchmark consists of a for-loop with a
body equivalent to the Linear Microbenchmark with
100 instructions. Several versions of the benchmark
are used in the study; the versions differ in terms of
the number of loop iterations. Predicting the number
of decoded instructions, loads, and stores and resolved
branches is elementary using the grep and wc (word
count) Unix tools (e.g., grep Iw testx.s | wc).

2.2.3 Array Microbenchmark

The Array Microbenchmark is used to measure
the number of L1 D-cache, L2 cache, and TLB miss
events. The other two microbenchmarks do not access
enough data elements to generate a sufficient number
of these events. This benchmark consists of a for-loop
with a body that reads, increments, and writes
elements of an integer array in sequence. Figure 2
presents the general format of the benchmark. Several
versions of the benchmark were used in the study; the
versions differ in terms of array size, which is passed
as an input parameter.

#define MAXSIZE 1000000

int main (int argc, char *argv[]) {

int alMAXSIZE], ARRAYSIZE, i;
ARRAYSIZE = atoi(argv[1]);
for (i=0; i<ARRAYSIZE;i++)

afi] = afi] + 1;

}

}

Figure 2. Array Microbenchmark
2.3 MIPS R12000 Performance Counters

The R12000 performance counters are two 32-bit
registers that can count up to 30 unique events. The
counters can be accessed via the IRIX operating
system using two interfaces: perfex and libperfex [8].
perfex is the command-line interface used for counting
events during the execution of an entire binary file,

while libperfex provides easy to access C and Fortran
functions that are inserted in the program code to
count events in specific code sections. The overall
functionality of libperfex is a subset of that provided
by perfex.

In the study presented in this paper, perfex and
libperfex were used to collect data generated by the
performance counters during execution of the
microbenchmarks described in Section 2.2. For each
benchmark type, i.e, Linear, Loop, and Array,
approximately 25 versions were created and run. As
mentioned above, the versions differ in terms of
number of instructions, number of iterations, and
number of array elements, respectively. Because
event counts vary with each execution of a version of
a microbenchmark, each version was run 100 times
and the results averaged. The accuracy of event counts
was evaluated by comparing the average event counts
to the predicted event counts.

2.4 Sim-outor der

The simulator used in this study is sim-outorder,
which isincluded in the SimpleScalar [5] tool set. Sim-
outorder allows complex modeling of the processor
core, memory hierarchy, and branch prediction. It is
capable of simulating superscalar processors such as
the MIPS R12000. As shown in Section 3, the sim-
outorder model of the MIPS R12000 is very effective
in verifying our predicted event counts.

3.0 Study Results

Comparisons of the predicted and collected event
counts for the three microbenchmarks are presented in
Sections 3.1-3.5, Table 2, and Figures 3-10. Section
3.1, Table 2, and Figures 3-6 relate to the events for
which the Loop Microbenchmark is most effective in
demonstrating agreement between predicted counts
and counts generated by the performance counters,
i.e., decoded instruction, decoded load, decoded store,
and conditional resolved branch counts. Section 3.2
and Figure 7 relate to the event for which the Linear
Microbenchmark is used most effectively, i.e, the L1
I-cache miss counts. And, Sections 3.3-3.5 and Figures
8-10 relate to the events for which the Array
Microbenchmark is most effective, i.e.,, L1 D-cache
miss, L2 cache miss, and TLB miss counts. The
legend for Figures 3-10 appears below.

—e—perfex
—=— |ibperfex
sim-outorder

3.1 Decoded I nstructions, L oads, and Stores
and Conditional Resolved Branches

For the Linear Microbenchmark, there are very
large discrepancies between the libperfex and perfex
decoded instruction, decoded load, decoded store, and
conditional resolved branch event counts and the
predicted counts. For example, the difference between
libperfex decoded instruction event counts and the
predicted counts is between 57% and 925% and the
difference between perfex decoded instruction event
counts and the predicted countsis even larger. For the

Loop Code Load Count wrt Expected

1800.0%
1600.0% ’,l
1400.0% T
, 1200.0% i
< 1000.0% T
@ §00.0% 5
£ B00.0% 0
S 400.0%
£ 200.0% M¢
S 0% d e A A
[
=R
® Ox 3
SEE R g g g
Mumber af Loop lterations
Figure 4. Loop Microbenchmark:
Decoded Loads
Figure 5. Loop Microbenchmark: Decoded
Loop Code Store Count wrt Expected
BO00.0%
S 500.0% T
E 400.0% i
& 300.0% ,\
S 200.0%
x]
5 100.0% AN
= M
EID% __n_IFI'IF‘IF‘Ir‘I"Ir‘I"I I I 1 1 1 1 1 1
& & $
SHC R R
Murmber of Loop lterations

Stores

decoded load event, at a code size of 100,000
instructions, the difference between predicted and
libperfex (perfex) counts is 71.8% (75.9%). For
decoded stores, the perfex error begins at 10,000% and
decreases as the code size increases, achieving a
difference of 34% when the code comprises 50,000
instructions. For conditional resolved branches, perfex
counts are very inflated; the error, w.r.t. predicted
counts, ranges from —43.3% to 66,339%.

In contrast, as depicted in Figures 3-6 and Table
2, the differences between the predicted counts and the
decoded instruction, decoded load, decoded store, and
conditional resolved branch counts for the Loop
Microbenchmark as measured by perfex, libperfex,
and sim-outorder decrease as the number of iterations
executed increases. For the first three events, the
counts generated by libperfex and sim-outorder agree
very well with the predicted counts, while the counts
generated by perfex do not come within 10% of the
predicted counts until the number of loop iterations in
the benchmark is fairly large. For the conditional
resolved branch event, when the number of loop
iterations is greater than 2,000, the difference between
libperfex and predicted counts ranges from —42% to —
50%; in these cases, libperfex has an event count of
approximately ¥ of the predicted counts.

Table 2 presents more detailed comparative data
generated using the Loop Microbenchmark for the
decoded instruction, decoded load, decoded store, and
conditional resolved branch events. Using the decoded
instruction event as an example, Table 2 should be
read as follows:

1) The counts generated by libperfex are within 5% of
the predicted counts when the number of loop
iterations in the benchmark is at least 250, i.e., the
valuein column 1.

2) The counts generated by perfex are within 5% of
the predicted counts when the number of loop
iterations in the benchmark is at least 100,000, i.e., the
valuein column 2.

3) The counts generated by perfex are within 10% of
the predicted counts when the number of loop
iterations in the benchmark is at least 30,000, i.e., the
valuein column 3.

4) For all or amost al versions of the benchmark,
sim-outorder event counts are within .3%, i.e., the
value in column 4, of the predicted counts.

5) The error range for perfex is 9.7-1086% for 30,000
to 250 iterations (value in column 5).

6) The perfex overhead is approximately 830,000
(value in column 6) instructions for 10,000 loop
iterations.

Loop Code Branch Count wit Expected
70000.0%

B0000.0% ’.\
50000.0% i
40000.0% 1
30000.0% ¥
20000.0%

10000.0% e

0.0% rrrmv—n—v—n
-10000.0%
CEFFFLSSS

Murnber of Loop [terations

Percent Difference

Figure 6. Loop Microbenchmark: Conditional
Resolved Branches

Linear Code Primary Cache Iiss Count
wrt Expected
o 1400.0%
2 12000% e
5 jom.0% L
E . 1] '\M
£ 800.0% D
S BO00.0% N
§ 400.0%
R e
n' I:ID% T 1 I 1 I 1 I 1 I 1 I 1
$ 2
¢ &S FFHSS
Body Size
Figure 7. Linear Microbenchmark: L1 I-cache
Misses

3.2L1I1-cache Misses

The MIPS R12000 L1 I-cache is a 32-KB two-
way set-associative cache with 16-word blocks. Since
the instruction size is four bytes, the expected number
of L1 |-cache missesis én/16 1, where n is the number
of ingtructions that comprises the Linear
Microbenchmark. Figure 7 compares the L1 I-cache
miss counts for the Linear Microbenchmark as
measured by perfex, libperfex, and sim-outorder to the
predicted counts. Like the counts for decoded
instructions, loads, and stores, the counts for L1 |-
cache misses generated by sim-outorder agree very
well with the predicted counts, whereas the counts

generated by libperfex (perfex) do not come within
10% of the predicted counts until the number of
instructions is fairly large, i.e., 6,000 (100,000). In all
cases sim-outorder event counts are within less than
10% of the predicted counts. libperfex counts are
within 600% of the predicted countsin all cases, while
perfex counts have an error from 8,061% to 1.7%
between 100 and 500,000 instructions. According to
the results, perfex has an overhead of approximately
1,600 misses.

Array Code Primary Data Cache Wiss Count

wrt Exzpected

BO00.0%
§ 5000.0% ’\\
g 4000.0% |
& 3000.0% T
=
= 2000.0%
3 1000.0% e
5 00% UM

-1DDD.D‘:}%§_N@]{§§J§3A\@J§]§U§\:@®:§?@U

Array Size

Figure 8. Array Microbenchmark: L1 D-
Cache Misses

3.3L1 D-cache Misses

The MIPS R12000 L1 D-cache is a 32-KB two-
way set-associative cache with eight-word blocks.
Since the Array Microbenchmark sequentialy
accesses four-byte words that are stored consecutively
in the memory hierarchy, a cache miss is generated
upon the access of element i*8 of the array, where i =
0, ..., n-1 (where n is the size of the array). Thus, the
expected number of L1 D-cache misses is € n/8 u
Figure 8 compares the L1 D-cache miss counts for the
Array Microbenchmark as measured by perfex,
libperfex, and sim-outorder to the predicted counts.
The sim-outorder counts are within 5% of the
predicted counts for array sizes from 250 to 1,000,000.
From array sizes 2,000 to 1,000,000 the error is less
than 1%. libperfex counts are never within 10% of the
predicted counts. After the array size reaches 3,000 the
libperfex counts are within 25% of the predicted
counts. Only when the array size becomes 100,000 or

greater do the perfex counts come within 25% of the
predicted counts.

Array Code L2 Iliss Count
wit ected
g F00% e
§ 200.0%
2 on0%
S 00% 1 T P
§ -100.0%
& -200.0%
Ee e ke
T, 0, M, %, M, “,
Array Size
Figure 9. Array Microbenchmark: L2
Misses

3.4L2 CacheMisses

The MIPS R12000 L2 cache is a 1-MB two-way
set-associative unified cache with 32-word blocks. The
L2 cacheislarge enough to store all instructionsin the
Array Microbenchmark. Every primary instruction
(data) cache miss that misses the L2 cache causes two
(four) L1 I- (D-) cache blocks to be brought into the
L2 cache. Therefore, the expected number of L2 cache
misses is equa to &L1 I-cache misses)/2 + (L1 D-
cache misses)/40, assuming that the instruction and
data misses do not conflict. Figure 9 compares the L2
cache miss counts for the Array Microbenchmark as
measured by perfex, libperfex, and sim-outorder to the
predicted counts. The sim-outorder counts are within
5% of the predicted counts for array sizes from 800 to
7,000. From array sizes 100 to 700 the error ranges
from 44% to 5.1%. libperfex generates a count that is
within 10% of the predicted count only for the array
size of 250. From array size 500 to array size 7,000 the
difference ranges from —54% to 96%. Only when the
array size is from 30,000 to 50,000 does the perfex
counts come within 30% of the predicted counts.

35TLB Misses

The R12000 trandation-lookaside buffer, TLB,
contains 64 entries, each of which maps a par of
virtual pages and can select a page size ranging from
4-KB to 16-MB, inclusive, in powers of 4 [8]. The
getpagesize() function indicates that the page size for
the experimental platform is 4-KB. Note that the man
page for getpagesize states that the page size returned

by the function is a system page size, which may not
be the same as the underlying hardware page size
(frame). In addition, the man page states that in
systems with multiple page sizes, like the R12000 with
seven, the base page size is returned; the base page
size is the smallest page size used by the system.
Figure 10 compares the TLB miss counts for the Array
Microbenchmark as measured by perfex, libperfex,
and sim-outorder to the predicted counts. The sim-
outorder counts are within 5% of the predicted counts
for array sizes from 30,000 to 1,000,000. libperfex
generates a count that is within 5% only for an array
size of 100,000. With this exception, the error for
libperfex ranges from 31% to 2712% for array sizes
from 1,000,000 to 1,000. Only when the array size
becomes 1,000,000 does the perfex count come within
6% of the predicted counts. Since predicted and sim-
outorder event counts both are based on a fixed size
page, it is not possible to determine the accuracy of the
TLB miss event counts generated by the performance
counters.

4.0 Conclusions and Future Resear ch

As this paper demonstrates, performance counters
can be very accurate or very inaccurate. As shown,
their accuracy depends upon the interface used, the
application being measured, and the event being
measured. For the MIPS R12000 performance
counters, this paper demonstrates that three of the
eight studied events can be measured accurately with
the libperfex interface and the Loop Microbenchmark:
decoded instructions, loads, and stores. One event, i.e.,
the L1 I-cache miss event, can be measured accurately
with the libperfex interface and the Linear
Microbenchmark if the body size is at least 6,000
instructions. Conditional resolved branches cannot be
measured accurately by either libperfex or perfex. The
L1 D-cache and L2 cache miss events are not
measured accurately by the R12000 performance
counters via libperfex and the Array Microbenchmark.
The accuracy of the counters via the perfex interface
depends heavily on the granularity of the code that is
being measured. The accuracy of perfex and libperfex
counts for the TLB miss event cannot be determined
since multiple page sizes are used and prediction and
simulation counts are based on a fixed page size.

To ascertain how performance counters behave on
large applications, for which we cannot predict event
counts, in [6] the event counts of the R10000

performance counters were compared to the event
counts generated by sim-outorder for Sweep3D, a
neutron transport application used as a benchmark in
the ASCI program [2]. For the decoded instruction
event, libperfex counts were approximately 25%
higher than sim-outorder counts—this error is higher
than for the Loop Microbenchmark. For the decoded
load (store) event, libperfex counts were
approximately 33% (.5%) higher (lower) than sim-
outorder counts—again this error is higher than for the
Loop Microbenchmark. For the conditional resolved
branch event, libperfex counts were approximately
.8% lower than sim-outorder counts—a much smaller
error than for the Loop Microbenchmark. For the L1 |-
cache (D-cache) miss event, libperfex counts were
approximately 100% (12%) higher than sim-outorder
counts—much higher (lower) than for the Linear
(Array) Microbenchmark. And, finally, for the L2
cache miss event, libperfex counts were approximately
40% higher than Sim-outorder counts—as error prone
as the counts for the Array Microbenchmark.

Asour resultsindicate, thisis atopic that requires
further investigation. Accordingly, our future research
includes using an extended methodology to study and
compare the accuracy of the performance counters of
other microprocessor architectures. The extended
methodology will include an enhanced set of
microbenchmarks, event count comparisons such as
the one described above using Sweep3D, and the use
of the PAPI [14] interface, which some commonality
among the varying architectures.

Acknowledgements

This work was supported by DARPA/ITO under
contract N66001-97-C-8533, "End-to-End
Performance Modeling of Large Heterogeneous
Adaptive Parallel/Distributed
Computer/Commmunication Systems," 10/97-12/00,

and by National Science Foundation under
contract CDA-9522207, "CISE Minority Institutions
Infrastructure: Building Affinity Groups to Enable and
Encourage Student Success in Computing,” 9/95-8/01,
and contract EIA-9729990, "A
Multiprocessor Platform for Cross-Disciplinary
Research in Parallel Systems.”

Table 2: Loop Benchmark Comparative Data

of loop # of loop # of loop upper bound perfex vs. approx. perfex
iterations at iterations at | iterations at | error Sim- predicted error | overhead in # of
which which which outorder vs. range for instructions for
libperfex vs. perfex vs. perfex vs. predicted for 30,000-250 1,0000 loop
predicted predicted predicted majority of # loop iterations | iterations
counts are counts are counts are of loop
w/in 5% w/in 5% w/in 10% iterations

Decoded 250 100,000 30,000 0.3% 9.7-1086% 830,000

Instructions

Decoded 250 40,000 20,000 0.1% 5.6-663% 230,000

Loads

Decoded 250 10,000 5,000 0.1% 1.7-193.5% 69,000

Stores

Conditional | NA NA NA 3.0% 172.4- 219,000

Resolved 26585.8%

Branches

References [10] PowerPC 604e RISC Microprocessor User's Manual:

[1] Adve, V., R. Bagrodia, J. Browne, E. Deelman, A. Dube,
E. Houstis, J. Rice, R. Sakellariou, D. Sundaram-Stukel, P.
Teller, and M. Vernon, “POEMS:. End-to-end Performance
Design of Paralel Adaptive Computationa Systems,”
Transactions on Software Engineering, November 2000.

[2] The ASCI Sweep3D Benchmark:
http://www.lInl.gov/asci_benchmarks/asci/limited/sweep3d/

[3] Browne, S, J. Dongarra, N. Garner, K. London, and P.
Mucci, “A Scalable Cross-Platform Infrastructure for
Application Performance Tuning Using Hardware
Counters,” Proceedings of SC ‘00, November 2000.

[4] Buck, B., and J. Hollingsworth, “Using Hardware
Performance Monitors to Isolate Memory Bottlenecks’
Proceedings SC ' 00, November 2000.

[5] Burger, D., and T. Austin, “The SimpleScaar Tool Set,
Version 2.0,” http://www.cs.wisc.edu/

[6] Castillo, G., “A Feasihility Study on the Use of the MIPS
R10000 Processor Performance Counters,” Master's Project
Report, Department of Computer Science, The University of
Texas at El Paso, January 4, 2000.

[71 DEC Alpha 21164 Hardware Reference Manual:
http://ftp.digital.com/pub/Digital/DECinfo/semiconductor/lit
erature/l 64hrm.pdf

[8] MIPS R12000 Reference
http://www.sgi.com/processors/r12k/manual .html

[9] Pentium Il Intel Architecture Software Developer's
Manual: http://www.intel.com/design/Pentiuml | 1/manuals/

Manual:

http://www.chips.ibm.com/products/powerpc/chips/six
04.html

[10b] PowerPC 705 RISC Processor Technica Summary:
http://www.chips.ibm.com:80/products/powerpc/chips/750 t
s.pdf

[11] Silicon Graphics Inc., SpeedShop User’s Guide, 1998.

[12] Sun Microsystem’s Dual Processor System Controller
(DSC) User's Manual:
http://www.sun.com/microel ectronics/manual /802-7511. pdf

[13] Zagha, M., Larson, B., Turner, S., Itzkowitz, M.,
“Performance Andysis Using the MIPS R10000
Performance Counters’, Proceedings of Supercomputing
’96, November 1996.

Array Code TLE Count wrt Expected
14000.0%
12000.0% 1%
10000.0%

8000.0% A

BO00.0% T

A000.0% ‘
2000.0% =
-2000.0%
(§§) (] (5] é} @‘\3
FEESFE S S

Array Size

Percent Difference

Figure 10. Array Microbenchmark: TLB Misses

