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ABSTRACT 

Today, most modern microprocessors include monitoring hardware in the form of 

on-chip counters that can be used to obtain data about the performance of the 

microarchitecture and memory hierarchy (i.e., the various levels of cache and the 

translation-lookaside buffer, TLB). Initially, these counters were meant for the use of 

computer architects and operating system developers and, on most platforms, were not 

readily accessible to the general application developer. The Performance API (PAPI) 

cross-platform hardware counter interface facilitates programmer access to this 

information, which is delivered as event counts (e.g., the number of executed load 

instructions). Potentially, this data can be useful for the performance tuning of 

applications. However, in some cases, limited knowledge of the microarchitecture’s 

structure and management algorithms may reduce the usefulness of event counts. Also, 

because of the overhead introduced by PAPI and/or the counting method implemented 

(i.e., aggregate or sampling), the information obtained from the counters may not capture 

the accuracy that is needed for a specific use of the data. Additionally, the PAPI interface, 

itself, or the hardware implementation may, inadvertently, introduce errors.  

To address these issues and, thus, allow the programmer to use event count data with 

confidence, research is needed to determine when and how event count data can be used. 

To ascertain this information, a set of validation microbenchmarks, which stresses the 

platform in predictable ways, has been designed and developed. These benchmarks 

permit prediction of event counts and, thus, evaluation of event count data. Depending on 
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the platform and event under study, a complementary configuration microbenchmark 

may need to be designed and developed as well. The purpose of a configuration-

microbenchmark is to attain information about when and how a specific event is 

generated. In some cases, this information is needed to design and develop a validation 

microbenchmark.  

Several of these validation and configuration microbenchmarks are a product of the 

research reported in this thesis. They are associated with the following events:  

§ data TLB misses,  

§ L1 data cache (Dcache) misses, 

§ L2 Dcache misses,  

§ cache intervention requests,  

§ cache invalidation requests,  

§ requests for exclusive access to a shared cache line, and  

§ requests for exclusive access to a clean cache line. 

The behavior of these events was studied on the following platforms: SGI MIPS 

R10000, IBM Power3 and Intel Itanium. The main results of this study, which compares 

predicted and hardware-reported event counts, indicate that (1) for some of the events 

studied, the use of validation microbenchmarks can only demonstrate “reasonableness” of 

hardware-reported counts, in contrast to using them to validate the counts, and (2) the 

usefulness of event count data (to a programmer) is dependent upon both the nature of the 

application and the type of event monitored.  
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Chapter 1  

INTRODUCTION 

Most modern microprocessors contain self-monitoring hardware that can be used to 

obtain data about the performance of the microarchitecture and memory hierarchy (e.g., 

the various levels of caches and translation lookaside buffers, TLBs). This monitoring 

hardware, which mainly is in the form of on-chip counters, is designed to provide insight 

into the behavior of a microprocessor while executing an application, but without 

affecting its performance. Initially, these counters were meant for the use of computer 

architects and operating system developers and, on most platforms, were not readily 

accessible to the general application developer. Nonetheless, some application and 

compiler developers gained access to them and found that the type of information 

provided by the counters could guide them through the process of fine-tuning application 

performance and provide feedback to optimizing compilers that could potentially 

improve code scheduling/pipelining [1]. 

The level of availability and access to the counters varies from platform to platform. 

It usually is difficult and time-consuming for the average application developer to use the 

counters because it requires him/her to have in-depth knowledge about low-level 

processor details. The Performance API (PAPI) project was initiated at the University of 

Tennessee at Knoxville with the purpose of providing a cross-platform API that defines a 

standard set of events and maps as many of these as possible to each platform. The 

semantics of the events is necessarily platform dependent but the purpose of PAPI is not 
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to provide a standard definition. Instead, it attempts to provide a set of events that is 

considered by the performance computing community to be the most important for 

performance analysis purposes [1]. 

PAPI has been used successfully by many application developers and is now 

incorporated in several comprehensive performance tools [2]. For example, the 

perfometer tool, also developed by the PAPI research team, provides a graphical view of 

performance counter data as it is being generated. The interface (a cross-platform Java 

front-end) allows the user to change the event that is being monitored and has the ability 

to monitor parallel applications. Instrumentation of the monitored application is done by 

inserting a function call at the beginning of the code. The user can then monitor a variety 

of events without having to change the code. Other tools developed by Sandia National 

Laboratory, The University of Illinois, and Pacific-Sierra Research, among others, also 

have incorporated PAPI support into their performance analysis tools [2]. 

The wide acceptance of PAPI as a performance tool emphasizes the importance of 

evaluating the accuracy and usefulness of event count data collected via PAPI, issues 

addressed by this thesis and the research reported on in [3], [4], and [5]. PAPI library 

calls, which are inserted in the monitored program, may perturb the reported counts (e.g., 

due to the execution of instructions that set and read the counters). Also, it is possible that 

the counters may be implemented incorrectly or the reported counts may be inexplicable 

without in-depth knowledge of the idiosyncrasies of the microarchitecture. Information 

that sheds light on these issues is of import to application programmers who are using 
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event count information to tune the performance of their programs. This is the prime 

motivation for the Department of Defense’s support of this work. 

Previous work has shown that the hardware-reported counter data may not be 

accurate when the granularity of the measured code is insufficient to ensure that the 

overhead introduced by the counter interface does not dominate the event count [5]. Also, 

previous evaluation of performance counter data across platforms has resulted in error 

characterization. Through the use of benchmarks that are specifically designed to stress 

the microarchitecture in predictable ways, performance counter data is analyzed by 

comparing expected counts with hardware-reported counts. This comparison led to the 

establishment of the following error categories proposed in [3]: 

1. overhead or bias, 

2. multiplicative, 

3. random, and 

4. unknown. 

An overhead or bias error refers to a constant difference observed between expected 

and hardware-reported counts for a given event measured using versions of a benchmark 

that differ in terms of the number of times the event is generated. A multiplicative error 

refers to the case when hardware-reported counts exceed expected counts by a defined 

factor. A random error occurs when expected counts and reported counts differ 

significantly, but only part of the time. Finally, an unknown error happens when there is 

no apparent relationship between the expected and hardware-reported counts; this may be 

due to either a combination of the previous types of errors or unidentified processor 
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behavior. The work presented in this thesis is, in part, reported on in [3] and is, in part, an 

extension of that work. The following seven events are the focus of this thesis: 

1. data TLB (DTLB) misses,  

2. L1 data cache (Dcache) misses,  

3. L2 Dcache misses,  

4. cache intervention requests,  

5. cache invalidation requests,  

6. requests for exclusive access to a shared cache line, and  

7. requests for exclusive access to a clean cache line.  

This work evaluates the accuracy of the hardware-reported counts associated with 

these events and/or indicates under what circumstances the data can be used. These 

events were chosen because of their association with the performance of the memory 

hierarchy, which usually defines the critical path in the overall performance of an 

application. The last four events are related to the performance of shared-memory 

multiprocessors that ensure cache coherence. The second and third events, previously 

studied by [6] on a uniprocessor, are addressed again on a multiprocessor platform. 

The general methodology used to study hardware-reported event counts is discussed 

in Chapter 2 and the targeted platforms are described in Chapter 3. Chapter 4 discusses 

the events under study, and presents and analyzes the results of the study. Chapter 5 

contains concluding remarks and a description of future work. 
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Chapter 2  

METHODOLOGY 

The method used to evaluate the data reported by performance counters, called the 

validation process, is similar to that used in [3]. The process consists of seven phases, 

which are repeated as necessary. For each event under study, the phases are as follows. 

1. Microbenchmark: design and implement a validation microbenchmark that 

permits event count prediction. 

2. Prediction: predict event count using a mathematical model. 

3. Data collection-1: collect (hardware-reported) event count data using PAPI. 

4. Data collection-2: collect event count data using a simulator (not always 

necessary or possible). 

5. Comparison: compare predicted and collected event counts. 

6. Analysis: analyze results to identify and possibly quantify differences. 

7. Alternate approach: when analysis indicates that prediction is not possible, use 

an alternate means to either verify reported event count accuracy or demonstrate 

that the reported event count seems reasonable. 

2.1 Microbenchmarks 

The focal point of this methodology relates to phase 1, the design and development 

of the validation microbenchmark. A validation microbenchmark is a program that is 

small in size and has an execution pattern that is easily traceable. The purpose of the 

program is to stress the platform in predictable ways with respect to the event under 
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study. In designing a microbenchmark, one needs to consider both the structure and 

configuration of the microarchitecture and memory hierarchy. Whenever possible, the 

requisite microarchitecture characteristics are obtained from platform documentation. 

When this is not possible, a configuration microbenchmark is developed to help deduce 

the missing details. Such is the case for the data TLB miss event discussed in Section 4.1, 

where a configuration microbenchmark is used to deduce the user data page size needed 

for the validation microbenchmark. 

The validation microbenchmark design also needs to take into account the definition 

of the PAPI event under study. As mentioned before, the purpose of PAPI is to provide 

general descriptions of the cross-platform events rather than giving the exact semantics 

for them. Similarly, validation microbenchmarks are designed to apply across the 

platforms of interest. However, the analysis of the results obtained from executing 

validation benchmarks needs to consider the details of the experimental platform. These 

cross-platform validation microbenchmarks are developed in the ANSI C language and 

can be thought of as generic benchmarks that can be cross-compiled to execute on a 

specific target platform. At this point, the benchmarks do not include platform-dependent 

system calls (e.g., system calls to handle process synchronization) and in some cases 

customization of the generic microbenchmark may be needed before it can be used to 

validate an event on a specific platform. The generic version of a microbenchmark also 

serves as a template from which a test suite is generated. A test suite is comprised of a set 

of different versions of a generic microbenchmark. The versions differ with respect to the 

number of events that are expected to generate. As demonstrated in [5], such a suite can 
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be used to determine the overhead introduced by the counter interface. Using this 

information, an equation can be defined to quantify the portion of an event count that is 

attributable to the counter interface. A test suite also is used to validate assumptions made 

with respect to expected event counts or to provide insight that may lead to modification 

of such assumptions. For example, the generic version of the cache invalidation requests 

microbenchmark, which deals with a multiprocessor environment (discussed in Section 

4.5), is customized to execute on the MIPS R10000 platform by adding native system 

calls that assign multiple processes to execute on separate processors. Also, manipulating 

the size of the generic benchmark’s main for-loop, which determines the number of 

events generated by the benchmark, produces multiple versions of the benchmark. 

Previous work [3] related to performance counter data evaluation has identified the 

following classes of validation microbenchmarks that are used to study a variety of 

events: 

1. array microbenchmark, 

2. loop microbenchmark, 

3. in-line microbenchmark, and 

4. floating-point microbenchmark. 

The array microbenchmark consists of code that traverses an array at defined strides 

with the purpose of stressing the data portions of the various levels of the memory 

hierarchy and allows prediction of related events, e.g., L1 Dcache misses. The loop 

microbenchmark, which consists of a sequence of instructions within a loop, is used to 

stress a particular functional unit. For example, it was used to study the number of stores 
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executed. The in-line microbenchmark is the unrolled version of the loop 

microbenchmark, and its purpose is to stress the instruction portions of the various levels 

of the memory hierarchy. Events such as L1 Icache misses are its target. Finally, the 

floating-point microbenchmark is a variation of the loop microbenchmark where the 

sequence of instructions is replaced by floating-point instructions; it has the purpose of 

stressing the floating-point units. Events like floating-point add operations executed are 

studied using this benchmark.  

Since the events under study in this thesis deal primarily with the data portion of the 

memory hierarchy, only versions of the array microbenchmark are used. Furthermore, a 

new class of microbenchmark is presented that permits the study of memory hierarchy 

related events in a multiprocessor environment. This is called a ping-pong 

microbenchmark and consists of code that forces multiple processes to alternately access 

one or more shared variables. The purpose is to stress the cache coherency unit. This 

benchmark is discussed in Section 4.5. 

2.2 Data collection 

In order to study an event, the validation microbenchmark is instrumented by 

inserting initialization code that sets up PAPI to monitor the specific target event. Also, 

PAPI calls to start and stop the counters are inserted to delineate that portion of the 

benchmark that is under study. For example, the area of interest may exclude 

initialization code or code that does not stress the event under study in an easily traceable 

manner. The generic validation microbenchmark designed to stress the part of the 

microarchitecture or memory hierarchy associated with the event under study is 
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customized to generate an expected count, also called a predicted count. Each version of 

the microbenchmark is considered a test case, where each test case is identified by its 

predicted count. A test case is executed 100 times to get an average test-case count, 

which is used in the analysis phase of the validation process. Using an average takes into 

account the variability of the reported counts. In order to monitor the stability of the 

average test-case count, the standard deviation of each of the 100 instances of a test case 

is computed and test cases with large standard deviations are the targets of further study. 

A script, as opposed to wrapping the microbenchmark in a for-loop, is used to run a 

sequence of 100 instances of a test case. Wrapping a validation microbenchmark in a for-

loop would cause reuse of benchmark and PAPI data as well as instructions and, 

consequently, could eliminate or introduce some events that otherwise would not be. 

Finally, a test suite, which is a collection of test cases for a single event, is used to study 

the behavior of the platform as the granularity of the test case increases, i.e., as the 

predicted number of events generated by the sequence of test cases increases. In general, 

the test suites are comprised of test cases that are expected to generate from 1 to 

1,000,000 instances of the event under study. For some events, due to platform 

limitations or benchmark design, a smaller test suite is used. 

2.3 Predicted vs. hardware-reported event counts 

Once the data collection phase has been completed, the average tests-case counts are 

compared against the predicted counts. A percentage difference is computed for such a 

purpose using the formula given in Figure 1. A positive percentage difference indicates 

that the hardware-reported counts tend to be larger than the predicted counts. A negative 
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percentage difference indicates the opposite. The absolute value of the percentage 

difference is used to graph the results.  

% difference = (Reported Count – Predicted Count) / Predicted Count 

Figure 1. Predicted vs. hardware-reported count comparison formula. 

Analyzing the percentage difference across a test suite is necessary to categorize the 

error. As mentioned in the introductory section, the error categories proposed by [4] are 

used. Understanding the nature of the error is essential to providing information that 

might explain its source and, thus, aid application developers in using the event count to 

tune the performance of their codes. For example, a constant difference of zero is the 

ideal situation, where the expected counts are exactly the same as the hardware-reported 

counts. This situation would indicate that the counter interface does not introduce 

overhead to the count, the hardware is monitoring what is expected, and the hardware is 

behaving as is expected. On the other hand, a percentage difference that starts out large 

for small test cases and approaches zero as the test cases get larger indicates that there is 

an “overhead” or “bias” type of error, which may possibly be due to the PAPI interface. 



 
 

  11 

Chapter 3  

STUDIED PLATFORMS 

Three platforms were used in this study:  

1. SGI’s MIPS R10000,  

2. IBM’s Power3, and  

3. Intel’s Itanium.  

These platforms were chosen because of their interest to the Department of Defense, 

which indirectly funds this research. Not all of these platforms support all the events 

under study. All three platforms where used to study the DTLB miss event discussed in 

Section 4.1. Only the MIPS R10000 platform was used for the other six events under 

study; this is because of the local availability of a SGI Origin 2000, the processors of 

which are R10000s. Both the Power3 platform and the Itanium platform used in this 

study are uniprocessor machines. The architectural characteristics of each platform, 

applicable to the events under study, are given in the following sections as described in 

their respective documentation [7], [8], [9], [10] and [11]. 

3.1 Platform A: MIPS R10000 (SGI Origin 2000) 

The SGI Origin 2000 multiprocessor machine used in this study is comprised of 

eight MIPS R10000 processors, revision 2.6, each of which runs at 180 MHz. This 

processor has a two-way set associative, 32K byte (32KB) L1 data cache (Dcache) with a 

32-byte line size and a two-way set associative, 32KB L1 instruction cache (Icache) with 

a 64-byte line size. The 1MB L2 cache is unified and is off chip; it is two-way set 
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associative and its line size is 128 bytes. Both the L1 and L2 caches have a least recently 

used (LRU) replacement policy. The TLB, which is suspected to be unified, has 64 

entries and is fully associative. Page size support ranges from 4KB to 16MB, increasing 

in powers of 4. The platform implements a directory-based cache coherency protocol, 

where coherency is kept at the L2 cache level (i.e., inclusion is maintained between the 

L1 and L2 caches of each processor). There are two processors per node and the nodes 

are connected through routers. The 2GB of main memory is uniformly distributed across 

nodes. Figure 2 shows the general configuration of the platform as well as the hardware 

used to implement the directory-based protocol. 

 

(a) 

 

(b) 

(a) Shows the distribution of processors and memory in the SGI Origin 2000 
multiprocessor. Each node contains two processors with 512MB of main memory. The 
processors are connected through hubs and the hubs are interconnected through routers. 
(b) Illustrates the hardware used to implement Origin 2000’s directory-based cache 
coherency protocol.  

Figure 2. Configuration of the SGI Origin 2000 multiprocessor. 
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The operating system for this platform is the IRIX 6.5; it supports the set of system 

calls described in Table 1 that facilitate shared-memory parallel programming. These 

system calls are used in the microbenchmarks and are associated with events (i.e., all the 

events studied in this thesis except data TLB misses) that occur in a shared-memory 

multiprocessor environment. The benchmarks were compiled by the gcc compiler, 

version 2.95.2, release 19991024. Finally, the platform includes two 32-bit performance 

counters. Each counter can monitor one event at a time and there is a choice of 16 

different events for each. Refer to [8] for a list and description of each. 

Table 1. Native R10000 instructions for shared-memory parallel programming. 

Instruction Description 

m_set_procs Sets the number of processes to be forked when 
m_fork() is called. Parent process is included in 
count. 

m_fork Creates n-1 processes that execute a function in 
parallel with the calling process. 

m_sync Synchronizes all executing threads at the m_sync-
defined point in the code. A thread busy waits until 
all other threads call the m_sync function, at which 
point all threads resume after the m_sync call. 

m_get_myid Returns the thread identifier, which ranges from 
zero to n-1. 

sysmp (MP_MUSTRUN, 
proc_num) 

Provides control and/or information for 
miscellaneous system services. The 
MP_MUSTRUN command assigns the calling 
process to execute on the processor specified by 
proc_num. 

 



 

 

14 

3.2 Platform B: IBM Power3 

This platform is a uniprocessor that uses an IBM Power3 running at 200 MHz. The 

processor has a 128-way set-associative, 64KB L1 Dcache with a 128-byte line size and a 

128-way set associative, 32KB L1 Icache with a128-byte line size. The L2 cache is off 

chip; it is a direct-mapped 4MB cache with 128-byte line size. The TLB, which is 

suspected to be unified, is 2-way set associative with 256 entries and an LRU 

replacement policy. One page size, 4 KB, is supported. The operating system is AIX 4.3. 

The microbenchmarks were compiled using gcc version 2.7.2.3. The processor includes 

eight counters that support over 100 events.  

3.3 Platform C: Intel Itanium 

This platform is a uniprocessor that uses an Intel Itanium processor running at 733 

MHz. The processor has a 4-way set-associative, 16KB L1 Dcache with a 32-byte line 

size and an L1 Icache with the same configuration. The 96KB L2 cache is unified; it is 6-

way set-associative with a line size of 64 bytes. This platform contains a fully-associative 

ITLB with 64 entries and two levels of DTLBs, both fully-associative. The L1 DTLB has 

32 entries and the L2 DTLB has 96 entries. The supported page sizes are: 4 KB, 16 KB, 

64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB. The operating system is 

Linux 2.4.18. The benchmarks were compiled using gcc version 2.96, release 20000731 

for Red Hat Linux 7.1 2.96-101. The platform includes four 32-bit counters that support 

150 events. Refer to [10] for details about the events supported. 
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Chapter 4  

TARGET EVENTS 

The events under study, as described by the PAPI website [12], are shown in Table 

2. The table denotes the PAPI-assigned name for each event, its PAPI-assigned number, 

and the description of the event. The PAPI event name or its number is used to setup 

PAPI to monitor the event. Appendix A shows the PAPI setup code that was used to 

instrument the validation microbenchmarks.  

Table 2. Description of PAPI events under study. 

PAPI name PAPI number Description 

PAPI_TLB_TL 0x80000016 Total TLB misses 

PAPI_TLB_DM 0x80000014 Data TLB misses 

PAPI_L1_DCM 0x80000000 L1 data cache misses 

PAPI_L2_DCM 0x80000002 L2 data cache misses 

PAPI_CA_ITV 0x8000000d Requests for a cache line intervention 

PAPI_CA_INV 0x8000000c Requests for a cache line invalidation 

PAPI_CA_SHR 0x8000000a Requests for exclusive access to a 
shared cache line 

PAPI_CA_CLN 0x8000000b Requests for exclusive access to a clean 
cache line 

 

These events were chosen because of their association with the performance of the 

memory hierarchy, which usually defines the critical path in the overall performance of 
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an application. Furthermore, these events are primarily related to data references (as 

opposed to instruction references). The focus on data references was chosen because, in 

general, they exhibit poorer locality than instruction references (especially on high-

performance computing applications where optimizing compilers play an essential role in 

pipelining and scheduling instructions). Therefore, analysis of these events usually has a 

higher payoff in terms of performance than analysis of those related to instruction 

references. In the case where an event is applicable to both data and instruction 

references, as in the case of the total TLB miss event described in Section 4.1, the event 

is studied with respect to data references only (instruction references are kept to a 

minimum). 

Another aspect of the memory hierarchy addressed by this set of events is the cache 

coherency problem. As defined by [13], the cache coherency problem arises when there 

are multiple writing units that have access to data that is replicated across multiple levels 

in the memory hierarchy. For example, in a uniprocessor, an I/O device can be reading 

main memory while the processor is writing the L1 data cache. If the cache is a write-

back cache, then this situation can lead to data inconsistency and the I/O device reading 

stale data. In the case of a shared-memory multiprocessor, application performance may 

depend on the cache-coherency protocol, i.e., the protocol used to maintain the 

consistency of shared data (data shared by multiple processors). By far the most popular 

cache coherency protocols are of the type write-invalidate, which are implemented by 

associating a cache state with each cache line. The protocol ensures that a cache line is 

resident in only one cache, the cache of the owner processor, when it is being written, and 
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that a cache line can be resident in the caches of multiple processors only when it is being 

read. In the simplest protocol, the states are uncached, shared, and exclusive. The 

protocol defines the process that must be followed to change state and, thus, to ensure 

that writes are processed sequentially and that reads observe the most up-to-date version 

of a word. A line is in the uncached state when it is not contained in the cache of any 

processor. The shared state refers to a line that is included in the cache of more than one 

processor. While in this state, a cache line is read-only, i.e., it cannot be modified. Lastly, 

the exclusive state refers to a cache line that is resident only in the cache of a single 

processor; while in this state, the cache line can be read and written only by this 

processor, the owner. Note that a transition to the exclusive state may requires 

invalidation of cache-resident copies of the requested cache line; this is why the protocol 

is referred to as a write-invalidate protocol. The last four events of Table 2 are related to 

cache coherency protocols. These events are studied, in turn, in Sections 4.4 – 4.7, where 

relevant details of cache coherency protocols are discussed. 

Probably the greatest challenge in validating events related to data memory 

references is dealing with prefetching. Nowadays, modern platforms use prefetching 

techniques to hide access latencies across the memory hierarchy in order to improve 

performance. Prefetching mechanisms provide the logic necessary to fetch data and/or 

instructions from the lower levels of memory before they are actually used so that they 

can be readily available by the time they are accessed by the processor. For example, [14] 

discusses a prefetching technique called stream buffers. In its simplest form, the 

technique consists of the prefetching of consecutive lines of data starting at a cache miss 
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address. The prefetched data is placed in a buffer. As it is needed, it is fed into the cache 

in FIFO order. Placing the prefetched data in the buffer instead of in the cache avoids 

polluting the cache with data that may never be needed. Accesses to the cache 

concurrently access the stream buffer as well. If a data reference misses in the cache but 

hits in the buffer, the cache can be reloaded in a single cycle from the stream buffer. 

Prefetching techniques are most beneficial when memory references exhibit a well-

defined pattern of access, e.g., a sequence of accesses at a constant stride. Furthermore, in 

the case of the cache miss event, some performance counter implementations may not 

trigger the event if a cache miss is satisfied by a prefetching mechanism [6]. Prefetching 

techniques are usually employed in the memory hierarchy levels closest to the processor 

(i.e., L1 and L2 caches) because this is where they provide the greatest impact.  

As described in Sections 4.2and 4.3, due to complexities associated with cache 

coherency, shared data is not prefetched. This realization permits a straight-forward 

validation of the L1 and L2 data cache miss events, which on a uniprocessor was not 

possible. Although prefetching does not appear to be commonplace w.r.t. TLBs, the 

possibility is not disregarded, and in Section 4.1 prefetching is considered in the 

discussion of the results for the data TLB miss event. 

4.1 Data TLB miss event 

In general, the data translation lookaside buffer (DTLB) miss event indicates that a 

virtual page that stores data was referenced and that its virtual-to-physical page mapping, 

i.e., its mapping to a corresponding physical page (or frame), is not resident in the DTLB. 

In general, this happens when a virtual page is accessed for the first time (a compulsory 
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miss) or when the TLB entry for a previously-referenced page has been replaced by that 

of another page (a capacity and/or conflict miss). Some platforms have separate TLBs for 

data and instructions and others have a unified TLB, which stores translations for both 

pages containing instructions and pages containing data. The events associated with 

TLBs vary among platforms. In the case of the platforms used in this study (refer to 

Chapter 3 for descriptions of these platforms), platforms A and B, which are based on the 

R10000 and the Power3 processors support only a total TLB miss event, i.e., given that 

they have a unified TLB (or at least it is suspected so based on the platform 

documentation), only a unified count is implemented. Platform C, based on the Itanium 

processor, which has an ITLB and two levels of DTLBs, supports separate events for 

DTLB misses and ITLB misses. It is not clear from the documentation if the DTLB miss 

event count accounts for only L1 DTLB misses or both L1 and L2 DTLB misses. Note 

there are no other PAPI-supported TLB-related events for this platform. 

4.1.1 Validation microbenchmark  

The validation microbenchmark for DTLB misses consists of code that executes one 

traversal of an array, accessing the array at regular page-sized strides. The array resides in 

multiple pages and the traversal generates a predictable number of compulsory DTLB 

misses. By focusing on compulsory misses only, the intrinsic features of the TLB (e.g., 

replacement policy and associativity) do not affect the resulting count. Furthermore, the 

portability of the benchmark is improved by not considering the platform-specific 

features of the TLB. Figure 3 shows the basic algorithm of the benchmark. 
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stride = PAGE_SIZE; 

for (i=START_INDEX; i<MAX; i+=stride) {  

     zz[i] = X_VALUE; 

} 

Figure 3. DTLB miss benchmark algorithm. 

Three key pieces of information are needed to predict the DTLB miss count 

generated:  

1. size of the pages that store the array, 

2. identification of the location of the first byte of a page frame with respect to the 

beginning of the array data structure, and 

3. the size of the array.  

The page size and the stride with which the array is accessed determine the rate at 

which the benchmark generates DTLB misses. The identification of the first byte of a 

page frame is needed to perfect the prediction of total DTLB misses generated. The 

START_INDEX value in the algorithm above determines whether or not the first array 

reference maps to a previously unreferenced page. Setting START_INDEX so that the 

first array reference does map to the next unreferenced page causes references made at a 

stride equal to the page size to generate n compulsory DTLB misses, where n is the 

number of pages touched. Lastly, increasing the MAX value in the algorithm increases 

the number of pages of the array touched, thus increasing the expected count. The 

expected count is given by the number of executed for-loop iterations. The number of 
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instructions in the benchmark is small and does not significantly affect the event count 

associated with unified TLBs. 

4.1.2 Acquiring parameters for the validation microbenchmark 

As mentioned above, three pieces of information are needed to predict DTLB misses 

for the validation benchmark: page size, starting index, and array size. While the latter 

can be controlled by the user, the other two parameters may not be trivial to ascertain. 

Most modern platforms concurrently support multiple page sizes. For example, the 

Itanium documentation indicates support for the following page sizes: 4KB, 8KB, 16KB, 

64KB, 256KB, 1MB, 4MB, 16MB, 64MB and 256MB [6]. However, documentation as 

to how a page size is selected is much more obscure and may even be OS-dependent. 

Furthermore, a starting index that guarantees a reference to the first word in the next 

unreferenced page is dependent upon the page size and compiler used (i.e., the prologue 

and epilogue sections of the executable file may include additional variables and 

constants that could offset the page to which the array maps). 

To identify the page size used to store the array, several techniques are used. The 

first is a configuration microbenchmark based on Saavedra’s methodology [15]. This 

microbenchmark accesses an array using a stride that is increased between iterations and 

records average read/write reference times. Several memory hierarchy characteristics, 

including data cache line size and associativity, page size, DTLB associativity and 

reachability, as well as corresponding latencies, can be deduced from graphing the 

average reference times. However, because of the increased efficiency with which some 

of the newer platforms hide memory hierarchy latencies, the results obtained are not 
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always easily understood. Figure 4 shows the results obtained for the MIPS R10K and the 

Itanium platforms. 

Saavedra's Benchmark (R10K)
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Saavedra's Benchmark (Itanium)
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Figure 4. Saavedra’s benchmark results for the R10000 and the Itanium platforms. 

According to Saavedra’s methodology, the page size can be deduced from these 

graphs by noticing the following. Let b be the size of the page and s the size of the stride 

at which the array is being referenced. If the array is large enough to fill up the DTLB 

and s is chosen so that it is smaller than the page size, then there will be b/s consecutive 

accesses to the same page and only the first one will generate a miss. The average 

reference time will reach its maximum when the stride is equal to the page size, i.e., 

b/s=1. An analogous argument is used to figure out the line sizes of the different levels of 

cache, with some overlapping effects happening in some regions. Isolation for a 

particular element of the memory hierarchy should be straightforward, given the 

difference in latencies. For the MIPS R10000 (R10K) platform, Figure 4 shows that the 

average reference time has its highest point at a stride of 32KB, which indicates a 

believable value for a page size. However, on the Itanium platform, this point occurs at a 
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stride of 64 bytes, which seems more like a cache line size. TLB behavior does not seem 

to be reflected in this graph. 

The second technique used to identify the page size is a configuration 

microbenchmark, which also identifies the starting index to be used to cause the first 

array reference to map to the next unreferenced page. The benchmark is based on the 

assumption that a process’ address space has a structure similar to that shown in Figure 5. 

The exact format of the address space depends on the specific platform, with some 

platforms including additional segments (e.g., header segments and shared-memory 

segments). The benchmark focuses on the data segment. It is assumed that 

constants/variables used in the benchmark are allocated space in the data segment in the 

following order: constant values at the beginning, followed by initialized variables, and 

dynamically allocated variables towards the end of the segment to facilitate growth. 

Furthermore, it is assumed that the order of variable declarations in the program and size 

of variables has an impact on the storage locations of the variables in the data segment.  

 

Figure 5. Storage of a process in memory. 

The first objective of the benchmark is to force the array data structure, which is the 

focus of the validation benchmark, to be allocated last in the data segment. Figure 6 

illustrates this idea. The second objective is to identify the smallest array index that will 

map to a frame that is entirely occupied by the array (i.e, the array index that maps to the 
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beginning of Frame 2 in Figure 6). The first objective is achieved by having the array as 

the only dynamically allocated variable in the benchmark and by declaring it last in the 

program sequence. Furthermore, since the array will be by far the largest data structure in 

the benchmark (i.e., it needs to occupy multiple pages in order to be useful in validating 

DTLB miss events), the assumption of placement according to variable size is also 

favored. Thus, the compiler should allocate space for the array towards the end of the 

data segment.  

 

Figure 6. Distribution of variables in the data segment. 

Initially the benchmark uses a hypothetical page size (based on Saavedra’s results 

and/or platform documentation) to traverse the array, referencing the first and last array 

elements of every other page-sized region. The page-sized regions are defined by an 

offset or “padding” from the starting address of the array. Via PAPI, the number of 

generated DTLB misses is recorded. Successive variations of the benchmark use larger 

offsets and different page-size values. Figure 7 shows the basic algorithm for this 

benchmark, called the “padding” benchmark. 
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stride = PAGE_SIZE * 2; 

for (i=START_INDEX; i<MAX; i+=stride) {  

     zz[i] = X_VALUE;     // 1st element on a page range 

     zz[i+PAGE_SIZE-1] = X_VALUE;     // Last element 

} 

Figure 7. Padding benchmark algorithm. 

The DTLB miss counts reported for each variation of the benchmark identify the 

page-size and offset that forces aligned references in the validation benchmark, i.e., the 

page size and offset that produces a single DTLB miss for each pair of references. If pairs 

of references are not aligned, each pair will necessarily map to consecutive page frames 

and produce two misses. Figure 8 shows the results, for three different platforms, of 

executing the “padding benchmark” for 100 pairs of references that traverse the array. On 

the MIPS R10K, when using a 32KB page size, the recorded TLB miss count for all 

offsets except 28,012 bytes is approximately 200; for an offset of 28,012 bytes, the count 

drops to approximately half this amount, identifying START_INDEX for the validation 

benchmark. On the Power3, when using a 4KB page size, the recorded TLB miss count is 

200 for all offsets except 2,260 bytes, at which point it drops by half this amount. Finally, 

on the Itanium, when using a 16KB page size, the recorded TLB miss count for all offsets 

except 16,364 bytes is approximately 200, dropping to half this amount for the offset of 

16,364.  
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Padding Benchmark (Power3)
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Padding Benchmark (Itanium)
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Figure 8. Padding benchmark results for 100 iterations. 

4.1.3 Data collection 

As mentioned in Section 2.2, the data collection process includes running 100 

instances of each test case in a test suite and obtaining the average test-case count for 

each test case. The test suite used for the DTLB miss event includes test cases that are 

expected to generate from 1 to 10,000 DTLB misses, increasing in powers of 10. 

Attempts to include larger test cases (i.e., ones that produce more than 10,000 

compulsory DTLB misses) resulted in segmentation faults on the platforms under study. 

This could be because either the array size exceeds the size of the defined virtual space of 

a process or some other system limitation was exceeded, (e.g., allocated user space).  

4.1.4 Predicted vs. hardware-reported event counts 

Validation of DTLB misses was performed for the experimental platforms A, B, and 

C, i.e., platforms (described in Chapter 3) based on the MIPS R10K, IBM Power3, and 

Intel Itanium processors. As mentioned before, the R10K and Power3 only support an 

event that counts both instruction and data TLB misses, while the Itanium supports events 

that count instruction and data TLB misses. Figure 9 presents a comparison of the 

predicted and hardware-reported DTLB miss event counts for the three platforms. In this 

graph, the y-axis represents the percentage difference between the reported and predicted 
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counts, and the x-axis represents the corresponding test case. Refer to Appendix B for the 

hardware-reported data. 
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Figure 9. DTLB miss validation benchmark results. 

For the MIPS R10K platform (platform A) the differences between predicted and 

reported counts range between 3% and 9%, the predicted being lower than the reported. 

At least part of the difference is likely attributable to overhead introduced by PAPI and to 

the fact that the monitored event reports a unified count of instruction and data TLB 

misses, although ITLB misses for the monitored section of code should be insignificant. 

For the Power3 platform (platform B) the differences between predicted and reported 

counts start high for test cases with small numbers of data references, but tend to 0% as 

the number of data references increase. The hardware reports a consistent count of three 
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for the test case of one data reference, which results in the large percentage difference. 

The larger difference for tests cases with small numbers of references may be attributable 

in part to the fact that the Power3, like the MIPS R10K, supports only an event that 

counts both instruction and data TLB misses. 

The Itanium platform (platform C) reported the best results. The worst test case 

exhibits a percentage difference of 3%. However, the hardware-reported data tends to 

reveal a consistent difference of 0% from the predicted, even for small numbers of data 

references. The stability of the results reported by this platform may be explained by the 

fact that this particular platform supports a DTLB miss count (i.e., it is not a unified 

count, as in the case of the other two platforms) and as a result, ITLB miss counts are not 

a factor. 

Finally, another observation that can be made from these findings is that data 

prefetching mechanisms are not employed on any of these platforms at the DTLB level. 

This is because 1) the reported counts tend to be larger than the predicted; successful 

prefetching would have reduced the hardware-reported miss count, i.e., would have 

masked some of the predicted TLB misses, and 2) the percentage difference remains 

constant across the test suite or tends to zero; prefetching would have caused the 

percentage difference to continuously increase as test cases accessed more pages and 

prefetching masked more expected TLB misses. 

4.2 L1 data cache miss event 

In general, the L1 data cache (Dcache) miss event indicates that a cache line 

containing data (as opposed to instructions) has been requested by the processor and is 
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not resident in the cache. This happens when a previously unreferenced data cache line is 

accessed for the first time (a compulsory miss) or when a previously referenced line has 

been replaced by another (a capacity and/or conflict miss). Cache misses also can occur 

as a result of cache invalidations generated to maintain cache coherency in a shared-

memory multiprocessor system (refer to Sections 4.4, 4.5, 4.6and 4.7 for related events).  

Modern pipelined architectures execute multiple instructions concurrently. To 

facilitate the overlapping of instruction and data fetches, most of these platforms support 

separate L1 caches for instructions and data. Such is the case for the target platforms, in 

particular platform A, the MIPS R10K (refer to Section 3.1 for a detailed description). 

Furthermore, most platforms, including the R10K, also support the monitoring of a 

separate event for each of its L1 cache misses. The definition of this event, as described 

in the documentation of the R10K, is the following: 

Primary data cache misses: 

This counter is incremented one cycle after a request to refill a line of the primary 

data cache is entered into the secondary cache transaction processing logic. [8] 

This definition seems to indicate that the L1 Dcache miss event is not triggered until 

the miss generates a request to the L2 cache. 

4.2.1 Validation microbenchmark 

Several attempts were made to predict the L1 Dcache miss event count. All of them 

are based on the validation microbenchmark presented in its most basic form in Figure 

10. When executed, it traverses the array zz, which is stored in multiple memory blocks. 

The array is accessed at regular strides, where the stride is a multiple of the size of an L1 
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Dcache line. The goal is to produce a compulsory L1 Dcache miss per array access and to 

produce very few other L1 Dcache misses. Achieving this goal would allow a reasonably 

accurate prediction of the number of L1 Dcache miss events generated during the 

execution of the benchmark.  

stride = L1_LINE_SIZE; 

for (i=START_INDEX; i<MAX; i+=stride) {  

     temp += zz[i]; 

} 

Figure 10. L1 Dcache miss benchmark algorithm. 

The basic L1 Dcache microbenchmark was unsuccessful in reaching this goal due to 

lack of knowledge of extremely efficient prefetching mechanisms implemented in 

modern microprocessors [6]. These prefetch mechanisms hide memory access latencies, 

especially with respect to memory-hierarchy levels closer to the processor, e.g., at the L1 

and L2 cache levels. Execution of this microbenchmark on microprocessors with stream 

buffers [14] or other prefetching mechanisms resulted in hardware-reported miss counts 

that were significantly lower than predicted counts, approaching zero as the number of 

array references increased [3]. Since information about the prefetching mechanisms used 

by processor designers was not readily available, another strategy was employed, i.e., try 

to foil the prefetch mechanism [6]. A microbenchmark was designed that randomly 

accesses the array. In this case, to predict a count, the memory-access trace was captured 

and fed into a cache simulator configured without prefetching and with an LRU cache 
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replacement policy. According to the cross-platform results reported, hardware-reported 

counts fall within 10% of predicted counts once the array size supercedes the cache size. 

This thesis presents a different attempt at foiling the prefetch mechanism. In this 

case, an event count can be predicted without cache simulations and, thus, can be more 

accurate since a simulator may not capture all of the details of the hardware. The related 

L1 Dcache microbenchmark, shown in Figure 11, foils prefetching through the use of 

shared memory accessed by two processors concurrently executing the benchmark in a 

multiprocessor. It was hypothesized that prefetching mechanisms are not employed when 

using shared memory because of the need to maintain cache coherency among processors 

and because of the performance penalties associated with prefetching data that is being 

used by another processor; as discussed below, the hypothesis was proven to be correct.  

As with the benchmarks discussed above, since only compulsory misses are generated, no 

assumptions or knowledge about the cache replacement policy or configuration are 

required to make a prediction, and cache pollution due to other concurrently executing 

processes is not an issue. 

The shared-memory benchmark is derived from the benchmark of Figure 10 by 

placing the array in shared memory and having two processes, each running on separate 

processors, traverse the array and generate the compulsory misses. The array is divided 

equally between the two processors. During the first phase of execution each process 

initializes one half of the array; during the second phase, the half initialized by one 

process is traversed by the other. For the R10K platform used, process execution on 
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separate processors was ensured by means of the sysmp system call, which is described in 

Table 1 of Section 3.1. 

stride = L1_LINE_SIZE; 

HALF_SIZE = ARRAY_SIZE / 2 

// Phase 1 

// Process 0 has OFFSET == 0, Process 1 has OFFSET == HALF_SIZE; 

for (i = 0; i < HALF_SIZE; i += stride) { 

      zz[i+OFFSET] = 0; // Initialize array 

} 

// Phase 2 

// Process 0 has OFFSET == HALF_SIZE, Process 1 has OFFSET == 0; 

for (i = 0; i< HALF_SIZE; i += stride) { 

      temp += zz[i+OFFSET]; 

} 

Figure 11. Shared-memory L1 Dcache miss benchmark algorithm. 

The first phase of the benchmark accomplishes two things: 1) initializes (writes) the 

array so that the read instructions of the second phase are not removed during compile 

optimization and 2) guarantees that each half of the array is exclusively owned by the 

cache of the initializing processor. Note that only array elements that map into the stride 

need to be initialized. Array elements in between stride elements are not accessed. They 

are brought into the cache on cache misses generated by an access to a stride element. 
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Phase two of the benchmark causes each process to traverse, at regular strides, the 

half of the array initialized by the other processor. Each reference to the array during the 

second phase produces a compulsory cache miss. It should be noted that a barrier is 

needed between phases in order to ensure that both processes are synchronized when they 

start executing the second phase. If synchronization is not enforced between phases, a 

process could potentially start referencing elements that have not been initialized. The 

predicted event count is equal to the number of for-loop iterations executed in this phase. 

4.2.2 Data Collection  

As mentioned in Section 2.2, the data collection process includes running test cases 

for 100 runs and obtaining the average test-case count. The test suite used for the L1 

Dcache miss event includes test cases that are expected to generate from 1 to 1,000,000 

array references and L1 Dcache misses. The counts generated by both processors are 

monitored separately; that is, one test case is executed to monitor the behavior of 

processor 0 and a second execution of the same test case is executed to monitor the 

behavior of processor 1. 

4.2.3 Predicted vs. hardware-reported event counts 

Figure 12 presents the predicted and hardware-reported L1 Dcache miss event counts 

for both processors involved in the execution of the benchmark. The y-axis represents the 

percentage difference between the hardware-reported counts and the predicted counts, 

and the x-axis represents the number of array references generated by the benchmark. 

Refer to Appendix B for the hardware-reported data. 
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Figure 12. L1 Dcache miss validation benchmark results. 

The results illustrate that the difference between predicted and reported counts is 

large for test cases with numbers of references below 10 but rapidly decreases and 

approaches zero as the number of references increases. A possible source for the 

discrepancy is the overhead introduced by PAPI, which is more notable in the smaller test 

cases. The benchmark is designed to generate compulsory misses due to array accesses. 

Thus, cache pollution due to other processes should not affect the count. Furthermore, 

PAPI segregates between the misses generated on behalf of the benchmark process and 

other processes executing concurrently. However, PAPI data (i.e., variables and constants 

set and used by the PAPI interface) referenced by the benchmark via PAPI start and stop 

calls and PAPI housekeeping routines (refer to Appendix A for description) can be 

susceptible to cache pollution from other processes and from the execution of the 
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benchmark itself. This may be the cause of some of the misses included in the hardware-

reported counts. In addition, the fact that the standard deviation of the experiments 

remains fairly constant (below three for both processors for all test cases) supports the 

idea that the overhead introduced by PAPI is the predominant source for deviation, as 

opposed to other external factors such as kernel processes or other processes in the 

processor’s workload. Refer to Appendix B for the hardware-reported data. The latter 

could cause additional cache misses but their affect would vary depending upon their 

level of perturbation for each run. Finally, a standard deviation value of below three may 

be good for test cases with a number of references of 100 and above, but may not be 

reliable enough for test cases with fewer references. In other words, the granularity of the 

monitored code executed when test cases are below 100 data references is not sufficient 

for PAPI to provide a reliable count. 

Figure 12 also shows a difference between the hardware-reported event counts of the 

two processors. This may be due to the variations in the workload of each processor and 

the resultant perturbation caused by other processes. For example, if kernel processes 

generally run on processor 0 and shorter-running, user processes mainly run on processor 

1, then the longer-running kernel processes (i.e., processes, such as daemons, that 

repeatedly execute in the background for longer periods) may cause a greater perturbation 

on processor 0. However, this type of perturbation should be insignificant, especially 

w.r.t. variations of the benchmark that generate large numbers of references. The results 

seem to concur with this hypothesis, given that the gap separating the graphs associated 

with the two processors approaches zero as the number of references increases. 
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4.3 L2 data cache miss event 

The L2 Dcache miss event is similar to the L1 Dcache miss described in Section 4.2. 

However, in the case of the L2 cache, some platforms implement separate L2 caches for 

data and instructions and others implement a unified L2 cache, as is the case in the R10K 

platform (i.e., platform A described in Section 3.1), which is used to validate this event.  

Nonetheless, this platform does support separate events for L2 Icache misses and L2 

Dcache misses. The definition of the L2 Dcache miss event is described in the 

documentation of the R10K as: 

Secondary data cache misses: 

This counter is incremented the cycle after the second quadword of a data cache line 

is written from the main memory, while the secondary cache refill continues. [8] 

This definition indicates that the event is triggered while the data request that missed 

on the L2 cache is being satisfied by main memory. It also indicates that the cache is 

refilled by a quad-word at a time. Thus, eight transactions are needed to load the 128-byte 

line of the L2 cache. 

The method used to predict and collect hardware-reported L2 Dcache miss event 

counts mirrors that used to for the L1 Dcache miss event. The L2 Dcache miss validation 

microbenchmark essentially is the same as its L1 Dcache counterpart (refer to Figure 11 

in the previous section). The only difference is that the L1_LINE_SIZE constant is 

replaced by the L2_LINE_SIZE constant. The test suite includes test cases that generate 

an expected count of L2 Dcache misses that range from 1 to 1,000,000. 
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4.3.1 Predicted vs. hardware-reported event counts 

Predicted and hardware-reported counts are presented in Figure 13, where the y-axis 

represents the percentage difference between the reported and predicted counts and the x-

axis represents the test cases, i.e., the number of data references or L2 Dcache misses 

generated by the test cases. Refer to Appendix B for the hardware-reported data. 
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Figure 13. L2 Dcache miss validation benchmark results. 

These results are similar to the results obtained for the L1 Dcache miss event. The 

discrepancy between predicted and hardware-reported counts is greater for smaller test 

cases and approaches zero as the number of data references increases. There is an 

important difference, however; the maximum discrepancy for small test cases is several 

orders of magnitude smaller than it is for the L1 Dcache miss event. This behavior is 

expected—it is due to the difference in the reachability of the different size cache lines. 
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In other words, assuming that PAPI data exhibits good locality of reference, the larger L2 

cache line size (128 bytes) should make the external perturbations shown in the previous 

figure less significant than they are for the L1 Dcache (with a line size of 32 bytes). 

4.4 Cache intervention request event 

On a multiprocessor system, the cache intervention event is related to the cache 

coherency family of events. The cache intervention event in a directory-based system 

occurs in the following scenario. Suppose a cache line is held exclusively at some 

processor’s cache -- this processor is considered the exclusive owner of the line. In this 

case, if the cache has a write-back policy and the line is dirty (i.e., it was modified while 

cache resident), then the main memory copy of the line is stale. When another processor 

generates a cache miss for the same line, the cache coherence unit ensures that the 

processor gets the up-to-date data by requesting a write-back from the owner processor’s 

cache, which subsequently is sent to the requesting processor. This is called an 

intervention request to the owner cache [13]. A large number of intervention requests 

indicates that processors frequently are reading the same data (or data that coincidently 

maps to the same cache line) that other processors are modifying. Identifying such a 

producer-consumer situation and improving its performance by introducing 

synchronization of reads and writes or distributing the common data across multiple 

cache lines can reduce the number of intervention requests. Such corrective actions can 

alleviate the writing processors from having to reinstate exclusive access before rewriting 

the data and allowing the reading processors to retain read elements longer in their 

caches. 
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The platform used to validate this event is platform A, the R10K platform described 

in Section 3.1, which implements a directory-based cache coherency protocol at the L2 

cache level. The platform documentation describes the cache intervention request event 

as follows: 

External intervention requests: 

This counter is incremented on the cycle after an external intervention request enters 

the secondary cache transaction processing logic. [8] 

This indicates that the event is triggered as soon as the intervention request is 

received by the logic of the targeted cache and not after it has been satisfied. It should be 

noted that even though this work is focusing on data references, since the R10K L2 cache 

is unified, this event potentially can be triggered by both data and instruction references. 

However, since instruction cache lines are hardly ever modified (i.e., self-modifying code 

is not common), the probability of instruction references triggering this event is near 

zero. 

4.4.1 Validation microbenchmark 

In order to validate the count for the cache intervention request event, a 

microbenchmark that involves two concurrently executing processes is employed. Each 

process runs on different processors, processors 0 and 1, and both processes traverse a 

shared array. During the first phase of the benchmark, processor 0 initializes the array 

and, as a result, its cache exclusively owns the array. During the second phase, processor 

1 reads the array, generating cache intervention requests to the cache of processor 0, 

which is the monitored processor. The basic benchmark follows in Figure 14. 
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stride = LINE_SIZE; 

// Phase 1 

// Process 0 initializes array, exclusively owned in its cache, Process 1 sets counter 

if (myid == 0) { 

     for (i = 0; i < ARRAY_SIZE; i += stride) 

          zz[i] = 0; 

} 

else  

     counter = 0; 

// Phase 2 

// Processor 1 traverses initialized array, causing interventions on Processor 0. 

// Processor 0 busy-waits until Processor 1 finishes traversal. 

if (myid == 0) { 

     while (counter < NUM_ITER); 

} 

else { 

     for (i = 0; i < ARRAY_SIZE; i += stride) { 

          zz[i] = 0; 

     counter++; 

} 

Figure 14. Cache intervention requests benchmark algorithm. 
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The array traversal by both processes is made with a stride of a cache line size. 

Additional references to the same line will not cause additional interventions. Notice that 

the shared variable, counter, which causes processor 0 to busy-wait while processor 1 

generates intervention requests to processor 0, is accessed by both processors, but is 

modified only by processor 1. Since only processor 0 is monitored for cache intervention 

requests, the intervention requests for processor 1 generated by processor 0 referencing 

the counter variable are not included in the hardware-reported count. Only the 

intervention requests for processor 0 generated by processor 1 writing the zz array are 

included in the reported count. Thus, the predicted event count is NUM_ITER, the 

number of elements of the zz array written by processor 1. However, the prediction will 

hold only as long as the array size does not surpass the cache size. If the array is larger 

than the cache size, the first cache lines accessed during phase one will be replaced by 

ones accessed later; by the time the execution of the second phase starts, only the 

elements that remain in the cache of the initializing processor will trigger the event. 

It also should be noted that a barrier is needed between phases in order to ensure that 

processor 1 does not start traversing the array before it has been completely initialized by 

processor 0; otherwise, the expected count could diverge from the predicted due to 

unsynchronized process execution. 

4.4.2 Data collection 

As mentioned in Section 2.2, the data collection process includes running test cases 

for 100 runs and obtaining the average test-case count. The test suite used for the cache 

intervention request event includes test cases that are expected to generate from 1 to 
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10,000 events of this kind, increasing by powers of 10. Including larger test cases is not 

productive because the array size must be smaller than the cache size. The R10K’s L2 

cache stores a total of 8192 cache lines. Two test cases greater than 8192 are included in 

the test suite to reaffirm the microbenchmark’s limitation on test case size. 

4.4.3 Predicted vs. hardware-reported event counts 

Figure 15 presents the cache line intervention event counts predicted and the event 

counts reported by the hardware; the y-axis represents the percentage difference between 

the reported count and the predicted count, and the x-axis represents the number of array 

references. Refer to Appendix B for the hardware-reported data. 
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Figure 15. Cache intervention requests validation benchmark results. 
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The results indicate that a small number of reported events are not included in the 

predicted counts. This small difference is more noticeable in small test cases, which 

reference few data cache lines. This could be due to cache pollution from other processes, 

which may replace array cache lines in the initializing processor before the other 

processor reads them. The difference starts to widen at about 4000 data references. Cache 

consistency is kept at the L2 cache level and the L2 cache size on the R10K is 1MB with 

a line size of 128 bytes. This means that the total number of L2 cache lines is 8192; 

furthermore, the L2 cache is a unified cache, which means that some lines may store 

instructions. While it is not clear exactly how many lines hold data, the results indicate 

that the prediction holds until the cache is half full of data; after that point the prediction 

starts to decrease in accuracy. The platform documentation does not mention how cache 

lines are distributed among instructions and data at the unified L2 cache. Even assuming 

the cache lines are assigned in a first come first served basis, the number of cache lines 

assigned to data would still be difficult to ascertain due to external processes executing 

concurrently. 

4.5 Cache invalidation request event 

On a multiprocessor system, the cache invalidation event is related to the cache 

coherency family of events. By far, the most popular cache coherency protocol type is the 

write-invalidate. As described by [13], this method implements cache coherency by 

giving a processor exclusive access to a data item before writing to it. Exclusive access of 

a data item is achieved by defining its cache state as exclusive and invalidating copies 

resident in other processors’ caches on a write. The invalidation of these other copies 
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forces other reading processors or a writing processor to generate a cache miss and fetch 

a fresh copy when next accessing the cache line. In this case, a reading processor 

generates a read miss, which results in fetching the copy updated by the writing processor 

and changing the line’s state in both processors’ caches to shared. On the other hand, if 

the line is held in the exclusive state, then the processor generating the write miss (i.e., the 

“new” owner) causes the updated copy to be fetched from the “previous” owner and the 

line to be invalidate in the previous owner’s cache. Accordingly, write serialization is 

also enforced by the protocol.  

A cache line invalidation request occurs when a processor is signaled to invalidate 

one of its cache lines. This event can be helpful in identifying performance bottlenecks in 

multiprocessor applications due to ping-ponging (i.e., processors alternately invalidating 

each other’s cache lines). In this case performance can be improved by introducing 

synchronization of writes and distributing the common data across multiple cache lines. 

Such corrective actions can alleviate the writing processors from having to reinstate 

exclusive access before rewriting the data. 

The platform used to validate this event is the R10K platform described in Section 

3.1, which implements a directory-based cache coherency protocol at the L2 cache level. 

The platform documentation describes the cache invalidation request event as follows: 

External invalidation requests: 

This counter is incremented on the cycle after an external invalidate request enters 

the secondary cache transaction processing logic. [8] 
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This indicates that the event is triggered as soon as the invalidation request is 

received by the logic of the targeted cache and not after it has been satisfied. It should be 

noted that even though this work is focusing on data references, since the R10K L2 cache 

is unified, this event can potentially be triggered by both data and instruction references. 

However, since instruction cache lines are hardly ever modified (i.e., self-modifying code 

is not common), the probability of instruction references triggering this event is near 

zero. 

4.5.1 Validation microbenchmark 

The validation microbenchmark for this event involves two processes, each 

executing on separate processors. It forces the occurrence of ping-ponging between them. 

One processor, say processor 0, writes to a shared variable and requests exclusive access 

to the appropriate cache line. Next, processor 1 writes to the same shared variable and 

causes the invalidation of the line in the cache of processor 0. This sequence of events is 

repeated a determined number of times to generate a predicted count. The key factor in 

generating the intended event is the synchronization between the processors. Processor 0 

has to wait until its cache line is invalidated before attempting to write and invalidate the 

other processor’s cache line. If write serialization is not enforced in the benchmark, then 

the cache coherency protocol will enforce it, but the non-determinism resulting from this 

will complicate the analysis of the benchmark. Enforcing synchronization by means of 

barrier implementations available on the target platform (e.g., system calls or library 

calls) proved not to be ideal because it appears that the barrier causes an unpredictable 

number of invalidations or causes a process to block, which may affect the event count. A 
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predictable number of invalidations is generated by implementing the barriers in the 

benchmark itself. This was done by having one processor, say processor 0, busy wait 

until the other processor, say processor 1, writes the shared variable. Subsequently, 

processor 1 busy waits until the processor 0 writes. Busy waiting is implemented by 

having the processor repeatedly read the shared variable until the appropriate condition is 

satisfied, i.e., the other processor changes its value. Reading the shared variable does not 

cause invalidations in the writing processor’s cache and, as a result, busy waiting does 

not affect the event count. The basic benchmark follows in Figure 16. 

In the benchmark, each processor is assigned a constant value (e.g., processor 0 gets 

constant X and processor 1 gets constant Y) with which it sets the value of the shared 

variable and busy waits until the variable is modified. Execution of the writes and busy-

waits alternates between the processors. In order to enforce determinism in the alternation 

sequence, the shared variable should be initialized before either of the processes enters its 

for-loop. The initializing value should be the constant associated with the processor that 

is intended to execute the busy-wait instruction first. Initializing the shared variable to 

any other value potentially could create a race condition between the processes at the 

write instructions. This would have to be handled by the hardware and could introduce 

non-determinism with respect to generating the intended event. Only one processor is 

monitored at a time, and the predicted count is equal to the number of for-loop iterations 

executed; num_iter in the case of the benchmark of Figure 16. 
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// Shared variable initialized to constant Y 

s = Y;  

// Processor 0 invalidates Processor 1 cache line and busy waits 

if (myid==0) { 

     for (i=0; i<num_iter; i++) { 

          s = X; 

          while (s == X); 

     } 

// Processor 1 busy waits until processor 0 invalidates its line and then reciprocates 

} else { 

     for (i=0; i<num_iter; i++) { 

          while (s == Y); 

          s = Y; 

     } 

} 

Figure 16. Cache invalidation requests benchmark algorithm. 

4.5.2 Data collection 

As mentioned in Section 2.2, the data collection process consists of running test 

cases for 100 runs and obtaining the average test-case count. The test suite used for the 

cache invalidation request event includes test cases that are expected to generate from 1 

to 1,000,000 events of this kind. 



 

 

48 

4.5.3 Predicted vs. hardware-reported event counts 

Figure 17 presents the cache line invalidation request event counts predicted and the 

event counts reported by the hardware. The y-axis represents the percentage difference 

between the reported counts and the predicted counts, and the x-axis represents the 

number of cache line invalidation requests generated by the validation benchmark. Refer 

to Appendix B for the hardware-reported data. 
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Figure 17. Cache invalidation requests validation benchmark results. 

The results indicate that there is a small perturbation throughout the test cases that is 

more significant when the intended number of cache invalidation requests is small. In 

general, the percentage difference is positive, which indicates that the reported count is 

greater than or equal to the predicted count (refer to Section 2.3 for the percentage 
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difference formula used). The source of the additional invalidation requests could be due 

to write instructions executed speculatively and then discarded when a branch is 

mispredicted. There are two branch instructions in the benchmark: a conditional branch 

used to implement the for-loop and a conditional branch used to implement the busy-

wait. Although the for-loop branch instruction is expected to be predicted correctly most 

of the time, especially for larger test cases, the same cannot be expected for the busy-wait 

branch. This is because the number of times that the busy-wait branch instruction is 

executed varies from iteration to iteration: it depends on the behavior of the other 

process. Consequently, the number of times that the busy-wait branch instruction is 

consecutively resolved in the “taken” direction varies as well. This behavior could result 

in inefficient performance on behalf of the branch prediction mechanisms employed. 

Furthermore, the cache coherence protocol has to ensure exclusive access to data before a 

write instruction commits (i.e., the invalidation request has to be processed before the 

actual commit of data to a physical register or memory). Thus, if the processor 

architecture allows speculatively executed invalidation requests, the following situation 

could arise. A speculatively executed write instruction generates an invalidation request 

so that it can modify the targeted data. After the invalidation request is processed, the 

write resides in the reorder buffer awaiting the commit of a dependent branch instruction 

that is yet to be resolved. If the pending branch was mispredicted, an “extra” invalidation 

request event, not associated with an actual write, occurs. If this is the case, the hardware-

reported count could include speculatively-executed invalidation requests generated on 

behalf of discarded instructions.  
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Figure 18 shows the number of mispredicted branch instructions reported for the 

benchmark. The mispredicted branch event count was collected using PAPI, where both 

the request for cache invalidation and the mispredicted branch instruction events were 

monitored concurrently on each run. The x-axis represents the benchmark test case size 

and the y-axis represents the average of the reported event counts for branch 

mispredictions for 100 runs of each test case. The y-axis is in logarithmic scale to show 

the proportional increase w.r.t. test-case size. As the test-case size increases, so does the 

number of mispredicted branches. If the hypothesis of speculatively-executed 

invalidation requests is correct, as the number of mispredicted branches increases there is 

more potential for speculatively-executed invalidation requests to be generated.  
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Figure 18. Branch mispredictions on the cache invalidation requests benchmark. 
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4.6 Request for exclusive access to a shared cache line 

On a multiprocessor system, the request for exclusive access to a shared cache line 

event is part of the cache coherency protocol family of events. This event should be 

triggered when a processor attempts to write a cache line that is in the shared state. When 

this happens, the line is invalidated in the caches of all other processors in order to 

maintain cache coherency In the case of the R10K platform described in Section 3.1, the 

state of the cache line is set to dirty exclusive and is resident only in the cache of the 

writing processor, which is now considered the “owner” of the cache line. This event can 

be helpful in identifying performance bottlenecks in multiprocessor applications that are 

due to the ping-pong effect (i.e., processors alternatively invalidating each other’s cache 

lines). If identified, this effect could be eliminated by synchronizing the reads and writes 

of executing threads/processes or, in the case of false sharing (i.e., the case where 

different processors access different variables that map to the same cache line), by 

offsetting data to force references to different cache lines. 

This event is validated on the R10K platform, which implements a directory-based 

cache coherency protocol at the L2 cache level. The platform documentation describes 

the requests for exclusive access to a shared cache line as follows: 

Stores or prefetches with store hints to shared secondary cache blocks: 

This counter is incremented on the cycle after a request to change the shared state of 

the targeted secondary cache line to dirty exclusive is sent to the secondary cache 

transaction processing logic. [8] 
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This indicates that the event is triggered as soon as the request is sent from the 

originating processor and not after it has been received by the target processor. 

4.6.1 Validation microbenchmark  

The validation microbenchmark for the request for exclusive access to a shared 

cache line event, shown in Figure 19, is executed by two processes running on two 

different processors. During the first phase of the benchmark, one processor (e.g., 

processor 0) initializes elements of the array. During the second phase, the other 

processor (e.g., processor 1) consecutively reads and writes the same elements of the 

array. A barrier is needed between phases in order to ensure that processor 1 does not 

start traversing the array before it has been completely initialized by processor 0, 

otherwise the hardware-reported count could diverge from the predicted due to 

unsynchronized access. 

The array is stored in multiple memory blocks allocated in shared memory. As a 

result, when processor 0 attempts to initialize an element of the array, it generates a 

request for exclusive access to the referenced cache line. Since the line is not resident in 

any other processor’s cache, it does not generate the subject event. This causes the state 

of the accessed cache line, stored only in its cache, to become dirty exclusive. When 

processor 1 read misses on one of these cache lines, the state of the line, in both caches, 

becomes shared. Subsequently, when processor 1 attempts to write to a shared cache 

line, it generates a request for exclusive access to the referenced cache line but now the 

referenced cache line is in the shared state so the subject event is generated. These write 

misses cause the state of the associated lines to change to dirty exclusive and invalidate 



 

 

53 

the corresponding cache lines in all other processors. Cache coherency protocols typically 

work at the cache line level and not at the individual word level. Therefore, the array is 

accessed at strides equal to the cache line size. Only one word in a line needs to be 

written in order to generate the event; modifications to other words in the same line may 

not trigger the event. The goal is to produce one event per access. 

stride = LINE_SIZE; 

// Phase 1 

// Process 0 initializes array, cache line becomes “dirty exclusive” 

for (i = 0; i < ARRAY_SIZE; i += stride) { 

      zz[i] = 0; 

} 

// Phase 2 

// Processor 1 traverses the initialized array 

for (i = 0; i< ARRAY_SIZE; i += stride) { 

      temp += zz[i];  // Read shared array, cache line becomes shared 

      zz[i] = 1;  // Write shared cache line, request exclusive access 

 

} 

Figure 19. Requests for exclusive access to a shared cache line benchmark algorithm. 

The first phase of the benchmark accomplishes two tasks: 1) it initializes the array so 

that the read instructions of the second phase are not removed during compile 
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optimization and 2) it guarantees that the cache lines that store the array are exclusively 

owned by the cache of the initializing processor. As mentioned above, only array 

elements that map into the stride need to be initialized. Phase two of the benchmark 

causes the other processor to traverse the initialized array at regular cache-line strides.  

The predicted count is equal to the number of for-loop iterations executed in the 

second phase of the benchmark; however, the prediction only holds as long as the array 

does not surpass the number of lines that can be simultaneously resident in the cache. If 

the array is larger than the cache, the first elements initialized in phase one will be 

replaced by later-referenced ones. By the time the execution of the second phase starts, 

only the elements that remain in the cache of the initializing processor can trigger the 

event.  

4.6.2 Data Collection  

As mentioned in Section 2.2, the data collection process consists of running test 

cases for 100 runs and obtaining the average test-case count. The test suite used for the 

requests for exclusive access to a shared cache line event includes test cases that are 

expected to generate from 1 to 10,000 events of this kind. Including larger test cases is 

not productive because of the benchmark requirement mentioned above (i.e., the array 

size must be smaller than the cache size). The target platform’s (i.e., the R10K’s) L2 

cache stores a total of 8192 cache lines. Two test cases greater than 8192 are included in 

the test suite to reaffirm the microbenchmark’s limitation on test case size. 
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4.6.3 Predicted vs. hardware-reported event counts  

Figure 20 presents the predicted and hardware-reported counts. The y-axis represents 

the percentage difference between the reported counts and the predicted counts, and the 

x-axis represents the test cases, i.e., the number of intended requests for exclusive access 

to a shared cache line. Refer to Appendix B for the hardware-reported data. 
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Figure 20. Requests for exclusive access to a shared cache line validation benchmark 
results. 

The predicted and reported counts are equal for small test cases. The difference 

between these counts starts to widen at about 4000 data references and notably jumps for 

test cases that generate more than 8000 data references. As mentioned above, cache 

coherency is kept at the L2 cache level and the L2 cache size on this platform is 1MB 

with a line size of 128 bytes. This means that the total number of lines for the L2 cache is 
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8192. Furthermore, the L2 cache is a unified cache, which means that some lines can be 

used to store instructions. While it is not clear exactly how many lines are used for data, 

the results do seem to indicate that the prediction holds until half the cache contains lines 

associated with the referenced array. After this point, although the accuracy of the 

prediction starts to decrease, the difference between the predicted and reported counts 

holds below five percent until the test case of 8000 data references. The difference varies 

widely once the array exceeds the size of the cache. This is expected since the first cache 

lines initialized during phase one will be replaced by ones accessed later; by the time the 

execution of the second phase starts, only the elements that remain in the cache of the 

initializing processor will trigger the event. 

4.7 Request for exclusive access to a clean cache line 

On a multiprocessor system, the request for exclusive access to a clean cache line 

event is part of the cache consistency protocol family of events. On the R10K platform 

described in section 3.1, this event is triggered when a processor attempts to write a cache 

line that is in the clean exclusive state. A cache line is said to be in the clean exclusive 

state when the line is in the cache of only one processor, which is considered the 

“owner”, and the line has not been modified during this cache residency. The clean 

exclusive state is not supported by some multiprocessor platforms. Instead it is considered 

to be part of the more general “shared” state, which is the state of a line that was cached 

as a result of a read miss and has not been modified during this cache residency. When 

the clean exclusive state is supported, it can help reduce the cache latency generated by 

read-modify-write operations and the cache coherency protocol. This is because the clean 
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exclusive state indicates that there is no need to invalidate any other processor’s cache 

when the line is modified and, therefore, there is no need to verify the directory. If only 

the shared state is used, the directory has to be referenced every time a line is modified to 

verify the existence of replicated cache lines that need to be invalidated. 

The platform used to validate this event is the R10K platform described in Section 

3.1, which implements a directory-based cache coherency protocol at the L2 cache level. 

The platform documentation describes the requests for exclusive access to a clean cache 

line event as follows: 

Stores or prefetches with store hint to clean exclusive secondary cache blocks: 

This counter is incremented on the cycle after a request to change the clean 

exclusive state of the targeted secondary cache line to dirty exclusive is sent to the 

secondary cache transaction processing logic. [8] 

The definition indicates that the event is triggered as soon as the request is sent from 

the originating processor and not after it has been received by the target processor. 

4.7.1 Validation microbenchmark 

The validation microbenchmark for the request for exclusive access to a clean cache 

line event consists of code that executes one traversal of an array that is stored in multiple 

memory blocks in shared memory. The traversing processor loads a block of the array 

into its cache so that it can read it, modify it, and then write it. This forces the cache line 

to change from the clean exclusive state to the dirty exclusive state and trigger the event 

under study. The array is accessed at regular strides of the size of a cache line. Only one 

word in the line needs to be manipulated in order to generate the intended count. Based 
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on the discussion presented for the validation of the L1 and L2 data cache miss events 

described in Sections 4.2 and 4.3, data in shared memory is not prefetched. The shared 

array is divided in half, and each process traverses one half. The basic benchmark is 

shown in Figure 21. 

stride = LINE_SIZE; 

HALF_SIZE = ARRAY_SIZE / 2 

// Process 0 has OFFSET == 0; 

// Process 1 has OFFSET == HALF_SIZE; 

for (i = 0; i < HALF_SIZE; i += stride) { 

      temp += zz[i+OFFSET] // Read uncached line: Line is clean exclusive 

      zz[i+OFFSET] = 0; // Write line: Line is set to dirty exclusive 

 } 

Figure 21. Requests for exclusive access to a clean cache line benchmark algorithm. 

Note that the array is not initialized by either process. If the array is explicitly 

initialized by one of the processes then the array would be cached in the dirty exclusive 

state and the benchmark would not have the intended effect. On the other hand, if the 

array is not initialized, then the read instruction in the for-loop body could be suppressed 

by the compiler, leaving only the write instruction, which again affects the event 

outcome. The array needs to be initialized without causing it to become cache resident, 

i.e., uncached, before the execution of the benchmark’s main for-loop starts. Two 

alternatives are presented for this. The first one assumes an LRU replacement policy for 
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the cache. A secondary array that is bigger than the cache size is used to populate the 

cache after the zz array has been initialized. That is, after executing a for-loop to initialize 

the zz array, another for-loop is executed to write to the secondary array; this second for-

loop will cause the replacement of the cache lines associated with the zz array. The only 

problem with this approach is that additional knowledge of the cache is needed (i.e., 

cache size, associativity, and replacement policy). A second alternative is to initialize the 

zz array and cause it to be uncached via the use the calloc system call, which is used to 

allocate its memory space. The calloc system call, if available on the target platform, is 

guaranteed to allocate memory space and set it to zeroes. Typical implementations of this 

system call include instructions that initialize the memory space via additional hardware 

(e.g., I/O instructions can map the /dev/zero file to the address space) on behalf of the 

CPU and, as a result, caching the array is not necessary for initialization purposes. 

Implementations of the calloc system call usually are optimal w.r.t. initializing memory 

space; using approaches as the one described above permits address space initialization to 

be done concurrently with process execution. On the target platform, platform A 

described in Section 3.1, the calloc system call approach was used. 

It should be noted that this microbenchmark is performing symmetric operations on 

both processors. Therefore, this event should be triggered symmetrically on both 

processors. Assuming the behavior of one processor is replicated on the other, only one 

processor is monitored for validation purposes. The predicted count for the validation 

microbenchmark is given by the number of iterations executed in the main for-loop. 
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4.7.2 Data collection 

As mentioned in Section 2.2, the data collection process consists of running test 

cases 100 times and obtaining the average test-case count. The test suite used for the 

requests for exclusive access to a clean cache line event includes test cases that are 

expected to generate from 1 to 1,000,000 events of this kind. 

4.7.3 Predicted vs. hardware-reported event counts 

Validation of this event was performed on the R10K platform described in Section 

3.1, which supports the clean exclusive cache line state. As discussed above, the calloc 

system call approach was used to initialize the zz array of the validation microbenchmak. 

The implementation of the calloc system call used is the one provided by default on the 

IRIX 6.5 platform. Based on the results presented below, this implementation of the 

calloc system call initializes the array without caching it. 

Figure 22 presents the predicted requests for exclusive access to a clean cache line 

event counts and the event counts reported by the hardware; the y-axis represents the 

percentage difference between the reported and predicted counts, and the x-axis 

represents the number of array references. Refer to Appendix B for the hardware-reported 

data. 

The results indicate that the predicted and hardware-reported counts agree to within 

1%. This is the case except for the test case that is intended to generate one event. In this 

case the standard deviation is 0.40, which indicates that there is some small overhead that 

is not being considered in the prediction of the event count. It is suspected that this small 

perturbation may be introduced by the initialization calls of PAPI itself in conjunction 
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with the operating environment. This is because the perturbation is not constant but it 

becomes insignificant as the test case gets larger. For the test case of 1,000,000 data 

references the difference is practically zero.  
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Figure 22. Requests for exclusive access to a shared cache line validation benchmark 
results. 
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Chapter 5  

CONCLUSIONS AND FUTURE WORK 

Efficient tools that allow the monitoring of application performance are in demand 

by the high-performance computing community. Performance counters provide a way to 

monitor the behavior of the microarchitecture without intrusively affecting its 

performance. Although most modern computing platforms include some sort of on-chip 

monitoring hardware, limited documentation is usually provided in regard to its use and 

the meaning of the data delivered by the hardware. Furthermore, the specific 

implementation issues of each platform make it difficult to define a standard. The 

Performance API project [12] has introduced a reliable, periodically upgraded tool that is 

easy to use and provides a common front-end across platforms. PAPI is a widely 

accepted tool. Its use potentially can have a great impact in monitoring the performance 

of applications, including those that run on heterogeneous systems using GRID 

technology. 

To facilitate the use of PAPI, research is needed to address the reliability and 

usefulness of the data delivered by performance counters via PAPI. This thesis presented 

the results of such research for a set of seven events. 

5.1 Summary of results 

This thesis and the previous work referenced herein address the issues of the 

reliability and usefulness of the data delivered by performance counters via PAPI. This 

clearly is an important issue considering the wide acceptance of PAPI. The following 
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table lists the events studied in this thesis, the platforms on which they were validated, 

and observations for each. 

Table 3. Summary of events studied. 

Event Platform Observations 

MIPS 
R10000 

Reported counts are very accurate; very low 
overhead (4%) if event granularity is 
sufficiently large. 

Power3 A multiplicative difference of three for large 
test cases. 

Data TLB misses 

Itanium A multiplicative difference of five for all test 
cases. 

L1 data cache 
misses 

MIPS 
R10000 

Reported counts are very accurate; very low 
overhead (almost 0%) if event granularity is 
sufficiently large. 

L2 data cache 
misses 

MIPS 
R10000 

Reported counts are very accurate; very low 
overhead (almost 0%) if event granularity is 
sufficiently large. 

Cache line 
interventions 

MIPS 
R10000 

Reported counts are very accurate; very low 
overhead (almost 0%) if event granularity is 
sufficiently large. 

Cache line 
invalidations 

MIPS 
R10000 

Reported counts are very accurate; constant 
overhead of approximately 2% once event 
granularity is sufficiently large. 

Requests for 
exclusive access to 
a shared cache line 

MIPS 
R10000 

Reported counts are very accurate; practically 
no overhead. 

Requests for 
exclusive access to 
a clean cache line 

MIPS 
R10000 

Reported counts are very accurate;  constant 
overhead of approximately 1% once event 
granularity is sufficiently large. 
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5.2 Future work 

Further work is necessary to investigate the impact of dynamic memory allocation 

and initialization on the data TLB miss event. Inconsistencies were observed on the 

Itanium and Power3 platforms when alternating between the calloc and malloc functions 

for memory allocation and initialization. 

Also, because of time and resource limitations, the work presented in this thesis 

focused only on three platforms – the IBM Power3, MIPS R10000, and Intel Itanium 

processors. All events except the data TLB miss event were validated for only one 

platform, the Origin 2000, which is based on the MIPS R10000 processor. Nonetheless, 

the microbenchmarks and tools developed as part of this thesis will facilitate the 

validation of the studied set of events on other platforms that support them. Processors 

for this future work are those of interest to the Department of Defense, the sponsor of this 

research: the Pentium microprocessor and new generations of the architectures studied, 

the MIPS R12000, the Power4, and the Itanium 2. These are or are becoming widely 

available, and PAPI support is either available or under way. Finally, the work presented 

in this thesis forms the basis for validating other multiprocessor events supported by 

PAPI. 
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APPENDIX A: PAPI INSTRUMENTATION CODE 

/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- PAPI instrumentation code 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

int main(int argc, char *argv[]) { 

 int EventSet = PAPI_NULL; 

 long long **count; 

 /***** Set up PAPI *****/ 

 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) { 

  printf("Failed to initialize PAPI library... Invalid PAPI version.\n"); 

  exit(1); 

 } 

 if (PAPI_create_eventset(&EventSet) != PAPI_OK) { 

  printf("Failed to create event set.\n"); 
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  exit(1); 

 } 

 if (PAPI_add_event(&EventSet, PAPI_EVENT) != PAPI_OK) { 

  printf("Error adding event to EventSet\n"); 

  exit(1); 

 } 

 count = allocate_test_space(NUM_TESTS, NUM_EVENTS); 

 if (PAPI_start(EventSet) != PAPI_OK) { /***** Start counting *****/ 

  printf("Failed to start PAPI.\n"); 

  exit(1); 

 } 

 /**************************** 

 Benchmark core code here 

 ****************************/ 

 if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { /***** Stop counting *****/ 

  printf("Failed to stop PAPI.\n"); 

  exit(1); 

 } 

 printf ("%lld\n", count[0][0]); /* Print count */ 

 return (0); 

} 
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APPENDIX B: HARDWARE-REPORTED DATA 

 

Data TLB misses (R10K) 

Predicted count 1 10 100 1000 10000 

Hw-reported count 
(avg of 100) 1.03 10.49 108.38 1059.97 10628.73 

Standard deviation 0.41 1.53 2.07 1.20 6.82 
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Data TLB misses (Power3) 

Predicted count 1 10 100 1000 10000 

Hw-reported count 
(avg of 100) 3.08 12.04 99.75 1009.12 10027.00 

Standard deviation 0.44 0.28 2.89 2.53 7.55 
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Data TLB misses (Itanium) 

Predicted count 1 10 100 1000 10000 

Hw-reported count 
(avg of 100) 1 10.05 103.22 1004.1 10007.45 

Standard deviation 0 0.26 0.54 0.44 1.09 
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L1 data cache misses (R10K) 

Predicted count 1 10 100 1000 10000 100000 1000000 

Processor 0 
(avg of 100) 5.41 14.96 106.35 1026.53 10028.02 100059.2 1000391 

Std dev (P0) 1.61 1.43 1.40 1.59 1.46 1.81 2.61 

Processor 1 
(avg of 100) 3.72 12.33 102.34 1022.54 10026.93 100053.6 1000331 

Std dev (P1) 1.58 1.65 1.59 1.76 1.49 1.88 2.34 
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L2 data cache misses (R10K) 

Predicted count 1 10 100 1000 10000 100000 1000000 

Processor 0 
(avg of 100) 1.03 10.05 100.03 999.82 10020.11 100058.9 1000454 

Std dev (P0) 0.17 0.22 0.17 0.50 1.54 2.74 20.47 

Processor 1 
(avg of 100) 1.11 10.08 100.13 1000.87 10020.11 100059.7 1000454 

Std dev (P1) 0.48 0.39 0.48 1.08 1.39 1.45 7.82 
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Cache intervention requests (R10K) 

Predicted count 1 10 100 1000 2000 3000 4000 

Hw-reported count 
(avg of 100) 3.59 12.48 100.56 992.29 1938.07 2897.53 3873.69 

Standard deviation 0.49 0.54 6.87 23.39 54.48 90.63 64.19 

Predicted count 5000 6000 7000 8000 9000 10000  

Hw-reported count 
(avg of 100) 4014.22 4097.07 4213.66 4266.6 4225 4278.26  

Standard deviation 221.40 104.00 113.96 101.84 336.69 113.36  
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Cache invalidation requests (R10K) 

Predicted count 1 10 100 1000 10000 100000 1000000 

Hw-reported 
(avg of 100) 1.1 10.41 101.3 1010.68 10146.8 100769.9 1006889 

Std dev 0.30 2.72 4.00 6.67 419.95 485.63 1155.88 
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Requests for a shared cache line (R10K) 

Predicted count 1 10 100 1000 2000 3000 4000 

Hw-reported count 
(avg of 100) 1 10 99.8 998.23 1995.64 2996.94 3984.46 

Standard deviation 0 0 1.09 6.17 12.09 9.06 37.24 

Predicted count 5000 6000 7000 8000 9000 10000  

Hw-reported count 
(avg of 100) 4922.73 5837.34 6757.27 7646.62 7840.27 7832.4  

Standard deviation 32.87 45.41 105.94 155.80 125.00 180.40  
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Requests for a clean cache line (R10K) 

Predicted count 1 10 100 1000 10000 100000 1000000 

Hw-reported 
(avg of 100) 0.8 9.94 99.34 994.7 9958.66 99482.32 998990 

Std dev 0.40 0.34 1.00 3.29 36.59 1204.33 1757.33 
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APPENDIX C: BENCHMARK CODE 

/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- Padding / DTLB-miss microbenchmarks 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <memory.h> 

#include <malloc.h> 

#include <sys/types.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 

int main(int argc, char *argv[]){ 

int flag; /* Determines which benchmark to run, 1 = Padding, 2 = DTLB miss */ 

 int i, initindex, stride, max, elemXpage; 
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 int padsize, pagesize; 

 long zsize; 

 int *zz;  /* Array of integers, subject of benchmarks */ 

 if (argc == 5) { 

  flag = atoi(argv[1]); 

  padsize = atoi(argv[2]); 

  pagesize = atoi(argv[3]); 

  if (flag == 1) 

   zsize = (pagesize*atoi(argv[4])*2 + padsize)/sizeof(int); 

  else 

   zsize = (pagesize*atoi(argv[4]) + padsize)/sizeof(int); 

 } 

 else { 

  printf("Usage: %s <<flag>> <<pad size>> <<page size>> <<num 

misses>>\nFlag = 1 for padding, 2 for validation. Sizes in bytes\n", argv[0]); 

  exit(1); 

 } 

 zz = (int *)calloc (zsize, sizeof(int)); 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_TLB_TL or PAPI_TLB_DM 

*****************************************/ 

 max = zsize; /* Num of elements in z array */ 
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 elemXpage = pagesize/sizeof(int); /* Num of elements in one page */ 

 initindex = 1+(padsize/sizeof(int)); /* Num of elements in pad segment + 1 */ 

 /* padding configuration microbenchmark */ 

 if (flag == 1) {   

  stride = elemXpage*2; 

  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("Failed to start PAPI.\n"); 

   exit(1); 

  } 

  for (i=initindex; i<max; i+=stride) {  

   zz[i]=12; /* Access first element on a page */ 

   zz[i+elemXpage-1]=12; /* Access last element on a page */ 

  } 

  if (PAPI_stop(EventSet, values[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

 } 

 /* DTLB miss validation microbenchmark */ 

 else { 

  stride = elemXpage; 

  if (PAPI_start(EventSet) != PAPI_OK) { 
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   printf("\nFailed to start PAPI.\n"); 

   exit(1); 

  } 

  for (i=initindex; i<max; i+=stride) 

   zz[i]=12; /* Access first element on a page */ 

  if (PAPI_stop(EventSet, values[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

 } 

 /* Print count result */ 

 printf ("%lld\n",values[0][0]); 

 free(zz); 

 return (0); 

} 
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/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- L1 / L2 Dcache miss validation microbenchmarks 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <memory.h> 

#include <malloc.h> 

#include <sys/types.h> 

#include <sys/types.h> 

#include <sys/sysmp.h> 

#include <sys/sysinfo.h> 

#include <ulocks.h> 

#include <task.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 
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#define CACHE_LINE_SIZE 32 /* Set appropriate cache line size in bytes */ 

#define OFFSET CACHE_LINE_SIZE/sizeof(int) 

#define NUM_PROCS 2 

void run(void); 

int num_iter, mon_proc, *zz; 

int main(int argc, char *argv[]){ 

 if (argc == 3) { 

  num_iter = atoi(argv[1]); 

  mon_proc = atoi(argv[2]); 

  zz = (int *) malloc (NUM_PROCS * CACHE_LINE_SIZE * num_iter); 

 } 

 else { 

  printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]); 

  exit(1); 

 } 

 m_set_procs(NUM_PROCS); 

 if (m_fork(run) == -1) { 

  printf ("ERROR: Could not create child processes\n"); 

  exit(1); 

 } 

 free(zz); 

 return (0); 
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} 

void run(void) { 

 int i, index, myid, temp; 

 myid = m_get_myid(); 

 if (sysmp(MP_MUSTRUN, myid) == -1) { /* Assign process to a  processor */ 

  printf("ERROR: Could not assign processor to process\n"); 

  exit(1); 

 } 

 if (myid==mon_proc) { 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_L1_DCM or PAPI_L2_DCM 

*****************************************/ 

 } 

 index = myid*OFFSET*num_iter; 

 for (i=0; i<num_iter; i++) /* Ea processor initializes its section */ 

  zz[index+(OFFSET*i)] = 0; 

 m_sync(); /* barrier */ 

 index = ((myid+1) % NUM_PROCS)*OFFSET*num_iter; 

 if (myid==mon_proc) 

  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("\nFailed to start PAPI.\n"); 

   exit(1); 
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  } 

 for (i=0; i<num_iter; i++) 

  temp += zz[index+(OFFSET*i)]; /* Miss generated */ 

 if (myid==mon_proc) { 

  if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

  /* Print count results */ 

  printf ("%lld\n",count[0][0]); 

 } 

} 
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/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- Cache intervention request validation microbenchmark 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <sys/types.h> 

#include <sys/sysmp.h> 

#include <sys/sysinfo.h> 

#include <ulocks.h> 

#include <task.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 

#define L2_LINE 128 /* Set appropriate cache line size in bytes */ 

#define OFFSET L2_LINE/sizeof(int) 

#define NUM_PROCS 2 
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void run(void); 

int num_iter, bar1, bar2, mon_proc; 

int *zz; 

int main(int argc, char *argv[]){ 

 if (argc == 3) { 

  num_iter = atoi(argv[1]); 

  mon_proc = atoi(argv[2]); 

  zz = (int *) malloc (L2_LINE*num_iter + L2_LINE); 

 } 

 else { 

  printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]); 

  exit(1); 

 } 

 m_set_procs(NUM_PROCS); 

 if (m_fork(run) == -1) { 

  printf ("ERROR: Could not create child processes\n"); 

  exit(1); 

 } 

 free(zz); 

 return (0); 



 

 

87 

} 

void run(void) { 

 int i, myid, temp; 

 myid = m_get_myid(); 

 if (sysmp(MP_MUSTRUN, myid) == -1) { /* Assign process to a processor */ 

  printf("ERROR: Could not assign processor to process\n"); 

  exit(1); 

 } 

 if (myid==mon_proc) { 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_CA_ITV 

*****************************************/ 

  for (i=0; i<num_iter*OFFSET; i++) /* Monitored proc caches array */ 

   zz[i] = 0; 

  bar1 = 0; 

 } 

 else { 

  bar2 = 0; /* Processor to cause interventions will keep track of barrier */ 

   /* because interventions caused by barrier not in PAPI count */ 

 } 

 m_sync(); 

 if (myid==mon_proc) { 
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  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("Failed to start PAPI.\n"); 

   exit(1); 

  } 

  bar1 = 1; /* synchronize processes */ 

  while (bar2 < num_iter); /* loop until other proc causes interventions */ 

  if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

  /* Print count results */ 

  printf ("%lld\n",count[0][0]-1); 

 } else { 

  while (bar1 == 0); /* synchronize processes */ 

  for (i=1; i<=num_iter; i++) { 

   temp += zz[i*OFFSET]; /* generate intervention */ 

   bar2++; 

  } 

 } 

} 
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/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- Cache invalidation request validation microbenchmark 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <sys/types.h> 

#include <sys/sysmp.h> 

#include <sys/sysinfo.h> 

#include <ulocks.h> 

#include <task.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 

#define NUM_PROCS 2 

#define X_VAL 0 

#define Y_VAL -1 
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void run(void); 

int num_iter, mon_proc; 

int s = Y_VAL; /* shared variable initialized */ 

int main(int argc, char *argv[]){ 

 if (argc == 3) { 

  num_iter = atoi(argv[1]); 

  mon_proc = atoi(argv[2]); 

 } 

 else { 

  printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]); 

  exit(1); 

 } 

 m_set_procs(NUM_PROCS); 

 if (m_fork(run) == -1) { 

  printf ("ERROR: Could not create child processes\n"); 

  exit(1); 

 } 

 return (0); 

} 

void run(void) { 

 int i, myid; 
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 myid = m_get_myid(); 

 if (sysmp(MP_MUSTRUN, myid) == -1) { /* Assign process to a processor */ 

  printf("ERROR: Could not assign processor to process\n"); 

  exit(1); 

 } 

 if (myid==mon_proc) { 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_CA_INV 

*****************************************/       

  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("Failed to start PAPI.\n"); 

   exit(1); 

  } 

  for (i=0; i<num_iter; i++) { 

   s = X_VAL; 

   while (s == X_VAL); /* read cache line until invalidated */ 

  } 

  if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 
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  printf ("%lld\n",count[0][0]); /* Print count results */ 

 } else { 

  for (i=0; i<num_iter; i++) { 

   while (s == Y_VAL); 

   s = Y_VAL; /* Invalidation request generated */ 

  } 

 } 

} 
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/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- Requests to a shared cache line validation microbenchmark 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <sys/types.h> 

#include <sys/sysmp.h> 

#include <sys/sysinfo.h> 

#include <ulocks.h> 

#include <task.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 

#define L2_LINE 128 /* Set appropriate cache line size in bytes */ 

#define OFFSET L2_LINE/sizeof(int) 

#define NUM_PROCS 2 
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void run(void); 

int num_iter, mon_proc; 

int *zz; 

int main(int argc, char *argv[]){ 

 if (argc == 3) { 

  num_iter = atoi(argv[1]); 

  mon_proc = atoi(argv[2]); 

  zz = (int *) calloc (OFFSET*num_iter, sizeof(int)); 

 } 

 else { 

  printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]); 

  exit(1); 

 } 

 m_set_procs(NUM_PROCS); 

 if (m_fork(run) == -1) { 

  printf ("ERROR: Could not create child processes\n"); 

  exit(1); 

 } 

 free(zz); 

 return (0); 

} 

void run(void) { 
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 int i, myid, temp; 

 myid = m_get_myid(); 

 if (sysmp(MP_MUSTRUN, myid) == -1) { /* Assign process to a  processor */ 

  printf("ERROR: Could not assign processor to process\n"); 

  exit(0); 

 } 

 if (myid==mon_proc) { 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_CA_SHR 

*****************************************/       

 } else { 

  for (i=0; i<num_iter; i++) /* The non-monitored proc initializes array */ 

   zz[i*OFFSET] = 0; 

 } 

 m_sync(); /* barrier */ 

 if (myid==mon_proc) { 

  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("\nFailed to start PAPI.\n"); 

   exit(1); 

  } 

  for (i=0; i<num_iter; i++) { 

   temp += zz[i*OFFSET]; /* Read cache line, becomes "shared" */ 
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   zz[i*OFFSET]++; /* Request exclusive access to shared line */ 

  } 

  if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

  /* Print count results */ 

  printf ("%lld\n",count[0][0]); 

 } 

} 
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/*************************************************  

Leonardo Salayandia, leonardo@cs.utep.edu 

PCAT research group 

Computer Science Department 

University of Texas at El Paso 

--- Requests to a clean cache line validation microbenchmark 

Compiled with the command line: 

gcc <<C src>> -o <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a -O0 

*************************************************/ 

#include "papi.h" 

#include "papiStdEventDefs.h" 

#include "tests/test_utils.h" 

#include <sys/types.h> 

#include <sys/sysmp.h> 

#include <sys/sysinfo.h> 

#include <ulocks.h> 

#include <task.h> 

#define NUM_TESTS 1 

#define NUM_EVENTS 1 

#define L2_SIZE 1048576 /* Set appropriate cache size in bytes */  

#define L2_LINE 128 /* Set appropriate cache line size in bytes */ 

#define OFFSET L2_LINE/sizeof(int) 
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#define NUM_PROCS 2 

void run(void); 

int num_iter, mon_proc, *zz; 

int main(int argc, char *argv[]){ 

 if (argc == 3) { 

  num_iter = atoi(argv[1]); 

  mon_proc = atoi(argv[2]); 

 } 

 else { 

  printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]); 

  exit(1); 

 } 

zz = (int *) calloc ((L2_SIZE/sizeof(int))+(NUM_PROCS*OFFSET*num_iter), 

sizeof(int)); 

 m_set_procs(NUM_PROCS); 

 if (m_fork(run) == -1) { 

  printf ("ERROR: Could not create child processes\n"); 

  exit(1); 

 } 

 free (zz); 

 return (0); 

} 
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void run(void) { 

 int i, index, myid, temp; 

 myid = m_get_myid(); 

 if (sysmp(MP_MUSTRUN, myid) == -1) { /* Assign process to a processor */ 

  printf("ERROR: Could not assign processor to process\n"); 

  exit(1); 

 } 

 if (myid==mon_proc) { 

/***************************************** 

PAPI setup code here, PAPI_EVENT == PAPI_CA_CLN 

*****************************************/      

 } 

 index = (myid % NUM_PROCS) * OFFSET * num_iter; 

 if (myid==mon_proc) { 

  if (PAPI_start(EventSet) != PAPI_OK) { 

   printf("\nFailed to start PAPI.\n"); 

   exit(1); 

  } 

 } 

 for (i=0; i<num_iter; i++) { 

  temp += zz[index+(OFFSET*i)]; /* Line becomes "clean exclusive" */ 

  zz[index+(OFFSET*i)]++; /* Line becomes "dirty exclusive" */ 
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 } 

 if (myid==mon_proc) { 

  if (PAPI_stop(EventSet, count[0]) != PAPI_OK) { 

   printf("\nFailed to stop PAPI.\n"); 

   exit(1); 

  } 

  /* Print count results */ 

  printf ("%lld\n",count[0][0]); 

 } 

}
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