A STUDY OF THE VALIDITY AND UTILITY OF
PAPI PERFORMANCE COUNTER DATA
LEONARDO SALAYANDIA

Computer Science Department

APPROVED:

PatriciaJ. Teller, Ph.D., Chair

Steven M. Roach, Ph.D.

David H. Williams, Ph.D.

CharlesH. Ambler, Ph.D.
Dean of the Graduate School

A STUDY OF THE VALIDITY AND UTILITY OF

PAPI PERFORMANCE COUNTER DATA

by

LEONARDO SALAYANDIA, B.S.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at El Paso
in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE

Computer Science Department
THE UNIVERSITY OF TEXASAT EL PASO

December 2002

ACKNOWLEDGEMENTS

| would like to acknowledge my advisor, Dr. Patricia J. Teller and my committee
members, Dr. Steven M. Roach and Dr. David H. Williams for their time and support in
making the completion of this thesis possible.

| would aso like to thank my student colleagues for making my graduate education
experience a memorable one. Your collaboration and friendship has been the perfect
blend that makes the line between work and play invisible.

| would like to give special thanks to Dr. Ann Q. Gates and Dr. Patricia J. Teller for
being such wonderful mentors since my undergraduate studies. Your encouragement,
guidance and support were indispensable for helping me overcome yet another hurdle.

Finally, | would like to thank my family for their unlimited support. Mama, papa,

hermano, gracias por todo su carifio y apoyo.

ABSTRACT

Today, most modern microprocessors include monitoring hardware in the form of
on-chip counters that can be used to obtain data about the performance of the
microarchitecture and memory hierarchy (i.e.,, the various levels of cache and the
trandation-lookaside buffer, TLB). Initially, these counters were meant for the use of
computer architects and operating system developers and, on most platforms, were not
readily accessible to the general application developer. The Performance APl (PAPI)
cross-platform hardware counter interface facilitates programmer access to this
information, which is delivered as event counts (e.g., the number of executed load
instructions). Potentially, this data can be useful for the performance tuning of
applications. However, in some cases, limited knowledge of the microarchitecture's
structure and management algorithms may reduce the usefulness of event counts. Also,
because of the overhead introduced by PAPI and/or the counting method implemented
(i.e., aggregate or sampling), the information obtained from the counters may not capture
the accuracy that is needed for a specific use of the data. Additionally, the PAPI interface,
itself, or the hardware implementation may, inadvertently, introduce errors.

To address these issues and, thus, allow the programmer to use event count data with
confidence, research is needed to determine when and how event count data can be used.
To ascertain this information, a set of validation microbenchmarks, which stresses the
platform in predictable ways, has been designed and developed. These benchmarks

permit prediction of event counts and, thus, evaluation of event count data. Depending on

the platform and event under study, a complementary configuration microbenchmark
may need to be designed and developed as well. The purpose of a configuration-
microbenchmark is to attain information about when and how a specific event is
generated. In some cases, this information is needed to design and develop a validation
microbenchmark.

Several of these validation and configuration microbenchmarks are a product of the
research reported in thisthesis. They are associated with the following events:

» dataTLB misses,

= L1 data cache (Dcache) misses,

» L2 Dcache misses,

= cache intervention requests,

= cacheinvalidation requests,

» requests for exclusive access to a shared cache line, and

» requests for exclusive access to a clean cache line.

The behavior of these events was studied on the following platforms. SGI MIPS
R10000, IBM Power3 and Intel Itanium. The main results of this study, which compares
predicted and hardware-reported event counts, indicate that (1) for some of the events
studied, the use of validation microbenchmarks can only demonstrate “reasonableness’ of
hardware-reported counts, in contrast to using them to validate the counts, and (2) the
usefulness of event count data (to a programmer) is dependent upon both the nature of the

application and the type of event monitored.

TABLE OF CONTENTS

Page
ADSITACT ... s iv
LISt Of TAIES ... e IX
IS o o 1= X
Chapter
1. INTRODUGCTION ...t sme e sn e sne e sneenneesnne e 1
2. METHODOLOGY ...t nne e nne e snn e nne e 5
2.1 MiICrobenCMarkScccoiiiieirisee e e 5
2.2 DAACOHECHION ...ttt 8
2.3 Predicted vs. hardware-reported event COUNES..........occeeveeiienienieenienee e 9
3. STUDIED PLATFORMS.......oieee ettt s sn e 11
3.1 Platform A: MIPS R10000 (SGI Origin 2000)ccoererrieeneeneenieesieseeseeeneenns 11
3.2 Platform B: IBM POWEI3........coooiiiiiieiie et 14
3.3 Platform C: Intel [aniUMooiiiieeie e 14
4. TARGET EVENTS ...ttt nne e s nne s 15
41 DataTLB MISSEVENTcciiiiiiiieeieeeeeee et 18
41.1 Validation microbenchmark...........c.coeiieinininieiece e 19
412 Acquiring parameters for the validation microbenchmark 21
4.1.3 Data COECLION ..o e 26
414 Predicted vs. hardware-reported event COUNtS...........ccovereeneeneseesieeenne 26

Vi

Vil

4.2 L1datacache mMiSSEVENTcccooiiiiieieeeese e 28
4.2.1 Validation microbenchmark...........cccoeiiriiininieiece e 29
4.2.2 Data COIECION ... 33
4.2.3 Predicted vs. hardware-reported event COUNtS...........ccooeeeereenieseesieeenne 33

4.3 L2dataCcache MiSSEVENTcccooiiiiieieeeee e 36
43.1 Predicted vs. hardware-reported event COUNtS...........ccovereereenienceesieeenne 37

4.4 Cacheintervention reqUESE BVENL.........ccceeuiriereeiie e 38
44.1 Validation microbenchmark...........cccovviriniiiiieiecee e 39
4.4.2 Data COECLION ... 41
443 Predicted vs. hardware-reported event COUNtS...........ccovereereenenceesieeenne 42

45 Cacheinvalidation request VENTccoceieeierieneereee e 43
451 Validation microbenchmark............ccoeiiririiinieieee e 45
4.5.2 Data COECLION ... 47
453 Predicted vs. hardware-reported event COUNtS...........ccoveeeereenieneesieeenne 48

46 Reguest for exclusive accessto ashared cacheline.........cccceevvevivcccevie e, 51
4.6.1 Validation microbenchmark...........cccoeiiiiiininieiecee e 52
4.6.2 Data COIHECION ..o 54
4.6.3 Predicted vs. hardware-reported event COUNtS...........ccovereerernienceesieeenne 55

4.7 Request for exclusive accessto aclean cacheline...........cccoriiiinenienenns 56
4.7.1 Validation microbenchmark...........cccooeiieiiiniieieeee e 57
4.7.2 Data COECLION ..o 60

4.7.3 Predicted vs. hardware-reported event COUNtS...........ccoveeeeneeneneesieennne 60

5. CONCLUSIONS AND FUTURE WORK ... oot 62
51 SUMMANY Of FESUILScoiiiiieieieiee e 62
5.2 FULUIE WOIK ...ttt 64

REFEIENCES.......eeee e 65

Appendix A: PAPI inStrumentation COOEccoieriiiiiniiie e 67

Appendix B: Hardware-reported data............ccoeeeieerieiienieeiesee e 69

Appendix C: benchmark COE...........cooiiiiiiii e 77

CUMTTCUIUM VIAE ..o 101

LIST OF TABLES

Page
Tablel. Native R10000 instructions for shared-memory parallel programming. 13
Table2. Description of PAPI eventsunder StUdy.cccooveveeieenienecieseeseeee e 15
Table3. Summary of eventS StUdIEd.coveieiieceee e 63

Figurel.
Figure 2.
Figure 3.
Figure4.
Figureb.
Figure6.
Figure?.
Figure8.

Figure9.

Figure 10.
Figure11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure17.

Figure 18.

LIST OF FIGURES

Page
Predicted vs. hardware-reported count comparison formula. 10
Configuration of the SGI Origin 2000 MultiproCcessor.ccccvvvereereeeeennens 12
DTLB miss benchmark algorithm.cccoveveiieieiie e 20

Saavedra’ s benchmark results for the R10000 and the Itanium platforms. .. 22

Storage of aProCeSS iN MEMONY.ccverieeeereerieeeeseesee e e eeeseesreeaeseensens 23
Distribution of variablesin the data segment.ccccevveveecenieeve e seennn, 24
Padding benchmark algorithm. ..., 25
Padding benchmark results for 100 iterations...........ccccevvevieeveecceesee s 26
DTLB miss validation benchmark results............ccooeerieienenenenineneseees 27
L1 Dcache miss benchmark algorithm. ... 30
Shared-memory L1 Dcache miss benchmark algorithm............cccceoeee 32
L1 Dcache miss validation benchmark results.............ccoooeiiiininiiinnen, 34
L2 Dcache miss validation benchmark results.............ccccooeiinininiiinnen, 37
Cache intervention requests benchmark algorithm. ... 40
Cache intervention requests validation benchmark results.............ccccue...... 42
Cache invalidation requests benchmark algorithm. ... 47
Cacheinvalidation requests validation benchmark results.ccc......... 438
Branch mispredictions on the cache invalidation requests benchmark. 50

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Xi

Requests for exclusive access to a shared cache line benchmark algorithm. ..

Requests for exclusive access to a shared cache line validation benchmark
FESUITS. ettt et e e eae e e s be e e ebe e e sabeeesabeeeeabeeeeaneeeanneas 55

Requests for exclusive access to a clean cache line benchmark algorithm. ...

Requests for exclusive access to a shared cache line validation benchmark

FESUITS. ..o 61

Chapter 1
INTRODUCTION

Most modern microprocessors contain self-monitoring hardware that can be used to
obtain data about the performance of the microarchitecture and memory hierarchy (e.g.,
the various levels of caches and trandation lookaside buffers, TLBs). This monitoring
hardware, which mainly is in the form of on-chip counters, is designed to provide insight
into the behavior of a microprocessor while executing an application, but without
affecting its performance. Initialy, these counters were meant for the use of computer
architects and operating system developers and, on most platforms, were not readily
accessible to the general application developer. Nonetheless, some application and
compiler developers gained access to them and found that the type of information
provided by the counters could guide them through the process of fine-tuning application
performance and provide feedback to optimizing compilers that could potentially
improve code scheduling/pipelining [1].

The level of availability and access to the counters varies from platform to platform.
It usualy is difficult and time-consuming for the average application developer to use the
counters because it requires him/her to have in-depth knowledge about low-level
processor details. The Performance APl (PAPI) project was initiated at the University of
Tennessee at Knoxville with the purpose of providing a cross-platform API that defines a
standard set of events and maps as many of these as possible to each platform. The

semantics of the events is necessarily platform dependent but the purpose of PAPI is not

to provide a standard definition. Instead, it attempts to provide a set of events that is
considered by the performance computing community to be the most important for
performance analysis purposes [1].

PAPI has been used successfully by many application developers and is now
incorporated in severa comprehensive performance tools [2]. For example, the
perfometer tool, also developed by the PAPI research team, provides a graphical view of
performance counter data as it is being generated. The interface (a cross-platform Java
front-end) alows the user to change the event that is being monitored and has the ability
to monitor parallel applications. Instrumentation of the monitored application is done by
inserting a function call at the beginning of the code. The user can then monitor a variety
of events without having to change the code. Other tools developed by Sandia National
Laboratory, The University of Illinois, and Pacific-Sierra Research, among others, aso
have incorporated PAPI support into their performance analysis tools[2].

The wide acceptance of PAPI as a performance tool emphasizes the importance of
evauating the accuracy and usefulness of event count data collected via PAPI, issues
addressed by this thesis and the research reported on in [3], [4], and [5]. PAPI library
calls, which are inserted in the monitored program, may perturb the reported counts (e.g.,
due to the execution of instructions that set and read the counters). Also, it is possible that
the counters may be implemented incorrectly or the reported counts may be inexplicable
without in-depth knowledge of the idiosyncrasies of the microarchitecture. Information

that sheds light on these issues is of import to application programmers who are using

event count information to tune the performance of their programs. This is the prime
motivation for the Department of Defense’ s support of this work.

Previous work has shown that the hardware-reported counter data may not be
accurate when the granularity of the measured code is insufficient to ensure that the
overhead introduced by the counter interface does not dominate the event count [5]. Also,
previous evaluation of performance counter data across platforms has resulted in error
characterization. Through the use of benchmarks that are specifically designed to stress
the microarchitecture in predictable ways, performance counter data is analyzed by
comparing expected counts with hardware-reported counts. This comparison led to the
establishment of the following error categories proposed in [3]:

1. overhead or hias,

2. multiplicative,
3. random, and
4. unknown.

An overhead or bias error refers to a constant difference observed between expected
and hardware-reported counts for a given event measured using versions of a benchmark
that differ in terms of the number of times the event is generated. A multiplicative error
refers to the case when hardware-reported counts exceed expected counts by a defined
factor. A random error occurs when expected counts and reported counts differ
significantly, but only part of the time. Finaly, an unknown error happens when there is
no apparent relationship between the expected and hardware-reported counts; this may be

due to either a combination of the previous types of errors or unidentified processor

behavior. The work presented in thisthesisis, in part, reported onin [3] and is, in part, an
extension of that work. The following seven events are the focus of thisthesis:

1. dataTLB (DTLB) misses,

2. L1 datacache (Dcache) misses,

3. L2 Dcache misses,

4. cacheintervention requests,

5. cacheinvalidation requests,

6. requestsfor exclusive accessto a shared cache line, and

7. requestsfor exclusive access to a clean cache line.

This work evaluates the accuracy of the hardware-reported counts associated with
these events and/or indicates under what circumstances the data can be used. These
events were chosen because of their association with the performance of the memory
hierarchy, which usually defines the critical path in the overall performance of an
application. The last four events are related to the performance of shared-memory
multiprocessors that ensure cache coherence. The second and third events, previously
studied by [6] on a uniprocessor, are addressed again on a multiprocessor platform.

The genera methodology used to study hardware-reported event counts is discussed
in Chapter 2 and the targeted platforms are described in Chapter 3. Chapter 4 discusses
the events under study, and presents and analyzes the results of the study. Chapter 5

contains concluding remarks and a description of future work.

Chapter 2
METHODOLOGY

The method used to evaluate the data reported by performance counters, called the

validation process, is similar to that used in [3]. The process consists of seven phases,

which are repeated as necessary. For each event under study, the phases are as follows.

2.1

1. Microbenchmark: design and implement a validation microbenchmark that

permits event count prediction.

. Prediction: predict event count using a mathematical model.
. Data collection-1: collect (hardware-reported) event count data using PAPI.

. Data collection-2: collect event count data using a simulator (not always

necessary or possible).

. Comparison: compare predicted and collected event counts.
. Analysis: analyze results to identify and possibly quantify differences.

. Alternate approach: when analysis indicates that prediction is not possible, use

an alternate meansto either verify reported event count accuracy or demonstrate

that the reported event count seems reasonable.

Microbenchmarks

The focal point of this methodology relates to phase 1, the design and development

of the validation microbenchmark. A validation microbenchmark is a program that is

small in size and has an execution pattern that is easily traceable. The purpose of the

program is to stress the platform in predictable ways with respect to the event under

5

study. In designing a microbenchmark, one needs to consider both the structure and
configuration of the microarchitecture and memory hierarchy. Whenever possible, the
requisite microarchitecture characteristics are obtained from platform documentation.
When this is not possible, a configuration microbenchmark is developed to help deduce
the missing details. Such is the case for the data TLB miss event discussed in Section 4.1,
where a configuration microbenchmark is used to deduce the user data page size needed
for the validation microbenchmark.

The validation microbenchmark design also needs to take into account the definition
of the PAPI event under study. As mentioned before, the purpose of PAPI is to provide
general descriptions of the cross-platform events rather than giving the exact semantics
for them. Similarly, validation microbenchmarks are designed to apply across the
platforms of interest. However, the analysis of the results obtained from executing
validation benchmarks needs to consider the details of the experimental platform. These
cross-platform validation microbenchmarks are developed in the ANSI C language and
can be thought of as generic benchmarks that can be cross-compiled to execute on a
specific target platform. At this point, the benchmarks do not include platform-dependent
system cals (e.g., system cals to handle process synchronization) and in some cases
customization of the generic microbenchmark may be needed before it can be used to
validate an event on a specific platform. The generic version of a microbenchmark also
serves as atemplate from which atest suite is generated. A test suite is comprised of a set
of different versions of a generic microbenchmark. The versions differ with respect to the

number of events that are expected to generate. As demonstrated in [5], such a suite can

be used to determine the overhead introduced by the counter interface. Using this
information, an equation can be defined to quantify the portion of an event count that is
attributable to the counter interface. A test suite also is used to validate assumptions made
with respect to expected event counts or to provide insight that may lead to modification
of such assumptions. For example, the generic version of the cache invalidation requests
microbenchmark, which deals with a multiprocessor environment (discussed in Section
4.5), is customized to execute on the MIPS R10000 platform by adding native system
calls that assign multiple processes to execute on separate processors. Also, manipulating
the size of the generic benchmark’s main for-loop, which determines the number of
events generated by the benchmark, produces multiple versions of the benchmark.

Previous work [3] related to performance counter data evaluation has identified the
following classes of validation microbenchmarks that are used to study a variety of
events:

1. array microbenchmark,

N

loop microbenchmark,

3. in-line microbenchmark, and

>

floating-point microbenchmark.

The array microbenchmark consists of code that traverses an array at defined strides
with the purpose of stressing the data portions of the various levels of the memory
hierarchy and allows prediction of related events, e.g., L1 Dcache misses. The loop
microbenchmark, which consists of a sequence of instructions within a loop, is used to

stress a particular functional unit. For example, it was used to study the number of stores

executed. The in-line microbenchmark is the unrolled version of the loop
microbenchmark, and its purpose is to stress the instruction portions of the various levels
of the memory hierarchy. Events such as L1 Icache misses are its target. Findly, the
floating-point microbenchmark is a variation of the loop microbenchmark where the
sequence of instructions is replaced by floating-point instructions; it has the purpose of
stressing the floating-point units. Events like floating-point add operations executed are
studied using this benchmark.

Since the events under study in this thesis deal primarily with the data portion of the
memory hierarchy, only versions of the array microbenchmark are used. Furthermore, a
new class of microbenchmark is presented that permits the study of memory hierarchy
related events in a multiprocessor environment. This is called a ping-pong
microbenchmark and consists of code that forces multiple processes to alternately access
one or more shared variables. The purpose is to stress the cache coherency unit. This
benchmark is discussed in Section 4.5.

2.2 Data collection

In order to study an event, the validation microbenchmark is instrumented by
inserting initialization code that sets up PAPI to monitor the specific target event. Also,
PAPI calls to start and stop the counters are inserted to delineate that portion of the
benchmark that is under study. For example, the area of interest may exclude
initialization code or code that does not stress the event under study in an easily traceable
manner. The generic validation microbenchmark designed to stress the part of the

microarchitecture or memory hierarchy associated with the event under study is

customized to generate an expected count, also called a predicted count. Each version of
the microbenchmark is considered a test case, where each test case is identified by its
predicted count. A test case is executed 100 times to get an average test-case count,
which is used in the analysis phase of the validation process. Using an average takes into
account the variability of the reported counts. In order to monitor the stability of the
average test-case count, the standard deviation of each of the 100 instances of atest case
is computed and test cases with large standard deviations are the targets of further study.
A script, as opposed to wrapping the microbenchmark in a for-loop, is used to run a
sequence of 100 instances of atest case. Wrapping a validation microbenchmark in afor-
loop would cause reuse of benchmark and PAPI data as well as instructions and,
consequently, could eliminate or introduce some events that otherwise would not be.
Finally, atest suite, which is a collection of test cases for a single event, is used to study
the behavior of the platform as the granularity of the test case increases, i.e., as the
predicted number of events generated by the sequence of test cases increases. In generdl,
the test suites are comprised of test cases that are expected to generate from 1 to
1,000,000 instances of the event under study. For some events, due to platform
limitations or benchmark design, a smaller test suite is used.
2.3 Predicted vs. hardware-reported event counts

Once the data collection phase has been completed, the average tests-case counts are
compared against the predicted counts. A percentage difference is computed for such a
purpose using the formula given in Figure 1. A positive percentage difference indicates

that the hardware-reported counts tend to be larger than the predicted counts. A negative

10

percentage difference indicates the opposite. The absolute value of the percentage

differenceis used to graph the results.

% difference = (Reported Count — Predicted Count) / Predicted Count

Figure 1. Predicted vs. hardware-reported count comparison formula.

Analyzing the percentage difference across a test suite is necessary to categorize the
error. As mentioned in the introductory section, the error categories proposed by [4] are
used. Understanding the nature of the error is essential to providing information that
might explain its source and, thus, aid application developers in using the event count to
tune the performance of their codes. For example, a constant difference of zero is the
ideal situation, where the expected counts are exactly the same as the hardware-reported
counts. This situation would indicate that the counter interface does not introduce
overhead to the count, the hardware is monitoring what is expected, and the hardware is
behaving as is expected. On the other hand, a percentage difference that starts out large
for small test cases and approaches zero as the test cases get larger indicates that there is

an “overhead” or “bias’ type of error, which may possibly be due to the PAPI interface.

Chapter 3
STUDIED PLATFORMS

Three platforms were used in this study:
1. SGI'sMIPS R10000,
2. IBM’sPower3, and
3. Intel’s Itanium.

These platforms were chosen because of their interest to the Department of Defense,
which indirectly funds this research. Not all of these platforms support all the events
under study. All three platforms where used to study the DTLB miss event discussed in
Section 4.1. Only the MIPS R10000 platform was used for the other six events under
study; this is because of the local availability of a SGI Origin 2000, the processors of
which are R10000s. Both the Power3 platform and the Itanium platform used in this
study are uniprocessor machines. The architectural characteristics of each platform,
applicable to the events under study, are given in the following sections as described in
their respective documentation [7], [8], [9], [10] and [11].

3.1 Platform A: MIPSR10000 (SGI Origin 2000)

The SGI Origin 2000 multiprocessor machine used in this study is comprised of
eight MIPS R10000 processors, revision 2.6, each of which runs at 180 MHz. This
processor has atwo-way set associative, 32K byte (32KB) L1 data cache (Dcache) with a
32-byte line size and a two-way set associative, 32KB L1 instruction cache (Icache) with
a 64-byte line size. The IMB L2 cache is unified and is off chip; it is two-way set

11

12

associative and its line size is 128 bytes. Both the L1 and L2 caches have a least recently
used (LRU) replacement policy. The TLB, which is suspected to be unified, has 64
entries and is fully associative. Page size support ranges from 4KB to 16MB, increasing
in powers of 4. The platform implements a directory-based cache coherency protocol,
where coherency is kept at the L2 cache leve (i.e., inclusion is maintained between the
L1 and L2 caches of each processor). There are two processors per node and the nodes
are connected through routers. The 2GB of main memory is uniformly distributed across
nodes. Figure 2 shows the general configuration of the platform as well as the hardware

used to implement the directory-based protocol.

Cache| | Cache Cache
| | |

Interconnection MNetwork

Main -
Memory Directory
; :|:I..EEIEHZEH:EII
Dalta State Presence Bits
@ (b)

(a) Shows the distribution of processors and memory in the SGI Origin 2000
multiprocessor. Each node contains two processors with 512MB of main memory. The
processors are connected through hubs and the hubs are interconnected through routers.
(b) Hlustrates the hardware used to implement Origin 2000’ s directory-based cache
coherency protocol.

Figure 2. Configuration of the SGI Origin 2000 multiprocessor.

13

The operating system for this platform is the IRIX 6.5; it supports the set of system
calls described in Table 1 that facilitate shared-memory parallel programming. These
system calls are used in the microbenchmarks and are associated with events (i.e., all the
events studied in this thesis except data TLB misses) that occur in a shared-memory
multiprocessor environment. The benchmarks were compiled by the gcc compiler,
version 2.95.2, release 19991024. Finally, the platform includes two 32-bit performance
counters. Each counter can monitor one event at a time and there is a choice of 16

different events for each. Refer to [8] for alist and description of each.

Table 1. Native R10000 instructions for shared-memory parallel programming.

Instruction Description
m_set_procs Sets the number of processes to be forked when
m_fork() is called. Parent processisincluded in
count.
m_fork Creates n-1 processes that execute afunction in

parallel with the calling process.

m_sync Synchronizes all executing threads at the m_sync-
defined point in the code. A thread busy waits until
all other threads call the m_sync function, at which
point all threads resume after the m_sync call.

m_get_myid Returns the thread identifier, which ranges from
zeroton-1.

sysmp (MP_MUSTRUN, Provides control and/or information for
proc_num) miscellaneous system services. The
MP_MUSTRUN command assigns the calling
process to execute on the processor specified by
proc_num.

14

3.2 Platform B: IBM Power3

This platform is a uniprocessor that uses an IBM Power3 running at 200 MHz. The
processor has a 128-way set-associative, 64KB L1 Dcache with a 128-byte line size and a
128-way set associative, 32KB L1 Icache with al28-byte line size. The L2 cache is off
chip; it is a direct-mapped 4MB cache with 128-byte line size. The TLB, which is
suspected to be unified, is 2-way set associative with 256 entries and an LRU
replacement policy. One page size, 4 KB, is supported. The operating system is AlX 4.3.
The microbenchmarks were compiled using gcc version 2.7.2.3. The processor includes
eight counters that support over 100 events.

3.3 Platform C: Intel [tanium

This platform is a uniprocessor that uses an Intel Itanium processor running at 733
MHz. The processor has a 4-way set-associative, 16KB L1 Dcache with a 32-byte line
size and an L1 Icache with the same configuration. The 96KB L2 cacheis unified; it is 6-
way set-associative with aline size of 64 bytes. This platform contains a fully-associative
ITLB with 64 entries and two levels of DTLBs, both fully-associative. The L1 DTLB has
32 entries and the L2 DTLB has 96 entries. The supported page sizes are: 4 KB, 16 KB,
64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB. The operating system is
Linux 2.4.18. The benchmarks were compiled using gcc version 2.96, release 20000731
for Red Hat Linux 7.1 2.96-101. The platform includes four 32-bit counters that support

150 events. Refer to [10] for details about the events supported.

Chapter 4
TARGET EVENTS

The events under study, as described by the PAPI website [12], are shown in Table
2. The table denotes the PAPI-assigned name for each event, its PAPI-assigned number,
and the description of the event. The PAPI event name or its number is used to setup
PAPI to monitor the event. Appendix A shows the PAPI setup code that was used to

instrument the validation microbenchmarks.

Table 2. Description of PAPI events under study.

PAPI name PAPI number Description

PAPI_TLB_TL 0x80000016 | Total TLB misses

PAPI_TLB_DM 0x80000014 Data TLB misses

PAPI_L1 DCM 0x80000000 L1 data cache misses

PAPI_L2_DCM 0x80000002 L 2 data cache misses

PAPI_CA_ITV 0x8000000d Requests for a cache line intervention

PAPI_CA_INV 0x8000000c Requests for a cache line invalidation

PAPI_CA_SHR 0x8000000a Requests for exclusive accessto a
shared cacheline

PAPI_CA_CLN 0x8000000b Requests for exclusive accessto aclean
cacheline

These events were chosen because of their association with the performance of the

memory hierarchy, which usually defines the critical path in the overall performance of

15

16

an application. Furthermore, these events are primarily related to data references (as
opposed to instruction references). The focus on data references was chosen because, in
general, they exhibit poorer locality than instruction references (especially on high-
performance computing applications where optimizing compilers play an essential rolein
pipelining and scheduling instructions). Therefore, analysis of these events usually has a
higher payoff in terms of performance than analysis of those related to instruction
references. In the case where an event is applicable to both data and instruction
references, as in the case of the total TLB miss event described in Section 4.1, the event
is studied with respect to data references only (instruction references are kept to a
minimum).

Another aspect of the memory hierarchy addressed by this set of events is the cache
coherency problem. As defined by [13], the cache coherency problem arises when there
are multiple writing units that have access to data that is replicated across multiple levels
in the memory hierarchy. For example, in a uniprocessor, an I/O device can be reading
main memory while the processor is writing the L1 data cache. If the cache is a write-
back cache, then this situation can lead to data inconsistency and the 1/0O device reading
stale data. In the case of a shared-memory multiprocessor, application performance may
depend on the cache-coherency protocol, i.e., the protocol used to maintain the
consistency of shared data (data shared by multiple processors). By far the most popular
cache coherency protocols are of the type write-invalidate, which are implemented by
associating a cache state with each cache line. The protocol ensures that a cache line is

resident in only one cache, the cache of the owner processor, when it is being written, and

17

that a cache line can be resident in the caches of multiple processors only when it is being
read. In the simplest protocol, the states are uncached, shared, and exclusive. The
protocol defines the process that must be followed to change state and, thus, to ensure
that writes are processed sequentially and that reads observe the most up-to-date version
of aword. A line is in the uncached state when it is not contained in the cache of any
processor. The shared state refers to aline that is included in the cache of more than one
processor. While in this state, a cache line isread-only, i.e., it cannot be modified. Lastly,
the exclusive state refers to a cache line that is resident only in the cache of a single
processor; while in this state, the cache line can be read and written only by this
processor, the owner. Note that a transition to the exclusive state may requires
invalidation of cache-resident copies of the requested cache line; this is why the protocol
is referred to as a write-invalidate protocol. The last four events of Table 2 are related to
cache coherency protocols. These events are studied, in turn, in Sections 4.4 — 4.7, where
relevant details of cache coherency protocols are discussed.

Probably the greatest challenge in validating events related to data memory
references is dealing with prefetching. Nowadays, modern platforms use prefetching
techniques to hide access latencies across the memory hierarchy in order to improve
performance. Prefetching mechanisms provide the logic necessary to fetch data and/or
instructions from the lower levels of memory before they are actually used so that they
can be readily available by the time they are accessed by the processor. For example, [14]
discusses a prefetching technique called stream buffers. In its simplest form, the

technique consists of the prefetching of consecutive lines of data starting at a cache miss

18

address. The prefetched data is placed in a buffer. Asit is needed, it is fed into the cache
in FIFO order. Placing the prefetched data in the buffer instead of in the cache avoids
polluting the cache with data that may never be needed. Accesses to the cache
concurrently access the stream buffer as well. If a data reference misses in the cache but
hits in the buffer, the cache can be reloaded in a single cycle from the stream buffer.
Prefetching techniques are most beneficial when memory references exhibit a well-
defined pattern of access, e.g., a sequence of accesses at a constant stride. Furthermore, in
the case of the cache miss event, some performance counter implementations may not
trigger the event if a cache missis satisfied by a prefetching mechanism [6]. Prefetching
techniques are usualy employed in the memory hierarchy levels closest to the processor
(i.e.,, L1 and L2 caches) because thisis where they provide the greatest impact.

As described in Sections 4.2and 4.3, due to complexities associated with cache
coherency, shared data is not prefetched. This realization permits a straight-forward
validation of the L1 and L2 data cache miss events, which on a uniprocessor was not
possible. Although prefetching does not appear to be commonplace w.r.t. TLBs, the
possibility is not disregarded, and in Section 4.1 prefetching is considered in the
discussion of the results for the data TLB miss event.

4.1 DataTLB missevent

In general, the data trandation lookaside buffer (DTLB) miss event indicates that a
virtual page that stores data was referenced and that its virtual-to-physical page mapping,
i.e., its mapping to a corresponding physical page (or frame), is not resident in the DTLB.

In general, this happens when a virtual page is accessed for the first time (a compulsory

19

miss) or when the TLB entry for a previously-referenced page has been replaced by that
of another page (a capacity and/or conflict miss). Some platforms have separate TLBs for
data and instructions and others have a unified TLB, which stores transations for both
pages containing instructions and pages containing data. The events associated with
TLBs vary among platforms. In the case of the platforms used in this study (refer to
Chapter 3 for descriptions of these platforms), platforms A and B, which are based on the
R10000 and the Power3 processors support only a total TLB miss event, i.e., given that
they have a unified TLB (or at least it is suspected so based on the platform
documentation), only a unified count is implemented. Platform C, based on the Itanium
processor, which has an ITLB and two levels of DTLBS, supports separate events for
DTLB misses and ITLB misses. It is not clear from the documentation if the DTLB miss
event count accounts for only L1 DTLB misses or both L1 and L2 DTLB misses. Note
there are no other PAPI-supported TLB-related events for this platform.
41.1 Validation microbenchmark

The validation microbenchmark for DTLB misses consists of code that executes one
traversal of an array, accessing the array at regular page-sized strides. The array residesin
multiple pages and the traversal generates a predictable number of compulsory DTLB
misses. By focusing on compulsory misses only, the intrinsic features of the TLB (e.g.,
replacement policy and associativity) do not affect the resulting count. Furthermore, the
portability of the benchmark is improved by not considering the platform-specific

features of the TLB. Figure 3 shows the basic algorithm of the benchmark.

20

stride = PAGE_SIZE;
for (I=START_INDEX; i<MAX; i+=stride) {

zz[i] = X_VALUE;

Figure 3. DTLB miss benchmark algorithm.

Three key pieces of information are needed to predict the DTLB miss count
generated:

1. sizeof the pagesthat store the array,

2. identification of the location of the first byte of a page frame with respect to the

beginning of the array data structure, and

3. thesizeof the array.

The page size and the stride with which the array is accessed determine the rate at
which the benchmark generates DTLB misses. The identification of the first byte of a
page frame is needed to perfect the prediction of total DTLB misses generated. The
START_INDEX vaue in the agorithm above determines whether or not the first array
reference maps to a previously unreferenced page. Setting START_INDEX so that the
first array reference does map to the next unreferenced page causes references made at a
stride equal to the page size to generate n compulsory DTLB misses, where n is the
number of pages touched. Lastly, increasing the MAX value in the algorithm increases
the number of pages of the array touched, thus increasing the expected count. The

expected count is given by the number of executed for-loop iterations. The number of

21

instructions in the benchmark is small and does not significantly affect the event count
associated with unified TLBs.
4.1.2 Acquiring parametersfor the validation microbenchmark

As mentioned above, three pieces of information are needed to predict DTLB misses
for the validation benchmark: page size, starting index, and array size. While the latter
can be controlled by the user, the other two parameters may not be trivial to ascertain.
Most modern platforms concurrently support multiple page sizes. For example, the
Itanium documentation indicates support for the following page sizes: 4KB, 8KB, 16K B,
64KB, 256KB, 1MB, 4MB, 16MB, 64MB and 256MB [6]. However, documentation as
to how a page size is selected is much more obscure and may even be OS-dependent.
Furthermore, a starting index that guarantees a reference to the first word in the next
unreferenced page is dependent upon the page size and compiler used (i.e., the prologue
and epilogue sections of the executable file may include additional variables and
constants that could offset the page to which the array maps).

To identify the page size used to store the array, several techniques are used. The
first is a configuration microbenchmark based on Saavedra's methodology [15]. This
microbenchmark accesses an array using a stride that is increased between iterations and
records average read/write reference times. Several memory hierarchy characteristics,
including data cache line size and associativity, page size, DTLB associativity and
reachability, as well as corresponding latencies, can be deduced from graphing the
average reference times. However, because of the increased efficiency with which some

of the newer platforms hide memory hierarchy latencies, the results obtained are not

22

aways easily understood. Figure 4 shows the results obtained for the MIPS R10K and the

Itanium platforms.

Saavedra's Benchmark (R10K) Saavedra's Benchmark (Itanium)

250 350

P |

200 /b\ IS 300 /.__\/.-f \

150 w 64K 250 / \ oaK
%’ M g 200 Py LN ,\v/\ M
8 100 e oM S }[NN W \ ——2M

—=—4M 150 ——4M
—t—s
50 / —] 100 4 _ e
0 T T T T T L 50 ! — — — T — —
< ©o < ©o 4 X X X X
v 9 3 ﬁ E 1 é E é E <§r é 4 © 8 4 5 g I § E <§r %
Strides (Bytes) Strides (Bytes)

Figure 4. Saavedra’s benchmark results for the R10000 and the Itanium platforms.

According to Saavedra’'s methodology, the page size can be deduced from these
graphs by noticing the following. Let b be the size of the page and s the size of the stride
at which the array is being referenced. If the array is large enough to fill up the DTLB
and sis chosen so that it is smaller than the page size, then there will be b/s consecutive
accesses to the same page and only the first one will generate a miss. The average
reference time will reach its maximum when the stride is equal to the page size, i.e.,
b/s=1. An analogous argument is used to figure out the line sizes of the different levels of
cache, with some overlapping effects happening in some regions. Isolation for a
particular element of the memory hierarchy should be straightforward, given the
difference in latencies. For the MIPS R10000 (R10K) platform, Figure 4 shows that the
average reference time has its highest point at a stride of 32KB, which indicates a

believable value for a page size. However, on the Itanium platform, this point occurs at a

23

stride of 64 bytes, which seems more like a cache line size. TLB behavior does not seem
to be reflected in this graph.

The second technique used to identify the page size is a configuration
microbenchmark, which also identifies the starting index to be used to cause the first
array reference to map to the next unreferenced page. The benchmark is based on the
assumption that a process address space has a structure similar to that shown in Figure 5.
The exact format of the address space depends on the specific platform, with some
platforms including additional segments (e.g., header segments and shared-memory
segments). The benchmark focuses on the data segment. It is assumed that
constants/variables used in the benchmark are allocated space in the data segment in the
following order: constant values at the beginning, followed by initialized variables, and
dynamically allocated variables towards the end of the segment to facilitate growth.
Furthermore, it is assumed that the order of variable declarations in the program and size

of variables has an impact on the storage locations of the variables in the data segment.

Text Data

Segment Segment — + stack

Figure 5. Storage of a process in memory.

The first objective of the benchmark is to force the array data structure, which is the
focus of the validation benchmark, to be alocated last in the data segment. Figure 6
illustrates this idea. The second objective is to identify the smallest array index that will

map to a frame that is entirely occupied by the array (i.e, the array index that maps to the

24

beginning of Frame 2 in Figure 6). The first objective is achieved by having the array as
the only dynamically allocated variable in the benchmark and by declaring it last in the
program sequence. Furthermore, since the array will be by far the largest data structure in
the benchmark (i.e., it needs to occupy multiple pages in order to be useful in validating
DTLB miss events), the assumption of placement according to variable size is aso
favored. Thus, the compiler should allocate space for the array towards the end of the

data segment.

Cu:-nsta.nlts

|
[
& | : Aurray Free

RFariableIs |
| | | | |
I e s N
- 500 85 1§
(I T < T S S

Figure 6. Distribution of variables in the data segment.

Initially the benchmark uses a hypothetical page size (based on Saavedra s results
and/or platform documentation) to traverse the array, referencing the first and last array
elements of every other page-sized region. The page-sized regions are defined by an
offset or “padding” from the starting address of the array. Via PAPI, the number of
generated DTLB misses is recorded. Successive variations of the benchmark use larger
offsets and different page-size values. Figure 7 shows the basic algorithm for this

benchmark, called the “ padding” benchmark.

25

stride = PAGE_SIZE * 2;
for (I=START_INDEX; i<MAX; i+=stride) {
zz[i] = X_VALUE; // 1st element on a page range

zZ[i+PAGE_SIZE-1] = X_VALUE; // Last element

Figure 7. Padding benchmark algorithm.

The DTLB miss counts reported for each variation of the benchmark identify the
page-size and offset that forces aligned references in the validation benchmark, i.e., the
page size and offset that produces asingle DTLB miss for each pair of references. If pairs
of references are not aligned, each pair will necessarily map to consecutive page frames
and produce two misses. Figure 8 shows the results, for three different platforms, of
executing the “ padding benchmark” for 100 pairs of references that traverse the array. On
the MIPS R10K, when using a 32KB page size, the recorded TLB miss count for all
offsets except 28,012 bytes is approximately 200; for an offset of 28,012 bytes, the count
drops to approximately half this amount, identifying START _INDEX for the validation
benchmark. On the Power3, when using a 4K B page size, the recorded TLB miss count is
200 for al offsets except 2,260 bytes, at which point it drops by half this amount. Finaly,
on the Itanium, when using a 16K B page size, the recorded TLB miss count for all offsets
except 16,364 bytes is approximately 200, dropping to half this amount for the offset of

16,364.

26

Padding Benchmark (R10K) Padding Benchmark (Power3) Padding Benchmark (Itanium)

€ €

E E

8 38

o o 2

2 @ 2

€ 100 E 100 E 100

o @ o

= = E
50 50 50
0 0 0

28000 28004 28008 28012 28016 28020 28024 2248 2252 2256 2260 2264 2268 2272 16352 16356 16360 16364 16368 16372 16376
Array offset (Bytes) Array offset (Bytes) Array offset (Bytes)

Figure 8. Padding benchmark results for 100 iterations.
4.1.3 Data collection

As mentioned in Section 2.2, the data collection process includes running 100
instances of each test case in a test suite and obtaining the average test-case count for
each test case. The test suite used for the DTLB miss event includes test cases that are
expected to generate from 1 to 10,000 DTLB misses, increasing in powers of 10.
Attempts to include larger test cases (i.e., ones that produce more than 10,000
compulsory DTLB misses) resulted in segmentation faults on the platforms under study.
This could be because either the array size exceeds the size of the defined virtual space of
aprocess or some other system limitation was exceeded, (e.g., alocated user space).

4.1.4 Predicted vs. hardware-reported event counts

Validation of DTLB misses was performed for the experimental platforms A, B, and
C, i.e, platforms (described in Chapter 3) based on the MIPS R10K, IBM Power3, and
Intel Itanium processors. As mentioned before, the R10K and Power3 only support an
event that counts both instruction and data TL B misses, while the Itanium supports events
that count instruction and data TLB misses. Figure 9 presents a comparison of the
predicted and hardware-reported DTLB miss event counts for the three platforms. In this

graph, the y-axis represents the percentage difference between the reported and predicted

27

counts, and the x-axis represents the corresponding test case. Refer to Appendix B for the

hardware-reported data.

Data TLB misses
250%

200% “\
150%

100% \
50% - t
0% —— —3
1 10 100

1000 10000

difference from predicted

number of datareferences

—o— MIPS R10K —— Power 3 —=— ltanium

Figure 9. DTLB miss validation benchmark results.

For the MIPS R10K platform (platform A) the differences between predicted and
reported counts range between 3% and 9%, the predicted being lower than the reported.
At least part of the difference islikely attributable to overhead introduced by PAPI and to
the fact that the monitored event reports a unified count of instruction and data TLB
misses, although ITLB misses for the monitored section of code should be insignificant.

For the Power3 platform (platform B) the differences between predicted and reported
counts start high for test cases with small numbers of data references, but tend to 0% as

the number of data references increase. The hardware reports a consistent count of three

28

for the test case of one data reference, which results in the large percentage difference.
The larger difference for tests cases with small numbers of references may be attributable
in part to the fact that the Power3, like the MIPS R10K, supports only an event that
counts both instruction and data TLB misses.

The Itanium platform (platform C) reported the best results. The worst test case
exhibits a percentage difference of 3%. However, the hardware-reported data tends to
reveal a consistent difference of 0% from the predicted, even for small numbers of data
references. The stability of the results reported by this platform may be explained by the
fact that this particular platform supports a DTLB miss count (i.e., it is not a unified
count, as in the case of the other two platforms) and as aresult, ITLB miss counts are not
afactor.

Finally, another observation that can be made from these findings is that data
prefetching mechanisms are not employed on any of these platforms at the DTLB level.
This is because 1) the reported counts tend to be larger than the predicted; successful
prefetching would have reduced the hardware-reported miss count, i.e.,, would have
masked some of the predicted TLB misses, and 2) the percentage difference remains
constant across the test suite or tends to zero; prefetching would have caused the
percentage difference to continuously increase as test cases accessed more pages and
prefetching masked more expected TLB misses.

4.2 L1 datacache missevent
In genera, the L1 data cache (Dcache) miss event indicates that a cache line

containing data (as opposed to instructions) has been requested by the processor and is

29

not resident in the cache. This happens when a previously unreferenced data cache lineis
accessed for the first time (a compulsory miss) or when a previously referenced line has
been replaced by another (a capacity and/or conflict miss). Cache misses also can occur
as a result of cache invalidations generated to maintain cache coherency in a shared-
memory multiprocessor system (refer to Sections 4.4, 4.5, 4.6and 4.7 for related events).

Modern pipelined architectures execute multiple instructions concurrently. To
facilitate the overlapping of instruction and data fetches, most of these platforms support
separate L1 caches for instructions and data. Such is the case for the target platforms, in
particular platform A, the MIPS R10K (refer to Section 3.1 for a detailed description).
Furthermore, most platforms, including the R10K, also support the monitoring of a
separate event for each of its L1 cache misses. The definition of this event, as described
in the documentation of the R10K, isthe following:
Primary data cache misses:

This counter is incremented one cycle after a request to refill a line of the primary
data cache is entered into the secondary cache transaction processing logic. [8]

This definition seems to indicate that the L1 Dcache miss event is not triggered until
the miss generates a request to the L2 cache.
42.1 Validation microbenchmark

Several attempts were made to predict the L1 Dcache miss event count. All of them
are based on the validation microbenchmark presented in its most basic form in Figure
10. When executed, it traverses the array zz, which is stored in multiple memory blocks.

The array is accessed at regular strides, where the stride is a multiple of thesizeof an L1

30

Dcache line. The goal is to produce a compulsory L1 Dcache miss per array access and to
produce very few other L1 Dcache misses. Achieving this goal would allow a reasonably
accurate prediction of the number of L1 Dcache miss events generated during the

execution of the benchmark.

stride=L1_LINE_SIZE;
for (I=START _INDEX; i<MAX; i+=stride) {

temp += zz[i];

Figure 10. L1 Dcache miss benchmark algorithm.

The basic L1 Dcache microbenchmark was unsuccessful in reaching this goal due to
lack of knowledge of extremely efficient prefetching mechanisms implemented in
modern microprocessors [6]. These prefetch mechanisms hide memory access latencies,
especially with respect to memory-hierarchy levels closer to the processor, e.g., at the L1
and L2 cache levels. Execution of this microbenchmark on microprocessors with stream
buffers [14] or other prefetching mechanisms resulted in hardware-reported miss counts
that were significantly lower than predicted counts, approaching zero as the number of
array references increased [3]. Since information about the prefetching mechanisms used
by processor designers was not readily available, another strategy was employed, i.e., try
to foil the prefetch mechanism [6]. A microbenchmark was designed that randomly
accesses the array. In this case, to predict a count, the memory-access trace was captured

and fed into a cache simulator configured without prefetching and with an LRU cache

31

replacement policy. According to the cross-platform results reported, hardware-reported
counts fall within 10% of predicted counts once the array size supercedes the cache size.

This thesis presents a different attempt at foiling the prefetch mechanism. In this
case, an event count can be predicted without cache ssmulations and, thus, can be more
accurate since a simulator may not capture all of the details of the hardware. The related
L1 Dcache microbenchmark, shown in Figure 11, foils prefetching through the use of
shared memory accessed by two processors concurrently executing the benchmark in a
multiprocessor. It was hypothesized that prefetching mechanisms are not employed when
using shared memory because of the need to maintain cache coherency among processors
and because of the performance penalties associated with prefetching data that is being
used by another processor; as discussed below, the hypothesis was proven to be correct.
As with the benchmarks discussed above, since only compulsory misses are generated, no
assumptions or knowledge about the cache replacement policy or configuration are
required to make a prediction, and cache pollution due to other concurrently executing
processesis not an issue.

The shared-memory benchmark is derived from the benchmark of Figure 10 by
placing the array in shared memory and having two processes, each running on separate
processors, traverse the array and generate the compulsory misses. The array is divided
equally between the two processors. During the first phase of execution each process
initializes one half of the array; during the second phase, the half initialized by one

process is traversed by the other. For the R10K platform used, process execution on

32

separate processors was ensured by means of the sysmp system call, which is described in

Table 1 of Section 3.1.

stride= L1 _LINE_SIZE;
HALF _SIZE = ARRAY_SIZE/ 2
// Phase 1
I/ Process 0 has OFFSET == 0, Process 1 has OFFSET == HALF_SIZE;
for (I =0; i <HALF_SIZE; i += stride) {
zz[i+OFFSET] = 0; // Initidlize array
}
I/ Phase 2
Il Process 0 has OFFSET == HALF_SIZE, Process 1 has OFFSET == 0;
for (I =0; i< HALF_SIZE; i += stride) {

temp += zz[i+OFFSET];

Figure 11. Shared-memory L1 Dcache miss benchmark algorithm.

The first phase of the benchmark accomplishes two things: 1) initializes (writes) the
array so that the read instructions of the second phase are not removed during compile
optimization and 2) guarantees that each half of the array is exclusively owned by the
cache of the initializing processor. Note that only array elements that map into the stride
need to be initialized. Array elements in between stride elements are not accessed. They

are brought into the cache on cache misses generated by an access to a stride element.

33

Phase two of the benchmark causes each process to traverse, at regular strides, the
half of the array initialized by the other processor. Each reference to the array during the
second phase produces a compulsory cache miss. It should be noted that a barrier is
needed between phases in order to ensure that both processes are synchronized when they
start executing the second phase. If synchronization is not enforced between phases, a
process could potentially start referencing elements that have not been initialized. The
predicted event count is equal to the number of for-loop iterations executed in this phase.
4.2.2 Data Collection

As mentioned in Section 2.2, the data collection process includes running test cases
for 100 runs and obtaining the average test-case count. The test suite used for the L1
Dcache miss event includes test cases that are expected to generate from 1 to 1,000,000
array references and L1 Dcache misses. The counts generated by both processors are
monitored separately; that is, one test case is executed to monitor the behavior of
processor 0 and a second execution of the same test case is executed to monitor the
behavior of processor 1.

4.2.3 Predicted vs. hardware-reported event counts

Figure 12 presents the predicted and hardware-reported L1 Dcache miss event counts
for both processors involved in the execution of the benchmark. The y-axis represents the
percentage difference between the hardware-reported counts and the predicted counts,
and the x-axis represents the number of array references generated by the benchmark.

Refer to Appendix B for the hardware-reported data.

L1 data cache misses (R10K)

500%
400% -
300%

200% \ \

100%

0% K‘ p— L g T L T L g

1 10 100 1000 10000 100000 1000000

Difference from predicted

Number of data references

‘ —e— Processor 0 —a— Processorl

Figure 12. L1 Dcache miss validation benchmark results.

The results illustrate that the difference between predicted and reported counts is
large for test cases with numbers of references below 10 but rapidly decreases and
approaches zero as the number of references increases. A possible source for the
discrepancy isthe overhead introduced by PAPI, which is more notable in the smaller test
cases. The benchmark is designed to generate compulsory misses due to array accesses.
Thus, cache pollution due to other processes should not affect the count. Furthermore,
PAPI segregates between the misses generated on behalf of the benchmark process and
other processes executing concurrently. However, PAPI data (i.e., variables and constants
set and used by the PAPI interface) referenced by the benchmark via PAPI start and stop
calls and PAPI housekeeping routines (refer to Appendix A for description) can be

susceptible to cache pollution from other processes and from the execution of the

35

benchmark itself. This may be the cause of some of the misses included in the hardware-
reported counts. In addition, the fact that the standard deviation of the experiments
remains fairly constant (below three for both processors for all test cases) supports the
idea that the overhead introduced by PAPI is the predominant source for deviation, as
opposed to other external factors such as kernel processes or other processes in the
processor’s workload. Refer to Appendix B for the hardware-reported data. The latter
could cause additional cache misses but their affect would vary depending upon their
level of perturbation for each run. Finally, a standard deviation value of below three may
be good for test cases with a number of references of 100 and above, but may not be
reliable enough for test cases with fewer references. In other words, the granularity of the
monitored code executed when test cases are below 100 data references is not sufficient
for PAPI to provide areliable count.

Figure 12 aso shows a difference between the hardware-reported event counts of the
two processors. This may be due to the variations in the workload of each processor and
the resultant perturbation caused by other processes. For example, if kernel processes
generally run on processor 0 and shorter-running, user processes mainly run on processor
1, then the longer-running kernel processes (i.e., processes, such as daemons, that
repeatedly execute in the background for longer periods) may cause a greater perturbation
on processor 0. However, this type of perturbation should be insignificant, especially
w.r.t. variations of the benchmark that generate large numbers of references. The results
seem to concur with this hypothesis, given that the gap separating the graphs associated

with the two processors approaches zero as the number of references increases.

36

4.3 L2datacache missevent

The L2 Dcache miss event is similar to the L1 Dcache miss described in Section 4.2.
However, in the case of the L2 cache, some platforms implement separate L2 caches for
data and instructions and others implement a unified L2 cache, asis the case in the R10K
platform (i.e., platform A described in Section 3.1), which is used to validate this event.
Nonetheless, this platform does support separate events for L2 Icache misses and L2
Dcache misses. The definition of the L2 Dcache miss event is described in the
documentation of the R10K as:

Secondary data cache misses:

This counter isincremented the cycle after the second quadword of a data cache line
iswritten from the main memory, while the secondary cache refill continues. [8]

This definition indicates that the event is triggered while the data request that missed
on the L2 cache is being satisfied by main memory. It aso indicates that the cache is
refilled by a quad-word at atime. Thus, eight transactions are needed to load the 128-byte
line of the L2 cache.

The method used to predict and collect hardware-reported L2 Dcache miss event
counts mirrors that used to for the L1 Dcache miss event. The L2 Dcache miss validation
microbenchmark essentially is the same as its L1 Dcache counterpart (refer to Figure 11
in the previous section). The only difference is that the L1 LINE_SIZE constant is
replaced by the L2_LINE_SIZE constant. The test suite includes test cases that generate

an expected count of L2 Dcache misses that range from 1 to 1,000,000.

37

4.3.1 Predicted vs. hardware-reported event counts

Predicted and hardware-reported counts are presented in Figure 13, where the y-axis
represents the percentage difference between the reported and predicted counts and the x-
axis represents the test cases, i.e., the number of data references or L2 Dcache misses

generated by the test cases. Refer to Appendix B for the hardware-reported data.

L2 data cache misses (R10K)

12%
10% ’\

8% \
6% \

4% \

2% - .*f
0% T T L — = T - T -

1 10 100 1000 10000 100000 1000000

Difference from predicted

Number of data references

‘ —e— Processor 0 —a— Processorl

Figure 13. L2 Dcache miss validation benchmark results.

These results are similar to the results obtained for the L1 Dcache miss event. The
discrepancy between predicted and hardware-reported counts is greater for smaller test
cases and approaches zero as the number of data references increases. There is an
important difference, however; the maximum discrepancy for small test cases is severd
orders of magnitude smaller than it is for the L1 Dcache miss event. This behavior is

expected—it is due to the difference in the reachability of the different size cache lines.

38

In other words, assuming that PAPI data exhibits good locality of reference, the larger L2
cache line size (128 bytes) should make the external perturbations shown in the previous
figure less significant than they are for the L1 Dcache (with aline size of 32 bytes).
4.4 Cacheintervention request event

On a multiprocessor system, the cache intervention event is related to the cache
coherency family of events. The cache intervention event in a directory-based system
occurs in the following scenario. Suppose a cache line is held exclusively at some
processor’ s cache -- this processor is considered the exclusive owner of the line. In this
case, if the cache has a write-back policy and the line is dirty (i.e., it was modified while
cache resident), then the main memory copy of the line is stale. When another processor
generates a cache miss for the same line, the cache coherence unit ensures that the
processor gets the up-to-date data by requesting a write-back from the owner processor’s
cache, which subsequently is sent to the requesting processor. This is called an
intervention request to the owner cache [13]. A large number of intervention requests
indicates that processors frequently are reading the same data (or data that coincidently
maps to the same cache line) that other processors are modifying. Identifying such a
producer-consumer situation and improving its performance by introducing
synchronization of reads and writes or distributing the common data across multiple
cache lines can reduce the number of intervention requests. Such corrective actions can
alleviate the writing processors from having to reinstate exclusive access before rewriting
the data and allowing the reading processors to retain read elements longer in their

caches.

39

The platform used to validate this event is platform A, the R10K platform described
in Section 3.1, which implements a directory-based cache coherency protocol at the L2
cache level. The platform documentation describes the cache intervention request event
asfollows:

External intervention requests:

This counter isincremented on the cycle after an external intervention request enters
the secondary cache transaction processing logic. [8]

This indicates that the event is triggered as soon as the intervention request is
received by the logic of the targeted cache and not after it has been satisfied. It should be
noted that even though this work is focusing on data references, since the R10K L2 cache
is unified, this event potentially can be triggered by both data and instruction references.
However, since instruction cache lines are hardly ever modified (i.e., self-modifying code
IS not common), the probability of instruction references triggering this event is near
zero.

44.1 Validation microbenchmark

In order to validate the count for the cache intervention request event, a
microbenchmark that involves two concurrently executing processes is employed. Each
process runs on different processors, processors 0 and 1, and both processes traverse a
shared array. During the first phase of the benchmark, processor O initializes the array
and, as aresult, its cache exclusively owns the array. During the second phase, processor
1 reads the array, generating cache intervention requests to the cache of processor O,

which is the monitored processor. The basic benchmark follows in Figure 14.

40

stride= LINE_SIZE;

// Phase 1

I/l Process O initializes array, exclusively owned in its cache, Process 1 sets counter
if (myid ==0) {

for (I =0; i <ARRAY_SIZE; i += stride)

zz[i] =0;
}
else
counter = 0;
I/ Phase 2

/I Processor 1 traversesinitialized array, causing interventions on Processor 0.
/I Processor 0 busy-waits until Processor 1 finishes traversal.
if (myid==0) {

while (counter < NUM_ITER);
}
else{

for (I =0; i <ARRAY_SIZE; i +=stride) {

zz[i] =0;

counter++;

Figure 14. Cache intervention requests benchmark algorithm.

41

The array traversal by both processes is made with a stride of a cache line size.
Additional references to the same line will not cause additional interventions. Notice that
the shared variable, counter, which causes processor O to busy-wait while processor 1
generates intervention requests to processor O, is accessed by both processors, but is
modified only by processor 1. Since only processor O is monitored for cache intervention
requests, the intervention requests for processor 1 generated by processor O referencing
the counter variable are not included in the hardware-reported count. Only the
intervention requests for processor 0 generated by processor 1 writing the zz array are
included in the reported count. Thus, the predicted event count is NUM_ITER, the
number of elements of the zz array written by processor 1. However, the prediction will
hold only as long as the array size does not surpass the cache size. If the array is larger
than the cache size, the first cache lines accessed during phase one will be replaced by
ones accessed later; by the time the execution of the second phase starts, only the
elements that remain in the cache of the initializing processor will trigger the event.

It also should be noted that a barrier is needed between phases in order to ensure that
processor 1 does not start traversing the array before it has been completely initialized by
processor O; otherwise, the expected count could diverge from the predicted due to
unsynchronized process execution.

4.4.2 Data collection

As mentioned in Section 2.2, the data collection process includes running test cases

for 100 runs and obtaining the average test-case count. The test suite used for the cache

intervention request event includes test cases that are expected to generate from 1 to

42

10,000 events of this kind, increasing by powers of 10. Including larger test cases is not
productive because the array size must be smaller than the cache size. The R10K’s L2
cache stores atotal of 8192 cache lines. Two test cases greater than 8192 are included in
the test suite to reaffirm the microbenchmark’ s limitation on test case size.
4.43 Predicted vs. hardware-reported event counts

Figure 15 presents the cache line intervention event counts predicted and the event
counts reported by the hardware; the y-axis represents the percentage difference between
the reported count and the predicted count, and the x-axis represents the number of array

references. Refer to Appendix B for the hardware-reported data.

PAPI_CA_ITV (MIPS R10K)
300%
©
9
S 250% |3
©
o
o 200% -
5
= 150%
[¢D)
3 \
S 100%
3
-"_g 50% -
X
O% T T \A T - T A\ T T T T T T
4 O o O o o o o o o o o o
4 & © 6 6 ©6 © 6 6 ©o o© o
4 O o © © © o
— (V] (9p] <t Lo (o] N~ 0 (o)) 9'
number of references

Figure 15. Cache intervention requests validation benchmark results.

43

The results indicate that a small number of reported events are not included in the
predicted counts. This small difference is more noticeable in small test cases, which
reference few data cache lines. This could be due to cache pollution from other processes,
which may replace array cache lines in the initializing processor before the other
processor reads them. The difference starts to widen at about 4000 data references. Cache
consistency is kept at the L2 cache level and the L2 cache size on the R10K is IMB with
a line size of 128 bytes. This means that the total number of L2 cache lines is 8192;
furthermore, the L2 cache is a unified cache, which means that some lines may store
instructions. While it is not clear exactly how many lines hold data, the results indicate
that the prediction holds until the cache is half full of data; after that point the prediction
starts to decrease in accuracy. The platform documentation does not mention how cache
lines are distributed among instructions and data at the unified L2 cache. Even assuming
the cache lines are assigned in a first come first served basis, the number of cache lines
assigned to data would still be difficult to ascertain due to external processes executing
concurrently.

45 Cacheinvalidation request event

On a multiprocessor system, the cache invalidation event is related to the cache
coherency family of events. By far, the most popular cache coherency protocol typeisthe
write-invalidate. As described by [13], this method implements cache coherency by
giving a processor exclusive access to a data item before writing to it. Exclusive access of
a data item is achieved by defining its cache state as exclusive and invalidating copies

resident in other processors caches on a write. The invalidation of these other copies

44

forces other reading processors or a writing processor to generate a cache miss and fetch
a fresh copy when next accessing the cache line. In this case, a reading processor
generates aread miss, which results in fetching the copy updated by the writing processor
and changing the line’s state in both processors’ caches to shared. On the other hand, if
thelineis held in the exclusive state, then the processor generating the write miss (i.e., the
“new” owner) causes the updated copy to be fetched from the “previous’ owner and the
line to be invalidate in the previous owner’s cache. Accordingly, write seriadization is
also enforced by the protocol.

A cache line invalidation request occurs when a processor is signaled to invalidate
one of its cache lines. This event can be helpful in identifying performance bottlenecks in
multiprocessor applications due to ping-ponging (i.e., processors aternately invalidating
each other’s cache lines). In this case performance can be improved by introducing
synchronization of writes and distributing the common data across multiple cache lines.
Such corrective actions can alleviate the writing processors from having to reinstate
exclusive access before rewriting the data.

The platform used to validate this event is the R10K platform described in Section
3.1, which implements a directory-based cache coherency protocol at the L2 cache level.
The platform documentation describes the cache invalidation request event as follows:
External invalidation requests:

This counter is incremented on the cycle after an external invalidate request enters

the secondary cache transaction processing logic. [§]

45

This indicates that the event is triggered as soon as the invaidation request is
received by the logic of the targeted cache and not after it has been satisfied. It should be
noted that even though this work is focusing on data references, since the R10K L2 cache
is unified, this event can potentialy be triggered by both data and instruction references.
However, since instruction cache lines are hardly ever modified (i.e., self-modifying code
IS not common), the probability of instruction references triggering this event is near
zero.

45.1 Validation microbenchmark

The validation microbenchmark for this event involves two processes, each
executing on separate processors. It forces the occurrence of ping-ponging between them.
One processor, say processor 0, writes to a shared variable and requests exclusive access
to the appropriate cache line. Next, processor 1 writes to the same shared variable and
causes the invalidation of the line in the cache of processor 0. This sequence of eventsis
repeated a determined number of times to generate a predicted count. The key factor in
generating the intended event is the synchronization between the processors. Processor 0
has to wait until its cache line is invalidated before attempting to write and invalidate the
other processor’s cache line. If write serialization is not enforced in the benchmark, then
the cache coherency protocol will enforce it, but the non-determinism resulting from this
will complicate the analysis of the benchmark. Enforcing synchronization by means of
barrier implementations available on the target platform (e.g., system calls or library
calls) proved not to be idea because it appears that the barrier causes an unpredictable

number of invalidations or causes a process to block, which may affect the event count. A

46

predictable number of invalidations is generated by implementing the barriers in the
benchmark itself. This was done by having one processor, say processor 0, busy wait
until the other processor, say processor 1, writes the shared variable. Subsequently,
processor 1 busy waits until the processor 0O writes. Busy waiting is implemented by
having the processor repeatedly read the shared variable until the appropriate condition is
satisfied, i.e., the other processor changes its value. Reading the shared variable does not
cause invalidations in the writing processor’s cache and, as a result, busy waiting does
not affect the event count. The basic benchmark follows in Figure 16.

In the benchmark, each processor is assigned a constant value (e.g., processor 0 gets
constant X and processor 1 gets constant Y) with which it sets the value of the shared
variable and busy waits until the variable is modified. Execution of the writes and busy-
waits alternates between the processors. In order to enforce determinism in the alternation
sequence, the shared variable should be initialized before either of the processes entersits
for-loop. The initializing value should be the constant associated with the processor that
is intended to execute the busy-wait instruction first. Initializing the shared variable to
any other value potentially could create a race condition between the processes at the
write instructions. This would have to be handled by the hardware and could introduce
non-determinism with respect to generating the intended event. Only one processor is
monitored at a time, and the predicted count is equal to the number of for-loop iterations

executed; num_iter in the case of the benchmark of Figure 16.

a7

Il Shared variableinitialized to constant Y
s=Y;
Il Processor O invalidates Processor 1 cache line and busy waits
if (myid==0) {
for (1I=0; i<num_iter; i++) {
s=X;
while (s == X);
}
I/ Processor 1 busy waits until processor 0 invalidates its line and then reciprocates
} else{
for (1I=0; i<num_iter; i++) {
while (s==Y);

s=Y;

Figure 16. Cache invalidation requests benchmark algorithm.
4.5.2 Data collection
As mentioned in Section 2.2, the data collection process consists of running test
cases for 100 runs and obtaining the average test-case count. The test suite used for the
cache invalidation request event includes test cases that are expected to generate from 1

to 1,000,000 events of this kind.

48

453 Predicted vs. hardware-reported event counts

Figure 17 presents the cache line invalidation request event counts predicted and the
event counts reported by the hardware. The y-axis represents the percentage difference
between the reported counts and the predicted counts, and the x-axis represents the
number of cache line invalidation requests generated by the validation benchmark. Refer

to Appendix B for the hardware-reported data.

PAPI_CA_INV (MIPS R10K)

12.00%
10.00% «
8.00% \
6.00% H \
4.00%
2.00% \

0.00% T T T T T

% difference from predicted

100
1000
10000
100000
1000000

number of references

Figure 17. Cache invalidation requests validation benchmark results.

The results indicate that there is a small perturbation throughout the test cases that is
more significant when the intended number of cache invalidation requests is small. In
general, the percentage difference is positive, which indicates that the reported count is

greater than or equal to the predicted count (refer to Section 2.3 for the percentage

49

difference formula used). The source of the additional invalidation requests could be due
to write instructions executed speculatively and then discarded when a branch is
mispredicted. There are two branch instructions in the benchmark: a conditional branch
used to implement the for-loop and a conditional branch used to implement the busy-
wait. Although the for-loop branch instruction is expected to be predicted correctly most
of the time, especially for larger test cases, the same cannot be expected for the busy-wait
branch. This is because the number of times that the busy-wait branch instruction is
executed varies from iteration to iteration: it depends on the behavior of the other
process. Consequently, the number of times that the busy-wait branch instruction is
consecutively resolved in the “taken” direction varies as well. This behavior could result
in inefficient performance on behalf of the branch prediction mechanisms employed.
Furthermore, the cache coherence protocol has to ensure exclusive access to data before a
write instruction commits (i.e., the invalidation request has to be processed before the
actual commit of data to a physical register or memory). Thus, if the processor
architecture alows speculatively executed invalidation requests, the following situation
could arise. A speculatively executed write instruction generates an invalidation request
so that it can modify the targeted data. After the invalidation request is processed, the
write resides in the reorder buffer awaiting the commit of a dependent branch instruction
that is yet to be resolved. If the pending branch was mispredicted, an “extra’ invalidation
request event, not associated with an actual write, occurs. If thisisthe case, the hardware-
reported count could include speculatively-executed invalidation requests generated on

behalf of discarded instructions.

50

Figure 18 shows the number of mispredicted branch instructions reported for the
benchmark. The mispredicted branch event count was collected using PAPI, where both
the request for cache invalidation and the mispredicted branch instruction events were
monitored concurrently on each run. The x-axis represents the benchmark test case size
and the y-axis represents the average of the reported event counts for branch
mispredictions for 100 runs of each test case. The y-axisisin logarithmic scale to show
the proportional increase w.r.t. test-case size. As the test-case size increases, so does the
number of mispredicted branches. If the hypothesis of speculatively-executed
invalidation requests is correct, as the number of mispredicted branches increases thereis

more potential for speculatively-executed invalidation requests to be generated.

PAPI_BR_MSP (MIPS R10K)
10000000
1000000 -
100000 ’.//////;»//////,
10000 P
1000

10

1

reported count (avg of 100)

100
1000
10000
100000
1000000

number of references

Figure 18. Branch mispredictions on the cache invalidation requests benchmark.

51

4.6 Request for exclusive accessto a shared cacheline

On a multiprocessor system, the request for exclusive access to a shared cache line
event is part of the cache coherency protocol family of events. This event should be
triggered when a processor attempts to write a cache line that is in the shared state. When
this happens, the line is invalidated in the caches of all other processors in order to
maintain cache coherency In the case of the R10K platform described in Section 3.1, the
state of the cache line is set to dirty exclusive and is resident only in the cache of the
writing processor, which is now considered the “owner” of the cache line. This event can
be helpful in identifying performance bottlenecks in multiprocessor applications that are
due to the ping-pong effect (i.e., processors alternatively invalidating each other’s cache
lines). If identified, this effect could be eliminated by synchronizing the reads and writes
of executing threads/processes or, in the case of false sharing (i.e., the case where
different processors access different variables that map to the same cache line), by
offsetting data to force references to different cache lines.

This event is validated on the R10K platform, which implements a directory-based
cache coherency protocol at the L2 cache level. The platform documentation describes
the requests for exclusive access to a shared cache line as follows:

Soresor prefetches with store hints to shared secondary cache blocks:

This counter isincremented on the cycle after a request to change the shared state of

the targeted secondary cache line to dirty exclusive is sent to the secondary cache

transaction processing logic. [8]

52

This indicates that the event is triggered as soon as the request is sent from the
originating processor and not after it has been received by the target processor.
4.6.1 Validation microbenchmark

The validation microbenchmark for the request for exclusive access to a shared
cache line event, shown in Figure 19, is executed by two processes running on two
different processors. During the first phase of the benchmark, one processor (e.g.,
processor 0) initializes elements of the array. During the second phase, the other
processor (e.g., processor 1) consecutively reads and writes the same elements of the
array. A barrier is needed between phases in order to ensure that processor 1 does not
start traversing the array before it has been completely initialized by processor O,
otherwise the hardware-reported count could diverge from the predicted due to
unsynchronized access.

The array is stored in multiple memory blocks allocated in shared memory. As a
result, when processor O attempts to initialize an element of the array, it generates a
request for exclusive access to the referenced cache line. Since the line is not resident in
any other processor’s cache, it does not generate the subject event. This causes the state
of the accessed cache line, stored only in its cache, to become dirty exclusive. When
processor 1 read misses on one of these cache lines, the state of the line, in both caches,
becomes shared. Subsequently, when processor 1 attempts to write to a shared cache
line, it generates a request for exclusive access to the referenced cache line but now the
referenced cache lineis in the shared state so the subject event is generated. These write

misses cause the state of the associated lines to change to dirty exclusive and invalidate

53

the corresponding cache linesin all other processors. Cache coherency protocols typically
work at the cache line level and not at the individual word level. Therefore, the array is
accessed at strides equal to the cache line size. Only one word in a line needs to be
written in order to generate the event; modifications to other words in the same line may

not trigger the event. The goal is to produce one event per access.

stride=LINE_SIZE;
// Phase 1
/I Process O initializes array, cache line becomes “dirty exclusive”
for (I =0; i <ARRAY_SIZE; i +=stride) {
zz[i] =0;
}
I/ Phase 2
I/ Processor 1 traversesthe initialized array
for (I =0; i< ARRAY_SIZE; i +=stride) {
temp += zz[i]; // Read shared array, cache line becomes shared

zz[i] = 1; /] Write shared cache line, request exclusive access

Figure 19. Requests for exclusive access to a shared cache line benchmark algorithm.

The first phase of the benchmark accomplishes two tasks: 1) it initializes the array so

that the read instructions of the second phase are not removed during compile

54

optimization and 2) it guarantees that the cache lines that store the array are exclusively
owned by the cache of the initializing processor. As mentioned above, only array
elements that map into the stride need to be initialized. Phase two of the benchmark
causes the other processor to traverse the initialized array at regular cache-line strides.

The predicted count is equal to the number of for-loop iterations executed in the
second phase of the benchmark; however, the prediction only holds as long as the array
does not surpass the number of lines that can be simultaneously resident in the cache. If
the array is larger than the cache, the first elements initialized in phase one will be
replaced by later-referenced ones. By the time the execution of the second phase starts,
only the elements that remain in the cache of the initializing processor can trigger the
event.
4.6.2 Data Collection

As mentioned in Section 2.2, the data collection process consists of running test
cases for 100 runs and obtaining the average test-case count. The test suite used for the
requests for exclusive access to a shared cache line event includes test cases that are
expected to generate from 1 to 10,000 events of this kind. Including larger test cases is
not productive because of the benchmark requirement mentioned above (i.e., the array
size must be smaller than the cache size). The target platform’s (i.e., the R10K’s) L2
cache stores atotal of 8192 cache lines. Two test cases greater than 8192 are included in

the test suite to reaffirm the microbenchmark’s limitation on test case size.

55

4.6.3 Predicted vs. hardware-reported event counts

Figure 20 presents the predicted and hardware-reported counts. The y-axis represents
the percentage difference between the reported counts and the predicted counts, and the
X-axis represents the test cases, i.e., the number of intended requests for exclusive access

to ashared cache line. Refer to Appendix B for the hardware-reported data.

Requests for exclusive access to a shared cache line

(MIPS R10K)
©
2 25.00%
©
T 20.00% I
= /
g 15.00% /
© 10.00% /
o
E" 5.00% /
.-§ 0.00% # T e I e I e I e I : T T T T T T T
> — o o o o o o o o o o o o
— o o o o o o o o o o o
— o o o o o o o o o o
— N (0] <t Lo (o] N~ o0 ()} 8

number of references

Figure 20. Requests for exclusive access to a shared cache line validation benchmark
results.

The predicted and reported counts are equal for small test cases. The difference
between these counts starts to widen at about 4000 data references and notably jumps for
test cases that generate more than 8000 data references. As mentioned above, cache
coherency is kept at the L2 cache level and the L2 cache size on this platform is IMB

with aline size of 128 bytes. This means that the total number of linesfor the L2 cacheis

56

8192. Furthermore, the L2 cache is a unified cache, which means that some lines can be
used to store instructions. While it is not clear exactly how many lines are used for data,
the results do seem to indicate that the prediction holds until half the cache contains lines
associated with the referenced array. After this point, athough the accuracy of the
prediction starts to decrease, the difference between the predicted and reported counts
holds below five percent until the test case of 8000 data references. The difference varies
widely once the array exceeds the size of the cache. This is expected since the first cache
lines initialized during phase one will be replaced by ones accessed later; by the time the
execution of the second phase starts, only the elements that remain in the cache of the
initializing processor will trigger the event.
4.7 Request for exclusive accessto a clean cacheline

On a multiprocessor system, the request for exclusive access to a clean cache line
event is part of the cache consistency protocol family of events. On the R10K platform
described in section 3.1, this event is triggered when a processor attempts to write a cache
line that is in the clean exclusive state. A cache line is said to be in the clean exclusive
state when the line is in the cache of only one processor, which is considered the
“owner”, and the line has not been modified during this cache residency. The clean
exclusive state is not supported by some multiprocessor platforms. Instead it is considered
to be part of the more general “shared” state, which is the state of aline that was cached
as aresult of aread miss and has not been modified during this cache residency. When
the clean exclusive state is supported, it can help reduce the cache latency generated by

read-modify-write operations and the cache coherency protocol. Thisis because the clean

57

exclusive state indicates that there is no need to invalidate any other processor’s cache
when the line is modified and, therefore, there is no need to verify the directory. If only
the shared state is used, the directory hasto be referenced every time alineis modified to
verify the existence of replicated cache lines that need to be invalidated.

The platform used to validate this event is the R10K platform described in Section
3.1, which implements a directory-based cache coherency protocol at the L2 cache level.
The platform documentation describes the requests for exclusive access to a clean cache
line event as follows:

Soresor prefetches with store hint to clean exclusive secondary cache blocks:

This counter is incremented on the cycle after a request to change the clean
exclusive state of the targeted secondary cache line to dirty exclusive is sent to the
secondary cache transaction processing logic. [8]

The definition indicates that the event is triggered as soon as the request is sent from
the originating processor and not after it has been received by the target processor.

4.7.1 Validation microbenchmark

The validation microbenchmark for the request for exclusive access to a clean cache
line event consists of code that executes one traversal of an array that is stored in multiple
memory blocks in shared memory. The traversing processor loads a block of the array
into its cache so that it can read it, modify it, and then write it. This forces the cache line
to change from the clean exclusive state to the dirty exclusive state and trigger the event
under study. The array is accessed at regular strides of the size of a cache line. Only one

word in the line needs to be manipulated in order to generate the intended count. Based

58

on the discussion presented for the validation of the L1 and L2 data cache miss events
described in Sections 4.2 and 4.3, data in shared memory is not prefetched. The shared
array is divided in half, and each process traverses one half. The basic benchmark is

shown in Figure 21.

stride=LINE_SIZE;
HALF SIZE = ARRAY_SIZE/ 2
/I Process 0 has OFFSET == 0;
Il Process 1 has OFFSET == HALF_SIZE;
for (I =0; i <HALF_SIZE; i +=stride) {
temp += zz[i+OFFSET] // Read uncached line: Lineis clean exclusive

zz[i+OFFSET] = 0; // Writeline: Lineis set to dirty exclusive

Figure 21. Requests for exclusive access to a clean cache line benchmark algorithm.

Note that the array is not initialized by either process. If the array is explicitly
initialized by one of the processes then the array would be cached in the dirty exclusive
state and the benchmark would not have the intended effect. On the other hand, if the
array is not initialized, then the read instruction in the for-loop body could be suppressed
by the compiler, leaving only the write instruction, which again affects the event
outcome. The array needs to be initialized without causing it to become cache resident,
i.e,, uncached, before the execution of the benchmark’s main for-loop starts. Two

alternatives are presented for this. The first one assumes an LRU replacement policy for

59

the cache. A secondary array that is bigger than the cache size is used to populate the
cache after the zz array has been initialized. That is, after executing afor-loop to initialize
the zz array, another for-loop is executed to write to the secondary array; this second for-
loop will cause the replacement of the cache lines associated with the zz array. The only
problem with this approach is that additional knowledge of the cache is needed (i.e.,
cache size, associativity, and replacement policy). A second alternative isto initialize the
zz array and cause it to be uncached via the use the calloc system call, which is used to
alocate its memory space. The calloc system call, if available on the target platform, is
guaranteed to allocate memory space and set it to zeroes. Typical implementations of this
system call include instructions that initialize the memory space via additional hardware
(e.g., /0O instructions can map the /dev/zero file to the address space) on behalf of the
CPU and, as a result, caching the array is not necessary for initialization purposes.
Implementations of the calloc system call usualy are optimal w.r.t. initializing memory
space; using approaches as the one described above permits address space initialization to
be done concurrently with process execution. On the target platform, platform A
described in Section 3.1, the calloc system call approach was used.

It should be noted that this microbenchmark is performing symmetric operations on
both processors. Therefore, this event should be triggered symmetrically on both
processors. Assuming the behavior of one processor is replicated on the other, only one
processor is monitored for validation purposes. The predicted count for the validation

microbenchmark is given by the number of iterations executed in the main for-loop.

60

4.7.2 Data collection

As mentioned in Section 2.2, the data collection process consists of running test
cases 100 times and obtaining the average test-case count. The test suite used for the
requests for exclusive access to a clean cache line event includes test cases that are
expected to generate from 1 to 1,000,000 events of this kind.

4.7.3 Predicted vs. hardware-reported event counts

Validation of this event was performed on the R10K platform described in Section
3.1, which supports the clean exclusive cache line state. As discussed above, the calloc
system call approach was used to initialize the zz array of the validation microbenchmak.
The implementation of the calloc system call used is the one provided by default on the
IRIX 6.5 platform. Based on the results presented below, this implementation of the
calloc system call initializes the array without caching it.

Figure 22 presents the predicted requests for exclusive access to a clean cache line
event counts and the event counts reported by the hardware; the y-axis represents the
percentage difference between the reported and predicted counts, and the x-axis
represents the number of array references. Refer to Appendix B for the hardware-reported
data

The results indicate that the predicted and hardware-reported counts agree to within
1%. Thisis the case except for the test case that is intended to generate one event. In this
case the standard deviation is 0.40, which indicates that there is some small overhead that
is not being considered in the prediction of the event count. It is suspected that this small

perturbation may be introduced by the initialization calls of PAPI itself in conjunction

61

with the operating environment. This is because the perturbation is not constant but it
becomes insignificant as the test case gets larger. For the test case of 1,000,000 data

references the difference is practically zero.

PAPI_CA_CLN (MIPS R10K)

25.00%
©
£ 20.00% «
2
Q
e 15.00% -
o
©
S 10.00%
o
Q@
O 5.00%
O\O \

0.00% 2 ¢ * - —— o

1 10 100 1000 10000 100000 1000000
Number of references

Figure 22. Requests for exclusive access to a shared cache line validation benchmark
results.

Chapter 5
CONCLUSIONSAND FUTURE WORK

Efficient tools that allow the monitoring of application performance are in demand
by the high-performance computing community. Performance counters provide a way to
monitor the behavior of the microarchitecture without intrusively affecting its
performance. Although most modern computing platforms include some sort of on-chip
monitoring hardware, limited documentation is usually provided in regard to its use and
the meaning of the data delivered by the hardware. Furthermore, the specific
implementation issues of each platform make it difficult to define a standard. The
Performance API project [12] has introduced a reliable, periodically upgraded tool that is
easy to use and provides a common front-end across platforms. PAPI is a widely
accepted tool. Its use potentially can have a great impact in monitoring the performance
of applications, including those that run on heterogeneous systems using GRID
technology.

To facilitate the use of PAPI, research is needed to address the reliability and
usefulness of the data delivered by performance counters via PAPI. This thesis presented
the results of such research for a set of seven events.

51 Summary of results

This thesis and the previous work referenced herein address the issues of the

reliability and usefulness of the data delivered by performance counters via PAPI. This

clearly is an important issue considering the wide acceptance of PAPI. The following

62

63

table lists the events studied in this thesis, the platforms on which they were validated,

and observations for each.

Table 3. Summary of events studied.

Event Platform Observations
MIPS Reported counts are very accurate; very low
overhead (4%) if event granularity is
R10000 .
sufficiently large.
Data TLB misses A multiplicative difference of three for large
Power3
test cases.
ltan A multiplicative difference of five for all test
tanium
cases.
Reported counts are very accurate; very low
L1 dqta cache MIPS overhead (almost 0%) if event granularity is
misses R10000 =
sufficiently large.
Reported counts are very accurate; very low
L2 da_ta cache MIPS overhead (almost 0%) if event granularity is
mi Sses R10000 -
sufficiently large.
. Reported counts are very accurate; very low
. Cache I!ne MIPS overhead (almost 0%) if event granularity is
interventions R10000 -
sufficiently large.
: Reported counts are very accurate; constant
Cacheline MIPS i 0
invalidations R10000 | Overhead of approximately 2% once event
granularity is sufficiently large.
Requests for Reported counts are very accurate; practically
. MIPS
exclusive access to R10000 no overhead.
ashared cacheline
Requests for MIPS Reported counts are very accurate; constant
exclusive access to overhead of approximately 1% once event
: R10000 S .
aclean cacheline granularity is sufficiently large.

5.2 Futurework

Further work is necessary to investigate the impact of dynamic memory allocation
and initiaization on the data TLB miss event. Inconsistencies were observed on the
Itanium and Power3 platforms when alternating between the calloc and malloc functions
for memory allocation and initialization.

Also, because of time and resource limitations, the work presented in this thesis
focused only on three platforms — the IBM Power3, MIPS R10000, and Intel Itanium
processors. All events except the data TLB miss event were validated for only one
platform, the Origin 2000, which is based on the MIPS R10000 processor. Nonetheless,
the microbenchmarks and tools developed as part of this thesis will facilitate the
validation of the studied set of events on other platforms that support them. Processors
for this future work are those of interest to the Department of Defense, the sponsor of this
research: the Pentium microprocessor and new generations of the architectures studied,
the MIPS R12000, the Power4, and the Itanium 2. These are or are becoming widely
available, and PAPI support is either available or under way. Finaly, the work presented
in this thesis forms the basis for validating other multiprocessor events supported by

PAPI.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

S. Browne, J. Dongarra, N. Garner, K. London and P. Mucci, “A
scalable cross-platform infrastructure for application performance
tuning using hardware counters,” in Proceedings of the 2000
ACM/IEEE Conference on Supercomputing. November 2000.

K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour and T.
Spencer, “End-user tools for application performance analysis
using hardware counters,” in International Conference on Parallel
and Distributed Computing Systems. Dallas, TX, August 2001.

M. Maxwell, P. Teller, L. Salayandia and S. Moore, “Accuracy of
performance monitoring hardware,” in Proceedings of the 2002
Los Alamos Computer Science Institute Symposium. October 2002.

M. Maxwell, S. Moore and P. Teller, “Efficiency and accuracy
issues for sampling vs. counting modes of performance monitoring
hardware,” in Proceedings of the DoD High Performance
Computing Modernization Program’'s User Group Conference,
June 2002.

W. Korn, P. Teller and G. Castillo, “Just how accurate are
performance counters?” in Proceedings of the 20" IEEE
International Performance, Computing, and Communications
Conference. Phoenix, Arizona, April 2001.

M. Maxwell, “Understanding microprocessor performance event
counts,” M.S. thesis, University of Texas at El Paso, El Paso, TX,
in progress (expected completion date: December 2002).

MIPS Technologies Technical Staff, MIPS R10000
Microprocessor User’s Manual, Version 2.0. MIPS Technologies,
Inc., 1996.

Silicon Graphics, Inc., “Definition of MIPS R10000 Performance
Counters,” September1997,
http://www.sqgi.com/processors/r 10k/performance.html.

Intel Technical Staff, Intel® Itanium™ Processor Reference
Manual for Software Optimization. Document Number: 245473-
003. Intel Corporation, November 2001.

Intel Technica Staff, Intel® Itanium™ Architecture Software
Developer’s Manual, Volume 2: System Architecture, rev 2.0.,
Document number: 245318-003, Intel Corporation, December
2001.

65

[11]

[12]

[13]

[14]

[15]

International Technical Support Organization, RS6000 Scientific
and Technical Computing: POWERS3 Introduction and Tuning
Guide, October 1998.

Innovative Computing Laboratory, University of Tennessee at
Knoxville, “The Performance Application Programming
Interface,” December 2002, http://icl.cs.utk.edu/projects/papi.

J. Hennessy and D. Patterson, “Computer Architecture, a
Quantitative Approach,” Morgan and Kaufmann, 2002.

N. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache prefetch buffers,” in
International Conference on Computer Architecture, ACM press,
pages 388-397. Barcelona, Spain, 1998.

R. Saavedra and A.J. Smith, “Measuring cache and TLB
performance and their effect on benchmark runtimes,” in IEEE
Transactions on Computers, 44:10, October 1995.

66

APPENDIX A: PAPI INSTRUMENTATION CODE

/***

Leonardo Salayandia, leonardo@cs.utep.edu
PCAT research group
Computer Science Department
University of Texas at El Paso
--- PAPI instrumentation code
R R S L R SR L LT T
#include "papi.h"
#include " papi StdEventDefs.h"
#include "tests/test_utils.h"
int main(int argc, char *argv[]) {
int EventSet = PAPI_NULL,;
long long ** count;
[¥x%%% Set up PAP| *** %%/
if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT) {
printf("Failed to initialize PAPI library... Invalid PAPI version.\n");
exit(1);
}
if (PAPI_create eventset(& EventSet) '= PAPI_OK) {

printf("Failed to create event set.\n");

67

68

exit(1);

}

if (PAPI_add_event(& EventSet, PAPI_EVENT) != PAPI_OK) {
printf("Error adding event to EventSet\n");
exit(1);

}

count = alocate test space(NUM_TESTS, NUM_EVENTS);

if (PAPI_start(EventSet) |= PAPI_OK) { /***** Start counting *****/
printf("Failed to start PAPI.\n");
exit(1);

}

/****************************

Benchmark core code here

SRRk kR R Rk kR Rk

if (PAPI_stop(EventSet, count[0]) '= PAPI_OK) { /***** Stop counting *****/
printf("Failed to stop PAPI.\n");
exit(1);

}

printf ("%lld\n", count[O][Q]); /* Print count */

return (0);

APPENDIX B: HARDWARE-REPORTED DATA

Data TLB misses (R10K)

Predicted count 1 10 100 1000 10000
Hw-reported count | 4 10.49 108.38 105097 | 10628.73
(avg of 100)
Standard deviation | 0.41 153 2.07 1.20 6.82

Hardware-reported count

100000

10000 -

1000 +

100 -

10 A

1

1000

10000

0.1

Predicted count

69

70

Data TL B misses (Power 3)

Predicted count 1 10 100 1000 10000
Hw-reported count | 5 g 12.04 99.75 1009.12 | 10027.00
(avg of 100)
Standard deviation 0.44 0.28 2.89 2.53 7.55
100000
‘g 10000 H
g 1000 -+
Q:"j 100 |
:
s 10 A
1 T
1 10 100 1000 10000
Predicted count
Data TLB misses (Itanium)
Predicted count 1 10 100 1000 10000
Hw-reported count 1 10.05 103.22 10041 | 10007.45
(avg of 100)
Standard deviation 0 0.26 0.54 0.44 1.09
100000
‘g 10000 H
g 1000 -+
Q:"j 100 |
:
s 10 A
1 T
1 10 100 1000 10000

Predicted count

71

L 1 data cache misses (R10K)

Predicted count | 1 10 100 1000 | 10000 | 100000 | 1000000
ProcessorO | 5 40 | 1406 | 106.35 | 1026.53 | 10028.02| 100059.2| 1000391
(avg of 100)

Stddev (P0) | 161 1.43 1.40 1.59 1.46 1.81 261
Processor 1 372 | 1233 | 102.34 | 1022.54 |10026.93|100053.6 | 1000331
(avg of 100)
Stddev (Pl) | 158 1.65 1.59 1.76 1.49 1.88 234
10000000

— 1000000 -

5

8 100000 -

3

*g 10000 - — PO

o

o 1000 | —P1

o

@©

= 100 -

T

©

T 10 -

1

10

1000

10000

Predicted count

100000

1000000

72

L 2 data cache misses (R10K)

Predicted count | 1 10 100 1000 | 10000 | 100000 | 1000000
ProcessorO | 4 g3 | 1005 | 100.03 | 999.82 |10020.11|100058.9| 1000454
(avg of 100)

Stddev (PO) | 0.17 0.22 0.17 0.50 154 | 274 | 2047
Processor 1 111 | 10.08 | 100.13 | 1000.87 |10020.11|100059.7| 1000454
(avg of 100)

Stddev(Pl) | 048 | 039 | 048 1.08 1.39 1.45 7.82

10000000

- 1000000 -

§ 100000 -

o

8 10000 -

g — PO
o 1000 -

o —P1
o 100

@©

; 10 -

©

T 1

0.1 : :

10

1000

10000

Predicted count

100000

1000000

73

Cacheintervention requests (R10K)

Predicted count 1 10 100 | 1000 | 2000 | 3000 | 4000
Hw-reported count | 5 o9 | 1548 | 10056 | 992.29 | 1938.07 | 2897.53 | 3873.69
(avg of 100)
Standard deviation | 049 | 054 | 687 | 2339 | 5448 | 9063 | 64.19
Predicted count | 5000 | 6000 | 7000 | 8000 | 9000 | 10000
Hw-reported count | 114 55 | 4097.07 | 4213.66 | 4266.6 | 4225 | 4278.26
(avg of 100)
Standard deviation | 221.40 | 104.00 | 113.96 | 101.84 | 336.69 | 113.36
10000

<
3 1000 -
(8]
ki
2 100 -
e
o
[}
% 10 |
©
T

1 T T T T T T T T T

1

10

Predicted count

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

74

Cacheinvalidation requests (R10K)

Predicted count 1 10 100 1000 10000 | 100000 | 1000000

Hw-reported

1.1 10.41 101.3 | 1010.68 | 10146.8 | 100769.9| 1006889
(avg of 100)

Std dev 0.30 2.72 4.00 6.67 419.95 | 485.63 | 1155.88

10000000

1000000 -
100000 -
10000 +
1000 -
100 +

10 -

Hardware-reported count

1 -

0.1

1 10 100 1000 10000 10000 1000000

Predicted count

75

Requestsfor a shared cacheline (R10K)

Predicted count 1 10 100 | 1000 | 2000 | 3000 | 4000
Hw-reported count | 4 10 | 99.8 | 998.23 | 1995.64 | 2996.94 | 3984.46
(avg of 100)
Standard deviation | 0 0 109 | 617 | 1209 | 906 | 37.24
Predicted count | 5000 | 6000 | 7000 | 8000 | 9000 | 10000
Hw-reported count | 4o, 75 | 5837.34 | 6757.27 | 7646.62 | 7840.27 | 7832.4
(avg of 100)
Standard deviation | 32.87 | 45.41 | 105.94 | 155.80 | 125.00 | 180.40

10000

1000 -

100

10 -

Hardware-reported count

1

10

Predicted count

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

76

Requestsfor a clean cacheline (R10K)

Predicted count 1 10 100 1000 10000 | 100000 | 1000000

Hw-reported

0.8 9.94 99.34 994.7 | 9958.66 |99482.32| 998990
(avg of 100)

Std dev 0.40 0.34 1.00 3.29 36.59 | 1204.33 | 1757.33

10000000

1000000 -
100000 -
10000 +
1000 -
100 +

10 -

Hardware-reported count

1 -

0.1

1 10 100 1000 10000 10000 1000000

Predicted count

APPENDIX C: BENCHMARK CODE

/***

Leonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- Padding / DTL B-miss microbenchmarks

Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a-00
kAR KRk Rk ok Rk Rk ko ko

#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <memory.h>

#include <malloc.h>

#include <sys/types.h>

#defineNUM_TESTS 1

#define NUM_EVENTS 1

int main(int argc, char *argv[]){

int flag; /* Determines which benchmark to run, 1 = Padding, 2 = DTLB miss*/

int i, initindex, stride, max, elemXpage;

77

78

int padsize, pagesize;
long zsize;
int *zz; /* Array of integers, subject of benchmarks */
if (argc==5){
flag = atoi(argv[1]);
padsize = atoi(argv[2]);
pagesize = atoi(argv[3]);
if (flag==1)
zsize = (pagesize* atoi(argv[4])* 2 + padsize)/sizeof (int);
else
zsize = (pagesize* atoi(argv[4]) + padsize)/sizeof(int);
}
else{
printf("Usage: %s <<flag>> <<pad size>> <<page Size>> <<num
misses>>\nFlag = 1 for padding, 2 for validation. Sizesin bytes\n", argv[0]);
exit(1);
}

zz = (int *)calloc (zsize, sizeof(int));

/***

PAPI setup code here, PAPI_EVENT == PAPI_TLB_TL or PAPI_TLB_DM

***/

max = zsize; [* Num of elementsin z array */

79

elemXpage = pagesize/sizeof(int); /* Num of elementsin one page */
initindex = 1+(padsize/sizeof (int)); /* Num of elementsin pad segment + 1 */
[* padding configuration microbenchmark */
if (flag==1) {
stride = elemX page* 2;
if (PAPI_start(EventSet) != PAPI_OK) {
printf("Failed to start PAPI.\n");
exit(1);
}
for (i=initindex; i<max; i+=stride) {
z7[i]=12; [* Accessfirst element on apage */
zz[i+elemXpage-1]=12; /* Access last element on a page */
}
if (PAPI_stop(EventSet, valueg0]) = PAPI_OK) {
printf("\nFailed to stop PAPI.\n");

exit(1);

}

/* DTLB miss validation microbenchmark */
else{
stride = elemXpage;

if (PAPI_start(EventSet) != PAPI_OK) {

printf("\nFailed to start PAPI.\n");
exit(1);
}
for (i=initindex; i<max; i+=stride)
zz[i]=12; [* Accessfirst element on apage */
if (PAPI_stop(EventSet, values0]) != PAPI_OK) {
printf("\nFailed to stop PAPI.\n");

exit(1);

}

/* Print count result */
printf ("%lld\n",values[0][0]);
free(zz);

return (0);

80

/***

L eonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- L1/ L2 Dcache miss validation microbenchmarks
Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -l/papi/src do_loops.o test_utils.o libpapi.a-00
R R SR L iR LR ety
#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <memory.h>

#include <malloc.h>

#include <sys/types.h>

#include <sys/types.h>

#include <sys/sysmp.h>

#include <sys/sysinfo.h>

#include <ulocks.h>

#include <task.h>

#defineNUM_TESTS 1

#define NUM_EVENTS 1

82

#define CACHE_LINE_SIZE 32 /* Set appropriate cache line sizein bytes */
#define OFFSET CACHE_LINE_SIZE/sizeof(int)
#define NUM_PROCS 2
void run(void);
int num_iter, mon_proc, * zz,
int main(int argc, char *argv[]){
if (argc==23){
num_iter = atoi(argv[1]);
mon_proc = atoi(argv[2]);

7z = (int *) malloc (NUM_PROCS * CACHE_LINE_SIZE * num_iter);

}

else{
printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]);
exit(1);

}

m_set_procs(NUM_PROCYS);

if (m_fork(run) ==-1) {
printf ("ERROR: Could not create child processes\n");
exit(1);

}

free(zz);

return (0);

83

}

void run(void) {
int i, index, myid, temp;
myid =m_get_ myid();
if (sysmp(MP_MUSTRUN, myid) ==-1) { /* Assign processto a processor */
printf("ERROR: Could not assign processor to process\n");
exit(1);
}

if (myid==mon_proc) {

/***

PAPI setup code here, PAPI_EVENT == PAPI_L1 DCM or PAPI_L2 DCM

***/

}
index = myid* OFFSET* num_iter;
for (1I=0; i<num_iter; i++) /* Eaprocessor initializesits section */
zz[index+(OFFSET*i)] = 0;
m_sync(); /* barrier */
index = ((myid+1) % NUM_PROCS)* OFFSET* num_iter;
if (myid==mon_proc)
if (PAPI_start(EventSet) != PAPI_OK) {
printf("\nFailed to start PAPI.\n");

exit(L):

}
for (1I=0; i<num_iter; i++)
temp += zz[index+(OFFSET*i)]; /* Miss generated */
if (myid==mon_proc) {
if (PAPI_stop(EventSet, count[0]) != PAPI_OK) {
printf("\nFailed to stop PAPI.\n");
exit(1);
}
[* Print count results */

printf ("%lld\n",count[0][0]);

85

/***

L eonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- Cache intervention request validation microbenchmark
Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a-00
kAR Rk kKRR kR Rk Rk ko ko k|
#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <sys/types.h>

#include <sys/sysmp.h>

#include <sys/sysinfo.h>

#include <ulocks.h>

#include <task.h>

#defineNUM_TESTS 1

#defineNUM_EVENTS 1

#define L2_LINE 128 /* Set appropriate cache line size in bytes */
#define OFFSET L2_LINE/sizeof(int)

#define NUM_PROCS 2

void run(void);
int num_iter, barl, bar2, mon_proc;
int *zz;
int main(int argc, char *argv[]){
if (argc==23){
num_iter = atoi(argv[1]);
mon_proc = atoi(argv[2]);

zz = (int *) malloc (L2_LINE*num_iter + L2_LINE);

}

else{
printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]);
exit(1);

}

m_set_procs(NUM_PROCYS);

if (m_fork(run) ==-1) {
printf ("ERROR: Could not create child processes\n");
exit(1);

}

free(zz);

return (0);

86

87

}

void run(void) {
inti, myid, temp;
myid =m_get_ myid();
if (sysmp(MP_MUSTRUN, myid) ==-1) { /* Assign process to a processor */
printf("ERROR: Could not assign processor to process\n");
exit(1);
}

if (myid==mon_proc) {

/***

PAPI setup code here, PAPI_EVENT == PAPI_CA_ITV

***/

for (i=0; i<num_iter* OFFSET; i++) /* Monitored proc caches array */

zz[i] =0;
barl = 0;
}
else{
bar2 = 0; /* Processor to cause interventions will keep track of barrier */
[* because interventions caused by barrier not in PAPI count */
}
m_sync();

if (myid==mon_proc) {

88

if (PAPI_start(EventSet) != PAPI_OK) {
printf("Failed to start PAPI.\n");
exit(1);

}

barl = 1; /* synchronize processes */

while (bar2 < num_iter); /* loop until other proc causes interventions */

if (PAPI_stop(EventSet, count[0]) !'= PAPI_OK) {
printf("\nFailed to stop PAPI.\n");
exit(1);

}

[* Print count results */

printf ("%lld\n",count[0][0]-1);

while (barl == 0); /* synchronize processes */
for (I=1; i<=num_iter; i++) {
temp += zz[i* OFFSET]; /* generate intervention */

bar2++;

89

/***

L eonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- Cache invalidation request validation microbenchmark
Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a-00
kAR Rk kR Rk ok ko Rk ko ko
#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <sys/types.h>

#include <sys/sysmp.h>

#include <sys/sysinfo.h>

#include <ulocks.h>

#include <task.h>

#defineNUM_TESTS 1

#define NUM_EVENTS 1

#define NUM_PROCS 2

#define X_VAL O

#defineY_VAL -1

void run(void);
int num_iter, mon_proc;
ints=Y_VAL; /* shared variableinitialized */
int main(int argc, char *argv[]){
if (argc==3){
num_iter = atoi(argv[1]);

mon_proc = atoi(argv[2)]);

}

else{
printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]);
exit(1);

}

m_set_procs(NUM_PROCYS);
if (m_fork(run) ==-1) {
printf ("ERROR: Could not create child processes\n");
exit(1);
}
return (0);
}
void run(void) {

inti, myid;

90

91

myid =m_get_ myid();

if (sysmp(MP_MUSTRUN, myid) ==-1) { /* Assign process to a processor */
printf("ERROR: Could not assign processor to process\n");
exit(1);

}

if (myid==mon_proc) {

/***

PAPI setup code here, PAPI_EVENT == PAPI_CA_INV
R LR T R s e Ld!
if (PAPI_start(EventSet) != PAPI_OK) {
printf("Failed to start PAPI.\n");
exit(1);
}
for (1I=0; i<num_iter; i++) {
s=X_VAL;
while (s== X_VAL); /* read cache line until invalidated */
}
if (PAPI_stop(EventSet, count[0]) != PAPI_OK) {
printf("\nFailed to stop PAPI.\n");

exit(L):

} else{

printf ("%lld\n",count[0][0]); /* Print count results */

for (i=0; i<num_iter; i++) {
while (s==Y_VAL);

s=Y_VAL,; /* Invalidation request generated */

92

93

/***

L eonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- Requests to a shared cache line validation microbenchmark
Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -l/papi/src do_loops.o test_utils.o libpapi.a-00
R R SR L iR LR ety
#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <sys/types.h>

#include <sys/sysmp.h>

#include <sys/sysinfo.h>

#include <ulocks.h>

#include <task.h>

#defineNUM_TESTS 1

#define NUM_EVENTS 1

#define L2_LINE 128 /* Set appropriate cache line size in bytes */
#define OFFSET L2_LINE/sizeof(int)

#define NUM_PROCS 2

void run(void);
int num_iter, mon_proc;
int *zz;
int main(int argc, char *argv[]){
if (argc==3){
num_iter = atoi(argv[1]);
mon_proc = atoi(argv[2]);

zz = (int *) calloc (OFFSET* num_iter, sizeof(int));

}

ese{
printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]);
exit(1);

}

m_set_procs(NUM_PROCYS);

if (m_fork(run) ==-1) {
printf ("ERROR: Could not create child processes\n");
exit(1);

}

free(zz);

return (0);

}

void run(void) {

94

95

inti, myid, temp;

myid = m_get_myid();

if (sysmp(MP_MUSTRUN, myid) ==-1) { /* Assign processto a processor */
printf("ERROR: Could not assign processor to process\n");
exit(0);

}

if (myid==mon_proc) {

/***

PAPI setup code here, PAPI_EVENT == PAPI_CA_SHR
R R R T s e Ld|
} else{
for (1i=0; i<num_iter; i++) /* The non-monitored proc initializes array */
zz[i* OFFSET] =0;
}
m_sync(); /* barrier */
if (myid==mon_proc) {
if (PAPI_start(EventSet) 1= PAPI_OK) {
printf("\nFailed to start PAPI.\n");
exit(1);
}
for (1I=0; i<num_iter; i++) {

temp += zz[i* OFFSET]; /* Read cache line, becomes "shared" */

zz[i* OFFSET]++; /* Request exclusive access to shared line */
}
if (PAPI_stop(EventSet, count[0]) !'= PAPI_OK) {
printf("\nFailed to stop PAPI.\n");
exit(1);
}
[* Print count results */

printf ("%lld\n",count[0][0]);

96

/***

L eonardo Salayandia, leonardo@cs.utep.edu

PCAT research group

Computer Science Department

University of Texas at El Paso

--- Requests to a clean cache line validation microbenchmark
Compiled with the command line:

gce <<C src>> -0 <<OUT file>> -I/papi/src do_loops.o test_utils.o libpapi.a-00
kAR Rk kR Rk ok ko Rk ko ko
#include "papi.h"

#include " papi StdEventDefs.h"

#include "tests/test_utils.h"

#include <sys/types.h>

#include <sys/sysmp.h>

#include <sys/sysinfo.h>

#include <ulocks.h>

#include <task.h>

#defineNUM_TESTS 1

#define NUM_EVENTS 1

#define L2_SIZE 1048576 /* Set appropriate cache size in bytes */
#define L2_LINE 128 /* Set appropriate cache line size in bytes */

#define OFFSET L2_LINE/sizeof(int)

98

#define NUM_PROCS 2
void run(void);
int num_iter, mon_proc, * zz,
int main(int argc, char *argv[]){
if (argc==23){
num_iter = atoi(argv[1]);

mon_proc = atoi(argv[2)]);

}

else{
printf("Usage: %s <<num iter>> <<proc to monitor (0 or 1)\n", argv[0]);
exit(1);

}

zz = (int *) calloc ((L2_SIZE/sizeof(int))+(NUM_PROCS* OFFSET* num _iter),
sizeof(int));
m_set_procs(NUM_PROCYS);
if (m_fork(run) ==-1) {
printf ("ERROR: Could not create child processes\n");
exit(1);
}
free (z2);

return (0);

void run(void) {
int i, index, myid, temp;
myid = m_get_ myid();
if (sysmp(MP_MUSTRUN, myid) ==-1) { /* Assign process to a processor */
printf("ERROR: Could not assign processor to process\n');
exit(1);
}

if (myid==mon_proc) {

/***

PAPI setup code here, PAPI_EVENT == PAP|_CA_CLN

***/

}
index = (myid % NUM_PROCS) * OFFSET * num_iter;
if (myid==mon_proc) {
if (PAPI_start(EventSet) != PAPI_OK) {
printf("\nFailed to start PAPI.\n");

exit(1);

}
for (i=0; i<num_iter; i++) {
temp += zz[index+(OFFSET*i)]; /* Line becomes "clean exclusive" */

zz[index+(OFFSET*i)]++; /* Line becomes "dirty exclusive" */

99

100

}
if (myid==mon_proc) {
if (PAPI_stop(EventSet, count[Q]) != PAPI_OK) {
printf("\nFailed to stop PAPI.\n");
exit(1);
}
/* Print count results */

printf ("%lld\n",count[0][0]);

CURRICULUM VITAE

Leonardo Salayandiawas born in 1976 in Cd. Juarez, Chihuahua, México as the first
of two children to Jesus and Socorro Salayandia. He graduated from the Centro de
Bachillerato Tecnolgico Industrial y de Servicios 128 (CBTIS 128) High School in Cd.
Juarez, Chihuahua, in the spring of 1993 and entered The University of Texas at El Paso
(UTEP) in the fall with the Programa de Asistencia Estudiantil para Mexicanos (Financial
Assistance Program for Mexican Students). While pursuing a bachelor’s degree in
computer science, he worked in the Computer Science Department as a teaching assi stant
under the guidance of Dr. Dan Cooke and Dr. Raymond Bell. He was inducted into the
Golden Key National Honor Society and the UPE Computer Honor Society in 1997 and
joined the student chapter of the Association for Computing Machinery (ACM), where he
served as President on the fall of 1998. Following his graduation, he worked in Talleres
Diversificados de Juarez (TDJ) as head of the IT and Customer Service departments for
three years, after which he returned to UTEP to continue his graduate studies. While
pursuing his master’'s degree in computer science, he was employed as a teaching
assistant for the Software Engineering course for one year under the supervision of Dr.
Ann Q. Gates and as a research assistant for nine months under the guidance of Dr.
PatriciaJ. Teller.

Permanent address: 7029 Manzanares
Cd. Juérez, Chihuahua, México.

C.P. 32330

This thesis was typed by Leonardo Salayandia.

101

