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Abstract 
Because of the increasing gap between processor 
frequency and Dynamic Random Access Memory (DRAM) 
speed, the performance of the memory subsystem typically 
governs that of the system as a whole. This is especially 
true for symmetric multiprocessor systems (SMPs). 
Therefore, performance evaluation methodologies that 
facilitate the analysis and optimization of the memory 
subsystem are essential. This paper describes such a 
methodology, a performance evaluation framework, and 
demonstrates its power, speed, and flexibility in the 
context of a study of the TPC-C benchmark, executed on 
eight- and 32-processor IBM ~pSeries 690 (p690) 
systems. The framework facilitates analysis of sampled 
performance monitor event traces that are collected in 
real time. The analyses are used to characterize the 
locality of reference exhibited by TPC-C data loads at the 
various levels of the memory hierarchy and evaluate the 
efficacy of design aspects of and policies associated with 
the p690 memory hierarchy w.r.t. workload demands.  
 
 
1. Motivation 
 

Because of the increasing gap between processor 
frequency and DRAM speed [4], one of the major 
architectural design considerations for any computer 
system is that of the memory subsystem. In most cases, 
the performance of the memory subsystem governs that of 
the system as a whole [14]. This is true especially for 
modern, as well as future, symmetric multiprocessor 
(SMP) systems. Consequently, performance evaluation 
methodologies that facilitate the analysis and optimization 
of the memory subsystem are essential to the development 
of next-generation computer systems. 

Analysis of the memory access behavior of a 
workload executed on a particular computer system can 
reveal ways to improve performance, through 

modifications to the application, operating system, 
hardware, or combinations of these. However, for SMP 
systems this type of performance evaluation is becoming 
increasingly more challenging. For example, a traditional 
way to analyze cache performance is through the use of 
address traces generated by the hardware or by software 
architecture simulation, as is the case with SimOS [11]. 
As systems become faster and caches become 
increasingly larger, it is more difficult to collect traces 
that are long enough to accurately model the memory 
hierarchy of even a single processor. Furthermore, for 
large, complex workloads, such as on-line transaction 
processing (OLTP) workloads, executed on 
multiprocessors, system simulation requires as much disk 
space as the workload, typically multiple terabytes by 
today’s standards, and usually more memory. 
Additionally, the effort to simulate a large multiprocessor 
system is intimidating. One alternative to tracing is a 
cache simulator built in hardware and connected to a 
running system [10]. 

Our approach to meeting the challenge of 
multiprocessor performance evaluation uses sampled 
performance monitor event traces collected in real time 
and a powerful, fast, and flexible performance evaluation 
framework. The traces are captured via on-chip 
performance counters that recognize events such as level-
two (L2) cache misses, stored in databases, and post 
processed in conjunction with a partitioned address space 
map of the workload to gain insights into application 
behavior and performance. Report-generation software 
facilitates the analysis of the traces and provides graphical 
output that can be used to understand when the workload 
and architecture complement one another in terms of 
performance and identify performance bottlenecks, with 
the intent of identifying ways to alleviate them. 

In this paper, the framework is described and its 
power and flexibility are demonstrated in the context a 
study of the memory access behavior and performance of 
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a large, complex OLTP workload, the TPC-C benchmark, 
executed on eight- and 32-processor IBM ~pSeries 690 
(p690) systems. The study characterizes the locality of 
reference exhibited by TPC-C data loads at the various 
levels of the memory hierarchy and evaluates the efficacy 
of design aspects of and policies associated with the p690 
memory hierarchy with respect to workload demands.  

The paper continues with Section 2, which presents 
related research. Next, Section 3 explains why the study 
presented in the paper focuses on L2-cache data-load 
misses and the TPC-C benchmark. Section 4 describes 
our data collection methodology, i.e., the workload under 
study, the platform from which the data was collected, the 
events of interest, and the data collection tools. Data 
analysis is the focus of Section 5, which describes the 
tools and methodology used for data analysis, and 
discusses a sample of the results of the study. Finally, 
Section 6 summarizes the paper and presents conclusions 
and future work. 
 
2. Related Research 
 

Performance monitor event traces captured via 
performance counters have been used to characterize 
application behavior in the past. Barroso et al. [2] use 
event traces, captured by tools such as IPROBE and DCPI 
(Digital Continuous Profiling Infrastructure) [1, 3], to 
characterize applications, including OLTP workloads, 
executed on a four-processor AlphaServer 4100 using 
Oracle 7.3.2. And, Keeton et al. [6] use performance 
monitors to analyze the behavior of an OLTP workload 
executed on a four-processor Pentium Pro-based server. 
Both efforts explore the performance effects of 
architectural modifications. In [2] this is done by 
workload characterization, accomplished by source code 
instrumentation, coupled with simulation methodologies; 
in [6] this is accomplished by physically changing the 
hardware. Desikan et al., like Barroso et al., use the DCPI 
tool [1] but Desikan et al. use it to validate an Alpha 
21264 simulator by sampling events that are used to 
derive performance measurements for the Compaq DS-
10L workstation. 

With respect to the performance of TPC-C, Tsuei et 
al. [12] study TPC-C executed on an unidentified Sun 
Microsystems 16-processor shared-memory 
multiprocessor with 4GB of memory using IBM’s DB2 
for Solaris version 2.1.1. Leutenegger and Dias [8] study 
TPC-C executed on an unidentified multiple-node 
distributed system. Both efforts investigate TPC-C’s 
buffer hit rate. Leutenegger and Dias also investigate the 
memory access characteristics of TPC-C and show that 
data access skew, i.e., non-uniform data memory access, 
exists at the tuple and page levels. Our initial results [9], 
which indicate that load accesses are concentrated in 
certain memory regions and within those regions smaller 

defined areas are heavily accessed, corroborate the study 
of Leutenegger and Dias. 

Unlike the research described above, Itzkowitz, et al. 
[7] discuss and demonstrate the use, on a dual 900 MHz 
UltraSPARC-III Cu Sun Fire 280R™ system, of 
extensions to the Sun ONE Studio™ compilers and 
performance tools that provide information related to the 
data space of an application. This information, gathered 
either by clock or hardware-counter profiling, provides 
per-instruction details of memory accesses in the 
annotated disassembly as well as data aggregated and 
sorted by object structure types and elements. Compiler-
generated padding introduces minor inaccuracies but 
collection perturbation can be controlled through 
configuration of the processors’ counter overflow rates. 
Future work described by Itzkowitz, et al. includes 
analysis of event data addresses by machine entity, for 
example, memory segment, page, and cache line. Note 
that our methodology has already been used to perform 
analysis of this kind [9, 13]. 

The major differences between our work and the 
related research described above is the scale of the 
systems and the methodology used. Itzkowitz, et al. use a 
two-processor system; Barroso et al. and Keeton et al. use 
a system with four processors; and Tsuei et al. use one 
with 16 processors. In contrast, we analyze performance 
data obtained from both eight- and 32-processor systems. 
In addition, our work attempts to extract information 
about the dynamic behavior of a large, complex 
application with a considerably simpler, more powerful, 
faster, and, in some cases, more precise methodology. As 
described in Section 4, our methodology does not require 
source code instrumentation; data collection does not 
perturb workload execution behavior. And, as described 
in Sections 5 and 6, our methodology is not restricted to 
memory access behavior analysis; instead, it provides the 
capability to analyze workload execution behavior in a 
myriad of ways. 
 
3. Why Study L2-cache Data-load Misses and 
TPC-C? 
 

The sampled event traces studied in this paper were 
generated via the Performance Monitoring Units (PMUs) 
of POWER4 microprocessors of eight- and 32-processor, 
i.e., eight- and 32-way, p690s executing TPC-C. The 
PMUs were programmed to monitor events triggered by 
L2-cache misses.  

TPC-C, an OLTP application, is used to demonstrate 
our methodology because it is understood fairly well, is 
representative of workloads of interest to IBM customers, 
and commercial workloads, such as TPC-C, are run on a 
vast majority of today’s commercial servers [5]. 
Furthermore, our preliminary data analysis of information 
concerning the data access streams produced by L2-cache 
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data-load misses generated by TPC-C executing on a 
p690 indicates that there is opportunity for performance 
enhancement [9, 13]. In particular, it reveals that accesses 
to particular areas of the address space, e.g., working 
storage and the buffer pool, and components of the 
operating system, may be targets for performance 
improvement. 

There are several events that could have been the 
focus of this study; these include instruction cache 
(Icache) misses, translation-lookaside buffer (TLB) 
misses, address-only coherence operations, and uncached 
memory accesses for I/O. However, as explained below, 
the performance impact of these events pale in 
comparison to high-penalty L2-cache misses. 

Figure 1. TPC-C instruction and data access 
sites for 32-way p690 

 
From a CPI viewpoint, TPC-C’s most dominant 

memory subsystem operation is L2-cache miss service. 
As shown in Figure 1, which indicates where in the 
memory hierarchy level-one (L1) cache misses are 
satisfied, over 50% of L1 data-cache (Dcache) misses 
miss in the L2 cache and are satisfied by either a level-
three cache (L3 D hit) or main memory (Memory D hit). 
As shown in Table 1, these are high-penalty misses, 
which if decreased, could have a positive impact on 
performance. 
 

L2-cache Access Site Load Latency 
          L2      cache   12 cycles 
          L2.5   cache   73 cycles 
          L2.75 cache   96 cycles 
          L3      cache 112 cycles 
          L3.5   cache 143 cycles 
          Main memory 320 cycles 

Table 1. Eight-way p690 approximate load 
latencies  

 
With respect to Icache misses, on the POWER4 

microprocessor it is possible to count instruction and data 
cache miss rates, and to sample the instruction and data 

addresses associated with Dcache misses. However, it is 
not possible to sample the instruction addresses associated 
with Icache misses. This does not pose a problem since 
Icache misses tend to have a minimal effect on hardware 
performance due to the fact that the Icache footprint tends 
to be well cached in large L2 and L3 caches. As Figure 1 
shows, this is the case for TPC-C, i.e., few Icache misses 
are resolved beyond the on-chip L2 cache. 

The TPC-C TLB miss rate is reduced by mapping the 
database buffer pool using 16MB “large pages” rather 
than the standard 4KB pages. Additionally, unlike cache 
and TLB misses, address-only coherence operations do 
not involve movement of data. For example, consider the 
case where a cache line is held shared by two processes 
on different POWER4 chips. When one processor stores 
into the cache line, an address-only operation is initiated 
to ensure that other caches invalidate copies of the shared 
data.  Because data is not transferred for these operations 
and the p690 has very high address bus bandwidth, their 
impact on POWER4-based system performance tends to 
be small.  

Finally, uncached memory accesses for I/O via loads 
and stores have very high latency. The latency is driven 
by the fact that many of these operations must pass all the 
way through to a PCI adapter for acknowledgement.  
Luckily, most of the actual I/O traffic is handled by 
DMA, which is asynchronous to processor execution.  
Accordingly, the high-latency uncached accesses tend to 
be fairly infrequent. 
 
4. Data Collection 
 

The performance data collected for this study are 
traces of sampled events associated with the servicing of 
L2-cache data-load misses generated by TPC-C while 
executing on eight- and 32-way IBM p690 systems. 
Below we describe the workload and the compute 
platform, as well as the monitored events and the 
methodology used to collect the sampled traces. 
 
4.1. Experimental Platform 
 
4.1.1. Workload: TPC-C. To collect the data used in this 
study, a fully-implemented TPC-C benchmark drives a 
commercially-available relational database, which was 
compiled using the IBM C for AIX version 5 compiler. 
The TPC-C (Transaction Processing Performance Council 
Benchmark C) workload [16] is a well-known benchmark 
that emulates update-intensive and read-only transactions 
found in complex OLTP application environments [12]. It 
has been used widely in the database server industry as a 
basis of server performance analysis and platform 
comparison. 
4.1.2. Compute Platform: IBM ~pSeries 690. The 
~pSeries 690 family of SMP architectures includes the 

32-way L1 cache miss resolution sources

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

L2 I hit

L2 D hit

L2.5/2.75 I hit shared

L2.5 D hit shared

L2.5 D hit modified

L2.75 D hit modified

L3 I hit

L3 D hit

L3.5 I hit

L3.5 D hit

Memory I hit

Memory D hit
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eight- and 32-processor configurations used in this study 
[15, 17]. The operating system for these configurations is 
AIX version 5.2. The Multi Chip Module (MCM) is the 
building block of the architecture. An MCM contains four 
chips, each of which is comprised of two 1.3 GHz 
POWER4 processors, and, thus, eight processors. In 
general, the eight- (32-)processor configuration contains 
one (four) MCMs, but in this study a two-MCM eight-
processor system is used – each MCM contains four 
“single core good” chips, each of which has only one 
functional processor. 

For the configurations under study,  
• each CPU has a 64KB L1 Icache and a 32KB L1 

Dcache;  
• each chip has a 1.44MB L2 unified cache shared 

by the two processors on the chip;  
• the four chips/eight processors on an MCM share 

a 128MB L3 unified cache; and 
• main memory is 128GB (256GB) for the eight- 

(32-)way p690. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two (double core good) MCMs of 32-
way p690 

 
The L1- and L2-cache line size is 128B, while the 

L3-cache line size is 512B. Each L3 cache line is 
partitioned into four 128B sectors. Data private to and 
shared by processes are managed via the cache coherence 
protocol implemented in the p690. As illustrated in Figure 
2, an L2-cache miss for either type of data generated by a 
processor in an MCM can be serviced at five different 
levels of the memory hierarchy: 

1. another L2 cache within the same MCM, i.e., a 
local L2 cache, the L2.5 level; 

2. an L2 cache in another MCM, i.e., a remote L2 
cache, the L2.75 level; 

3. the MCM’s L3 cache, i.e., the local L3 cache, 
the L3 level; 

4. an L3 cache in another MCM, i.e., a remote L3 
cache, the L3.5 level; and 

5. main memory. 
 
4.1.3. Monitored Events. A hit event that is generated by 
an L2-cache miss is classified according to the level at 
which the miss is serviced and the state of the referenced 
cache line. An L2-cache miss serviced by the L2.5 level 
generates one of two types of events: an L2.5-shared hit 
(L25_SHR) or L2.5-modified hit (L25_MOD). L25_SHR 
denotes that, although the referenced cache line may 
reside simultaneously in more than one L2 cache, a local 
L2 cache services the miss. L25_MOD denotes that the 
referenced line resides in only one L2 cache, a local L2 
cache, which services the miss. A modified block is 
owned exclusively by one cache and contains more recent 
data than the backing physical memory. 

Similarly, L2-cache misses serviced by the L2.75 
level generate either an L2.75-shared hit (L275_SHR) or 
L2.75-modified hit (L275_MOD) event. The former 
denotes that the referenced cache line resides in one or 
more L2 caches but not in a local L2 cache, and is, thus, 
serviced by a remote L2 cache. The latter denotes that the 
requested line resides in only one L2 cache, a remote L2 
cache, which services the miss. 

At the L3 level, the cache-hit events are called L3 
shared (L3_SHR), L3 modified (L3_MOD), L3.5 shared 
(L35_SHR), and L3.5 modified (L3_MOD). L3_SHR 
denotes that the requested cache line resides in the local 
L3 cache, from where it will be accessed, but may reside 
in other L3 caches as well. L35_SHR denotes that the 
requested line resides in at least one remote L3 cache, but 
not in the local L3 cache. L3_MOD (L35_MOD) denotes 
that the requested line resides in only one cache, the local 
L3 cache (a remote L3 cache), where it will be accessed.  

For this study we consider all these events in addition 
to main memory hit events (MEM). However, instead of 
monitoring the four events associated with the L3 level of 
the memory hierarchy, only two events are monitored: L3 
and L3.5 hits (L3 and L35). 
 
4.1.4. Event Trace Sampling Methodology: PMU, 
eprof, and trcrpt. On ~pSeries hardware, valuable 
performance information for a section of code or an entire 
program can be collected through the use of the POWER4 
microprocessor performance-monitoring facilities and 
tools. This information is delivered in the form of 
aggregate counts and, for selected models, sampled traces 
of data associated with user-specified events. Up to eight 
events can be monitored concurrently by a POWER4 
performance-monitoring unit (PMU), which has eight 
counters. Special-purpose registers, only accessible via 
the operating system through a programming interface 
that accesses the registers through a kernel extension, 
control the state of the counters. This interface permits, 

MCM0 

L2 * L2  • 

L2  • L2  • 

L2 φ 

L3
  ψ

 

L3
  Ω

 

cpu cpu cpu cpu 

cpu cpu cpu cpu 

cpu cpu 
L2  φ 

cpu cpu 

L2  φ 
cpu cpu 

L2  φ 
cpu cpu 

Legend 
* L2 Serviced 
• L2.5 Serviced 
φ L2.75 Serviced 

 
ψ L3 Serviced 
Ω L3.5 Serviced 

L1 Miss in 

MCM1 



5 

among other things, the specification of the events to be 
monitored and the execution points at which to start and 
stop counters.  

 Sampled performance monitor event traces, used in 
this paper to study the events described in Section 3.3, are 
collected via two tools: tprof and eprof. tprof is a time-
based profiling tool that is part of the AIX operating 
system. eprof is an in-house IBM tool that uses tprof 
functionality for data collection and reduction and is tied 
to the PMU on selected ~pSeries hardware models. eprof 
is used to program the PMU to sample hardware 
countable events at a defined rate; the default rate is 
approximately 100 events per second per processor. When 
an event is sampled, i.e., at each increment of the 
performance counter, the instruction address and data 
address (if applicable) are captured by the PMU, and a 
performance-monitor (PM) interrupt is delivered. The PM 
interrupt causes the sample information to be extracted 
from the PMU and an AIX trace hook to be generated and 
added to the trace. The AIX trace hook describes the 
associated trace record. Using the AIX trace allows 
samples to be either written to disk or collected via a 
daemon that can summarize the data. The profiling also 
enables selected AIX trace hooks, such as those related to 
dispatching, so that the sampled events can be correlated 
with the processes/threads. If AIX trace is used to collect 
events in a file, the file can be formatted with the trcrpt 
utility to create a time-stamped text file of events. For this 
study, we used trcrpt as well as a program that reads the 
formatted trace and extracts summary information. The 
specified output of trcrpt includes the effective instruction 
and data addresses, the process and thread ids, and the 
timestamp for each sampled event.   

Table 2. Event sample counts 
 
The sampled event traces used in this study were 

generated using the default sampling rate. If the sampled 
event is processor cycles, time-based sampling is 
accomplished and a sample is collected every 10 
milliseconds. In contrast, if the event is one that occurs at 
a variable rate, e.g., cache misses, and if the rate of event 
occurrence is greater than the default sampling rate, then 
eprof adjusts the sampling rate to approximate the default 
rate. Accordingly, the interval between PM interrupts can 

be variable. Because some events occur more often than 
others, it follows that a different number of samples are 
collected for different types of events. As shown in Table 
2, despite the adoption of the default sampling rate and a 
10-minute workload, this is the case for the events studied 
in this research. Event-based sampling is important for 
long-running programs, like TPC-C, with extremely large 
numbers of events. Even using event-based sampling, the 
amount of samples collected for the L25_SHR and 
L275_SHR events was so large that reduced eight-
processor sample counts are used and the 32-processor 
events are not analyzed. 

 
5. Data Analysis 
 

 This section describes the tools used to perform the 
data analysis, the partitioning of the address space, and 
the results of the data analysis. 
 
5.1. Methodology 
 

Through the use of a set of tools implemented in 
Java, each sample is processed and stored in a MySQL 
database according to the following:  

1. monitored workload,  
2. number of processors used to execute the 

workload, and  
3. sampled event. 
For example, database tpcc_32_g48c1 stores the 

sampled event traces associated with the L2-cache data-
load misses resolved in the L3 caches (event g48c1) for 
the TPC-C benchmark executed on a 32-processor 
system. Each database consists of 12 tables that store 
information related to the experiment itself, e.g., a 
description of the workload and machine being used, as 
well as the effective instruction and data addresses, 
process and thread ids, and timestamp of each sample.  
Once the sampled event traces are loaded into their 
corresponding databases, a second set of Java-based tools 
is used to query the database and generate default and 
customized reports in the form of formatted text files. The 
files are transformed into graphs via a spreadsheet 
application with built-in graphing capabilities.  

Storing the sampled performance monitor event 
traces in databases facilitates data analysis, providing 
countless ways to easily examine and explore the data. 
Accordingly, the analysis and results presented in this 
paper are only a sample of the kind of information that 
can be obtained using this methodology. 
 
5.2. Data Partitioning 
 

The segment and page sizes are 256MB and 4KB, 
respectively. Based on a process model, TPC-C allows for 
per-process private data address regions and a shared data 

Event Sample Count 
 8-way p690 32-way p690 
L2 312,252 259,716 
L25_MOD 313,431 197,592 
L25_SHR 748,064 n/a 
L275_MOD 126,376 167,485 
L275_SHR 835,339 n/a 
L3 301,791 170,910 
L35 121,274 172,008 
MEM 272,835 262,941 
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address region. The latter contains database state 
information and the buffer pool. The buffer pool is the 
largest consumer of physical memory, containing 
unmodified data currently on disk and data modified by 
transactions but not yet updated on disk. Since the size of 
the database is much larger than physical memory and the 
pattern of access to disk data is unpredictable, disk I/O is 
continuous. Incoming database transactions are passed off 
to idle processes for service. The number of processes 
available for processing transactions is based on the 
number needed to achieve nearly 100% processor 
utilization. Because most transactions experience some 
number of disk I/Os, many transactions must be executing 
concurrently to maximize processor utilization. 
 
5.3. Results 
 

Although our performance evaluation framework 
facilitates various forms of analysis, the analyses 
presented in this paper have two main goals: (1) 
characterization of the locality of reference exhibited at 
the various levels of the memory hierarchy by TPC-C 
private and shared data loads and (2) evaluation of the 
effectiveness of design aspects of and policies associated 
with the p690 memory hierarchy w.r.t. workload 
demands. These analyses focus on regions of the TPC-C 
address space referenced by 90% of L2-cache data-load 
misses, i.e., the Buffer Pool and Data/BSS/Heap, tracking 
the missing L2-cache lines across the levels of the 
hierarchy. Even though we have thoroughly studied the 
memory references to all regions in the TPC-C address 
space, only analyses of the most-referenced shared and 
private data regions are presented below. 
 
5.3.1. Shared Data. Shared data, e.g., global variables 
and application code, are accessible by every TPC-C and 
database process in the system. Ideally, shared data 
remains resident at the high levels of the memory 
hierarchy until it is no longer referenced. For the p690 
this means that shared data remains in the extensive L2-
cache level, accessible via L2, L2.5, and L2.75 hits, until 
it is no longer referenced. Hits at these levels of the 
hierarchy carry smaller access penalties than hits at the 
L3-cache level or memory and, thus, lead to better 
performance.      

The Buffer Pool is a shared address region that stores 
data associated with the most heavily accessed database 
tables. It serves as a shared database cache between the 
application and the database management system and is 
the largest address region in the TPC-C address space. As 
such, during the 10-minute observation interval of TPC-
C’s execution on the 32-way p690, it is the target of 
approximately 36% of the sampled L1-cache data-load 
misses. Figure 3 shows the distribution of these data-load 
hits among the levels of the p690 memory hierarchy. For 

each level of the hierarchy, the dark-colored bar 
represents the number of data-load hits, while the light-
colored bar represents the unique cache line count. The 
number of unique cache lines referenced gives an 
indication of locality of reference. 

Figure 3. Distribution of Buffer Pool data-load 
hits across 32-way p690 memory hierarchy 
 
As shown in Figure 3, for the 32-way p690, 

approximately 93% of the L2-cache Buffer Pool data-load 
misses that are serviced by main memory (MEM hit 
events) reference data that maps to unique cache lines. 
(For the eight-way p690, the percentage is approximately 
86%.) The large overlap of the MEM hit event’s 
unique_cache_line bar with its data_load_hits bar 
indicates that the majority of L2-cache Buffer Pool data-
load misses serviced by main memory are compulsory 
misses (misses associated with first-time data accesses). 
This is corroborated by analyses of the timestamps 
associated with these events. If this was not the case, i.e., 
if a large number of the data-load hits serviced by main 
memory were due to premature evictions from higher 
levels of the memory hierarchy (due to capacity or 
conflict misses), there would be a smaller overlap, 
indicating multiple data-load hits per cache line. This 
memory access behavior indicates efficient p690 main 
memory usage and represents a match between the 
architecture and application – ideally, each cache line 
would be accessed from main memory only once.  

The data depicted in Figure 3 also shows that once 
Buffer Pool data is loaded from main memory, it migrates 
across and is accessed from all levels of the memory 
hierarchy. This distribution of data-load hits indicates that 
a processor, rather than exploiting the caches associated 
with its own MCM is forced to obtain this shared data 
from caches on other MCMs. This is illustrated by the 
fact that in the 32-way p690 approximately 44% of L2-
cache Buffer Pool data-load misses are satisfied at the 
L2.75 and L3.5 levels of the memory hierarchy, while 
only 31% are satisfied at the L2, L2.5, and L3 levels. 
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Referring to Table 1, note that the penalty for an L2-cache 
miss satisfied at a remote L2 cache (L2.75 hit) is cheaper 
than one satisfied at the local L3 cache.  
Ideally, all L2-cache data-load misses would be satisfied 
locally via L2.5 hits. In this case, we do not see this 
behavior. Instead, approximately 25% of Buffer Pool data 
references are satisfied by L2.75 hits, as opposed to only 
5% being satisfied by L2.5 hits. The unique_cache_line 
bar for the L2.75 hit event is only a very small percentage 
of the corresponding data_load_hits bar, indicating good 
locality of reference w.r.t. the L2.75 level of the memory 
hierarchy and significant sharing of a relatively small 
number of cache lines. It appears that this sharing may 
have resulted in premature eviction of these lines from L2 
caches. If the evictions were due to false sharing or 
process sharing that could be localized to an MCM, then 
this behavior would be considered a mismatch between 
the application and the architecture and would present a 
target for potential performance improvement.  

In contrast, as depicted in Figure 4, the distribution of 
Buffer Pool data-load hits associated with the eight-way 
p690 shows that approximately 20% of references are 
satisfied by L2.5 hits, as opposed to 16% of references 
being satisfied by L2.75 hits. Furthermore, approximately 
53% of L2-cache Buffer Pool data-load misses are 
serviced at the L2.5 and L3 levels of the memory 
hierarchy, while only 26% are serviced at the L2.75 and 
L3.5 levels. This distribution indicates that a processor in 
the eight-way p690 references data mainly from local L2 
caches. 

The difference in this memory behavior may be due 
to the fact that the eight-way p690 used in this study 
consists of “single core good” chips, i.e., chips with one 
functional processor, while the 32-way p690 is comprised 
of chips with two functional processors.  As such, each 
MCM in the 32-processor system contains twice as many 
functional processors, and potentially twice as many 
processes, as the eight-processor system. Accordingly, in 
the 32-processor system, there is increased contention for 
both local and remote L2 caches. Intra-MCM L2-cache 
contention can cause premature eviction of cache lines 
from local L2 caches and can increase the need to access 
either the local L3 cache or remote L2 caches. Further 
analysis is necessary to validate whether or not this is the 
case. 
 
5.3.2. Private Data. Private data, e.g., a process’ return 
stack and local variables, can be accessed only by the 
process that owns them. Ideally, a process’ private data 
remains as close as possible to the executing processor. In 
the case of the p690, this means that process-private data 
to be used in the future should be L1-cache resident. In 
addition, data-load hits to memory should occur only to 
satisfy compulsory misses. The only reason a process 
should access its private data from a remote cache is to re-

load its working set as a result of process migration. 
However, in reality, contention between processes sharing 
an L2 cache can evict private data lines in a process’ 
working set, forcing them to the L3 cache or memory. 

Figure 4. Distribution of Buffer Pool data-load 
hits across 8-way p690 memory hierarchy 

 
The Data/BSS/Heap address region is a process-

private region that contains data such as initialized and 
uninitialized variables referenced by a process, as well as 
the process’ heap space. During the 10-minute 
observation of TPC-C executing on the 32-way p690, 
approximately 20% of sampled data-load hits target it. 
Figures 5 and 6 depict the distribution of data-load hits 
generated by L1-cache misses, to this region, arranged by 
levels of the eight- and 32-way p690 memory hierarchies, 
respectively. 

As shown in Figures 5 and 6, approximately 79% 
(25%) of the L2-cache Data/BSS/Heap data-load misses 
generated by the eight-(32-)processor system that result in 
MEM hit events reference data that maps to unique cache 
lines. As is the case with the Buffer Pool, for 
Data/BSS/Heap, the unique_cache_line bar for the MEM 
hit event overlaps significantly with the associated 
data_load_hits bar, indicating that the majority of 
references satisfied by main memory are generated by 
compulsory misses. Unlike the Buffer Pool, for 
Data/BSS/Heap, once data is loaded from main memory, 
for the most part, it is accessed locally. This is illustrated 
by the fact that for TPC-C executed on the eight- (32-) 
way p690 approximately 73% (62%) of the L1-cache 
Data/BSS/Heap data-load misses are serviced by local 
caches, while less than 2% (1%) are serviced by remote 
caches. The remaining 25% (37%) of cache misses are 
satisfied by main memory. This indicates a good match 
between application and architecture.  

The major difference between the distributions of 
Data/BSS/Heap data-load hits across the memory 
hierarchy of the eight- and 32-processor systems is the 
increased number of L2.5 events for the eight-way p690. 
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In fact, this is characteristic of all private address regions 
in the TPC-C address space. One possible explanation is 
that processes migrate more frequently in the eight-
processor system. Again, the different number of 
processors/processes per MCM can account for this 
behavior. With fewer processors on which to execute, 
processes are forced to migrate more often in order to 
accomplish their work. And, on each migration a process 
is forced to reload its working set from the L2 cache of 
the processor on which it was previously executing. This 
is illustrated in Figure 6 by the L2.5 hit 
unique_cache_line bar being a fairly small percentage of 
its corresponding data-load hit bar, indicating repeated 
accesses to a small number of unique cache lines.  
Analyses of process migration, using the timestamp and 
processor and thread ids associated with every sample, 
corroborate these findings. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Distribution of Data/BSS/Heap data-

load hits across 32-way p690 memory hierarchy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Distribution of Data/BSS/Heap data-

load hits across 8-way p690 memory hierarchy 
 

5.3.3. Summary. These results point out one similarity 
and two key differences between the memory access 
behavior of TPC-C private and shared data loads.  

• In common is an application/architecture match: 
main memory accesses, the highest-penalty hit, 
primarily are associated with compulsory misses. 

• In general, references to private data are serviced 
within an MCM—an application/architecture 
match, while references to shared data are 
satisfied outside an MCM. This makes shared data 
references, in general, more costly and identifies a 
potential source of performance degradation. 

• Furthermore, as compared to shared data-load hits, 
private data-load hits have decreased locality of 
reference with respect to the memory hierarchy, 
i.e., references to shared data are much more 
localized. With respect to shared data, this 
identifies a target for further analysis to determine 
if processes that access common cache lines can 
be scheduled on the same MCM. 

Some of the differences observed between the eight- and 
32-processor data may be attributable to the fact that the 
32-processsor event traces capture a subset of the sampled 
events. For example, the 32-processor L3 hit event traces 
capture the sampled events from 17 of the 32 processors, 
while the eight-processor traces capture the sampled 
events from all eight processors.  This, however, does not 
affect the insights gained from the memory access 
behavior of the individual systems and the demonstration 
of the power and flexibility of our multiprocessor 
performance evaluation framework, which, as shown, can 
be used to characterize and evaluate 
application/architecture memory access behavior and 
performance. 
 
6. Summary, Conclusions, and Future Work 
 

This paper describes a powerful, fast, and flexible 
performance evaluation framework to study the behavior 
of large, complex applications executed on multiprocessor 
systems. Sampled event traces are captured in real time 
via on-chip performance counters and stored in databases 
via Java tools. Java report-generation software facilitates 
the analysis of the event traces by querying the database 
and processing the results. This methodology was used to 
study L1- and L2-cache data-load misses generated by the 
TPC-C benchmark executed on eight- and 32-way IBM 
~pSeries 690 systems. The framework facilitates the 
characterization of the locality of reference exhibited by 
TPC-C data loads at the various levels of the memory 
hierarchy and the evaluation of the efficacy of design 
aspects of and policies associated with the p690 memory 
hierarchy with respect to workload demands.  

The study demonstrates good matches between 
design aspects of the architecture and the workload’s 
memory access behavior. For example, main memory 
accesses primarily are associated with compulsory misses 
and memory references to private data are generally 
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satisfied within the MCM, while references to shared data 
are satisfied outside the MCM.  

Future work will use other insights presented in this 
paper, e.g., observations that indicate contention between 
private and shared data at L1 and L2 caches, and our 
performance evaluation framework, to explore ways to 
improve performance, either through modifications to the 
application, the operating system, the hardware, or a 
combination of these.  

In addition, future work will study the degree to 
which sampled event traces represent actual dynamic 
application behavior. And, it will track potential TPC-C 
performance impediments to actual code and/or data 
structures in the application or operating system, and 
study related application, operating system, and/or 
hardware modifications that may improve performance. 
Improvements to the performance evaluation framework 
will continue; in particular, user-friendly graphical user 
interfaces (GUIs) and automatic graph creation will be 
added. 
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