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Abstract

Because of the increasing gap between processor
frequency and Dynamic Random Access Memory (DRAM)
speed, the performance of the memory subsystem typically
governs that of the system as a whole. This is especially
true for symmetric multiprocessor systems (SMPs).
Therefore, performance evaluation methodologies that
facilitate the analysis and optimization of the memory
subsystem are essential. This paper describes such a
methodology, a performance evaluation framework, and
demonstrates its power, speed, and flexibility in the
context of a study of the TPC-C benchmark, executed on
eight- and 32-processor IBM ~pSeries 690 (p690)
systems. The framework facilitates analysis of sampled
performance monitor event traces that are collected in
real time. The analyses are used to characterize the
locality of reference exhibited by TPC-C data loads at the
various levels of the memory hierarchy and evaluate the
efficacy of design aspects of and policies associated with
the p690 memory hierarchy w.r.t. workload demands.

1. Motivation

Because of the increasing gap between processor
frequency and DRAM speed [4], one of the major
architectural design considerations for any computer
system is that of the memory subsystem. In most cases,
the performance of the memory subsystem governs that of
the system as a whole [14]. This is true especially for
modern, as well as future, symmetric multiprocessor
(SMP) systems. Consequently, performance evaluation
methodologies that facilitate the analysis and optimization
of the memory subsystem are essential to the development
of next-generation computer systems.

Analysis of the memory access behavior of a
workload executed on a particular computer system can
reveal ways to improve performance, through

modifications to the application, operating system,
hardware, or combinations of these. However, for SMP
systems this type of performance evaluation is becoming
increasingly more challenging. For example, a traditional
way to analyze cache performance is through the use of
address traces generated by the hardware or by software
architecture simulation, as is the case with SimOS [11].
As systems become faster and caches become
increasingly larger, it is more difficult to collect traces
that are long enough to accurately model the memory
hierarchy of even a single processor. Furthermore, for
large, complex workloads, such as on-line transaction
processing  (OLTP)  workloads, executed  on
multiprocessors, system simulation requires as much disk
space as the workload, typically multiple terabytes by
today’s standards, and wusually more memory.
Additionally, the effort to simulate a large multiprocessor
system is intimidating. One alternative to tracing is a
cache simulator built in hardware and connected to a
running system [10].

Our approach to meeting the challenge of
multiprocessor performance evaluation uses sampled
performance monitor event traces collected in real time
and a powerful, fast, and flexible performance evaluation
framework. The traces are captured via on-chip
performance counters that recognize events such as level-
two (L2) cache misses, stored in databases, and post
processed in conjunction with a partitioned address space
map of the workload to gain insights into application
behavior and performance. Report-generation software
facilitates the analysis of the traces and provides graphical
output that can be used to understand when the workload
and architecture complement one another in terms of
performance and identify performance bottlenecks, with
the intent of identifying ways to alleviate them.

In this paper, the framework is described and its
power and flexibility are demonstrated in the context a
study of the memory access behavior and performance of



a large, complex OLTP workload, the TPC-C benchmark,
executed on eight- and 32-processor IBM ~pSeries 690
(p690) systems. The study characterizes the locality of
reference exhibited by TPC-C data loads at the various
levels of the memory hierarchy and evaluates the efficacy
of design aspects of and policies associated with the p690
memory hierarchy with respect to workload demands.

The paper continues with Section 2, which presents
related research. Next, Section 3 explains why the study
presented in the paper focuses on L2-cache data-load
misses and the TPC-C benchmark. Section 4 describes
our data collection methodology, i.e., the workload under
study, the platform from which the data was collected, the
events of interest, and the data collection tools. Data
analysis is the focus of Section 5, which describes the
tools and methodology used for data analysis, and
discusses a sample of the results of the study. Finally,
Section 6 summarizes the paper and presents conclusions
and future work.

2. Related Research

Performance monitor event traces captured via
performance counters have been used to characterize
application behavior in the past. Barroso et al. [2] use
event traces, captured by tools such as IPROBE and DCPI
(Digital Continuous Profiling Infrastructure) [1, 3], to
characterize applications, including OLTP workloads,
executed on a four-processor AlphaServer 4100 using
Oracle 7.3.2. And, Keeton et al. [6] use performance
monitors to analyze the behavior of an OLTP workload
executed on a four-processor Pentium Pro-based server.
Both efforts explore the performance effects of
architectural modifications. In [2] this is done by
workload characterization, accomplished by source code
instrumentation, coupled with simulation methodologies;
in [6] this is accomplished by physically changing the
hardware. Desikan et al., like Barroso et al., use the DCPI
tool [1] but Desikan et al. use it to validate an Alpha
21264 simulator by sampling events that are used to
derive performance measurements for the Compaq DS-
10L workstation.

With respect to the performance of TPC-C, Tsuei et
al. [12] study TPC-C executed on an unidentified Sun
Microsystems 16-processor shared-memory
multiprocessor with 4GB of memory using IBM’s DB2
for Solaris version 2.1.1. Leutenegger and Dias [8] study
TPC-C executed on an unidentified multiple-node
distributed system. Both efforts investigate TPC-C’s
buffer hit rate. Leutenegger and Dias also investigate the
memory access characteristics of TPC-C and show that
data access skew, i.e., non-uniform data memory access,
exists at the tuple and page levels. Our initial results [9],
which indicate that load accesses are concentrated in
certain memory regions and within those regions smaller

defined areas are heavily accessed, corroborate the study
of Leutenegger and Dias.

Unlike the research described above, Itzkowitz, et al.
[7] discuss and demonstrate the use, on a dual 900 MHz
UltraSPARC-III Cu Sun Fire 280R™ system, of
extensions to the Sun ONE Studio™ compilers and
performance tools that provide information related to the
data space of an application. This information, gathered
either by clock or hardware-counter profiling, provides
per-instruction details of memory accesses in the
annotated disassembly as well as data aggregated and
sorted by object structure types and elements. Compiler-
generated padding introduces minor inaccuracies but
collection perturbation can be controlled through
configuration of the processors’ counter overflow rates.
Future work described by Itzkowitz, et al. includes
analysis of event data addresses by machine entity, for
example, memory segment, page, and cache line. Note
that our methodology has already been used to perform
analysis of this kind [9, 13].

The major differences between our work and the
related research described above is the scale of the
systems and the methodology used. Itzkowitz, et al. use a
two-processor system; Barroso et al. and Keeton et al. use
a system with four processors; and Tsuei et al. use one
with 16 processors. In contrast, we analyze performance
data obtained from both eight- and 32-processor systems.
In addition, our work attempts to extract information
about the dynamic behavior of a large, complex
application with a considerably simpler, more powerful,
faster, and, in some cases, more precise methodology. As
described in Section 4, our methodology does not require
source code instrumentation; data collection does not
perturb workload execution behavior. And, as described
in Sections 5 and 6, our methodology is not restricted to
memory access behavior analysis; instead, it provides the
capability to analyze workload execution behavior in a
myriad of ways.

3. Why Study L2-cache Data-load Misses and
TPC-C?

The sampled event traces studied in this paper were
generated via the Performance Monitoring Units (PMUs)
of POWER4 microprocessors of eight- and 32-processor,
i.e., eight- and 32-way, p690s executing TPC-C. The
PMUs were programmed to monitor events triggered by
L2-cache misses.

TPC-C, an OLTP application, is used to demonstrate
our methodology because it is understood fairly well, is
representative of workloads of interest to IBM customers,
and commercial workloads, such as TPC-C, are run on a
vast majority of today’s commercial servers [5].
Furthermore, our preliminary data analysis of information
concerning the data access streams produced by L2-cache



data-load misses generated by TPC-C executing on a
p690 indicates that there is opportunity for performance
enhancement [9, 13]. In particular, it reveals that accesses
to particular areas of the address space, e.g., working
storage and the buffer pool, and components of the
operating system, may be targets for performance
improvement.

There are several events that could have been the
focus of this study; these include instruction cache
(Icache) misses, translation-lookaside buffer (TLB)
misses, address-only coherence operations, and uncached
memory accesses for I/O. However, as explained below,
the performance impact of these events pale in
comparison to high-penalty L2-cache misses.
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Figure 1. TPC-C instruction and data access
sites for 32-way p690

From a CPI viewpoint, TPC-C’s most dominant
memory subsystem operation is L2-cache miss service.
As shown in Figure 1, which indicates where in the
memory hierarchy level-one (L1) cache misses are
satisfied, over 50% of L1 data-cache (Dcache) misses
miss in the L2 cache and are satisfied by either a level-
three cache (L3 D hit) or main memory (Memory D hit).
As shown in Table 1, these are high-penalty misses,
which if decreased, could have a positive impact on
performance.

L2-cache Access Site Load Latency
L2  cache 12 cycles
L2.5 cache 73 cycles
L2.75 cache 96 cycles
L3  cache 112 cycles
L3.5 cache 143 cycles
Main memory 320 cycles

Table 1. Eight-way p690 approximate load
latencies

With respect to Icache misses, on the POWER4
microprocessor it is possible to count instruction and data
cache miss rates, and to sample the instruction and data

addresses associated with Dcache misses. However, it is
not possible to sample the instruction addresses associated
with Icache misses. This does not pose a problem since
Icache misses tend to have a minimal effect on hardware
performance due to the fact that the Icache footprint tends
to be well cached in large L2 and L3 caches. As Figure 1
shows, this is the case for TPC-C, i.e., few Icache misses
are resolved beyond the on-chip L2 cache.

The TPC-C TLB miss rate is reduced by mapping the
database buffer pool using 16MB “large pages” rather
than the standard 4KB pages. Additionally, unlike cache
and TLB misses, address-only coherence operations do
not involve movement of data. For example, consider the
case where a cache line is held shared by two processes
on different POWER4 chips. When one processor stores
into the cache line, an address-only operation is initiated
to ensure that other caches invalidate copies of the shared
data. Because data is not transferred for these operations
and the p690 has very high address bus bandwidth, their
impact on POWER4-based system performance tends to
be small.

Finally, uncached memory accesses for I/O via loads
and stores have very high latency. The latency is driven
by the fact that many of these operations must pass all the
way through to a PCI adapter for acknowledgement.
Luckily, most of the actual I/O traffic is handled by
DMA, which is asynchronous to processor execution.
Accordingly, the high-latency uncached accesses tend to
be fairly infrequent.

4. Data Collection

The performance data collected for this study are
traces of sampled events associated with the servicing of
L2-cache data-load misses generated by TPC-C while
executing on eight- and 32-way IBM p690 systems.
Below we describe the workload and the compute
platform, as well as the monitored events and the
methodology used to collect the sampled traces.

4.1. Experimental Platform

4.1.1. Workload: TPC-C. To collect the data used in this
study, a fully-implemented TPC-C benchmark drives a
commercially-available relational database, which was
compiled using the IBM C for AIX version 5 compiler.
The TPC-C (Transaction Processing Performance Council
Benchmark C) workload [16] is a well-known benchmark
that emulates update-intensive and read-only transactions
found in complex OLTP application environments [12]. It
has been used widely in the database server industry as a
basis of server performance analysis and platform
comparison.

4.1.2. Compute Platform: IBM ~pSeries 690. The
~pSeries 690 family of SMP architectures includes the



eight- and 32-processor configurations used in this study
[15, 17]. The operating system for these configurations is
AIX version 5.2. The Multi Chip Module (MCM) is the
building block of the architecture. An MCM contains four
chips, each of which is comprised of two 1.3 GHz
POWER4 processors, and, thus, eight processors. In
general, the eight- (32-)processor configuration contains
one (four) MCMs, but in this study a two-MCM eight-
processor system is used — each MCM contains four
“single core good” chips, each of which has only one
functional processor.
For the configurations under study,

each CPU has a 64KB L1 Icache and a 32KB L1

Dcache;

each chip has a 1.44MB L2 unified cache shared

by the two processors on the chip;

the four chips/eight processors on an MCM share

a 128MB L3 unified cache; and

main memory is 128GB (256GB) for the eight-

(32-)way p690.
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Figure 2. Two (double core good) MCMs of 32-
way p690

The L1- and L2-cache line size is 128B, while the
L3-cache line size is 512B. Each L3 cache line is
partitioned into four 128B sectors. Data private to and
shared by processes are managed via the cache coherence
protocol implemented in the p690. As illustrated in Figure
2, an L2-cache miss for either type of data generated by a
processor in an MCM can be serviced at five different
levels of the memory hierarchy:

1. another L2 cache within the same MCM, i.c., a

local L2 cache, the L2.5 level,

2. an L2 cache in another MCM, i.e., a remote L2

cache, the L2.75 level,

3. the MCM’s L3 cache, i.e., the local L3 cache,

the L3 level,

4. an L3 cache in another MCM, i.e., a remote L3
cache, the L3.5 level; and
5. main memory.

4.1.3. Monitored Events. A hit event that is generated by
an L2-cache miss is classified according to the level at
which the miss is serviced and the state of the referenced
cache line. An L2-cache miss serviced by the L2.5 level
generates one of two types of events: an L2.5-shared hit
(L25_SHR) or L2.5-modified hit (L25_MOD). L25 SHR
denotes that, although the referenced cache line may
reside simultaneously in more than one L2 cache, a local
L2 cache services the miss. L25 MOD denotes that the
referenced line resides in only one L2 cache, a local L2
cache, which services the miss. A modified block is
owned exclusively by one cache and contains more recent
data than the backing physical memory.

Similarly, L2-cache misses serviced by the L2.75
level generate either an L.2.75-shared hit (L275 SHR) or
L2.75-modified hit (L275 MOD) event. The former
denotes that the referenced cache line resides in one or
more L2 caches but not in a local L2 cache, and is, thus,
serviced by a remote L2 cache. The latter denotes that the
requested line resides in only one L2 cache, a remote L2
cache, which services the miss.

At the L3 level, the cache-hit events are called L3
shared (L3 _SHR), L3 modified (L3 MOD), L3.5 shared
(L35 _SHR), and L3.5 modified (L3 MOD). L3 SHR
denotes that the requested cache line resides in the local
L3 cache, from where it will be accessed, but may reside
in other L3 caches as well. L35 SHR denotes that the
requested line resides in at least one remote L3 cache, but
not in the local L3 cache. L3_MOD (L35 MOD) denotes
that the requested line resides in only one cache, the local
L3 cache (a remote L3 cache), where it will be accessed.

For this study we consider all these events in addition
to main memory hit events (MEM). However, instead of
monitoring the four events associated with the L3 level of
the memory hierarchy, only two events are monitored: L3
and L3.5 hits (L3 and L35).

4.1.4. Event Trace Sampling Methodology: PMU,
eprof, and trcrpt. On ~pSeries hardware, valuable
performance information for a section of code or an entire
program can be collected through the use of the POWER4
microprocessor performance-monitoring facilities and
tools. This information is delivered in the form of
aggregate counts and, for selected models, sampled traces
of data associated with user-specified events. Up to eight
events can be monitored concurrently by a POWER4
performance-monitoring unit (PMU), which has eight
counters. Special-purpose registers, only accessible via
the operating system through a programming interface
that accesses the registers through a kernel extension,
control the state of the counters. This interface permits,



among other things, the specification of the events to be
monitored and the execution points at which to start and
stop counters.

Sampled performance monitor event traces, used in
this paper to study the events described in Section 3.3, are
collected via two tools: tprof and eprof. tprof is a time-
based profiling tool that is part of the AIX operating
system. eprof is an in-house IBM tool that uses tprof
functionality for data collection and reduction and is tied
to the PMU on selected ~pSeries hardware models. eprof
is used to program the PMU to sample hardware
countable events at a defined rate; the default rate is
approximately 100 events per second per processor. When
an event is sampled, i.e., at each increment of the
performance counter, the instruction address and data
address (if applicable) are captured by the PMU, and a
performance-monitor (PM) interrupt is delivered. The PM
interrupt causes the sample information to be extracted
from the PMU and an AIX trace hook to be generated and
added to the trace. The AIX trace hook describes the
associated trace record. Using the AIX trace allows
samples to be either written to disk or collected via a
daemon that can summarize the data. The profiling also
enables selected AIX trace hooks, such as those related to
dispatching, so that the sampled events can be correlated
with the processes/threads. If AIX trace is used to collect
events in a file, the file can be formatted with the frerpt
utility to create a time-stamped text file of events. For this
study, we used trcrpt as well as a program that reads the
formatted trace and extracts summary information. The
specified output of trerpt includes the effective instruction
and data addresses, the process and thread ids, and the
timestamp for each sampled event.

Event Sample Count
8-way p690 32-way p690

L2 312,252 259,716
L25 MOD 313,431 197,592
L25 SHR 748,064 n/a

L275 MOD 126,376 167,485
L275 SHR 835,339 n/a

L3 301,791 170,910
L35 121,274 172,008
MEM 272,835 262,941

Table 2. Event sample counts

The sampled event traces used in this study were
generated using the default sampling rate. If the sampled
event is processor cycles, time-based sampling is
accomplished and a sample is collected every 10
milliseconds. In contrast, if the event is one that occurs at
a variable rate, e.g., cache misses, and if the rate of event
occurrence is greater than the default sampling rate, then
eprof adjusts the sampling rate to approximate the default
rate. Accordingly, the interval between PM interrupts can

be variable. Because some events occur more often than
others, it follows that a different number of samples are
collected for different types of events. As shown in Table
2, despite the adoption of the default sampling rate and a
10-minute workload, this is the case for the events studied
in this research. Event-based sampling is important for
long-running programs, like TPC-C, with extremely large
numbers of events. Even using event-based sampling, the
amount of samples collected for the L25 SHR and
L275 SHR events was so large that reduced eight-
processor sample counts are used and the 32-processor
events are not analyzed.

5. Data Analysis

This section describes the tools used to perform the
data analysis, the partitioning of the address space, and
the results of the data analysis.

5.1. Methodology

Through the use of a set of tools implemented in
Java, each sample is processed and stored in a MySQL
database according to the following:

1.  monitored workload,

2. number of processors used to execute the

workload, and

3. sampled event.

For example, database tpcc 32 g48cl stores the
sampled event traces associated with the L2-cache data-
load misses resolved in the L3 caches (event g48cl) for
the TPC-C benchmark executed on a 32-processor
system. Each database consists of 12 tables that store
information related to the experiment itself, e.g., a
description of the workload and machine being used, as
well as the effective instruction and data addresses,
process and thread ids, and timestamp of each sample.
Once the sampled event traces are loaded into their
corresponding databases, a second set of Java-based tools
is used to query the database and generate default and
customized reports in the form of formatted text files. The
files are transformed into graphs via a spreadsheet
application with built-in graphing capabilities.

Storing the sampled performance monitor event
traces in databases facilitates data analysis, providing
countless ways to easily examine and explore the data.
Accordingly, the analysis and results presented in this
paper are only a sample of the kind of information that
can be obtained using this methodology.

5.2. Data Partitioning

The segment and page sizes are 256MB and 4KB,
respectively. Based on a process model, TPC-C allows for
per-process private data address regions and a shared data



address region. The latter contains database state
information and the buffer pool. The buffer pool is the
largest consumer of physical memory, containing
unmodified data currently on disk and data modified by
transactions but not yet updated on disk. Since the size of
the database is much larger than physical memory and the
pattern of access to disk data is unpredictable, disk 1/O is
continuous. Incoming database transactions are passed off
to idle processes for service. The number of processes
available for processing transactions is based on the
number needed to achieve nearly 100% processor
utilization. Because most transactions experience some
number of disk I/Os, many transactions must be executing
concurrently to maximize processor utilization.

5.3. Results

Although our performance evaluation framework
facilitates various forms of analysis, the analyses
presented in this paper have two main goals: (1)
characterization of the locality of reference exhibited at
the various levels of the memory hierarchy by TPC-C
private and shared data loads and (2) evaluation of the
effectiveness of design aspects of and policies associated
with the p690 memory hierarchy w.r.t. workload
demands. These analyses focus on regions of the TPC-C
address space referenced by 90% of L2-cache data-load
misses, i.c., the Buffer Pool and Data/BSS/Heap, tracking
the missing L2-cache lines across the levels of the
hierarchy. Even though we have thoroughly studied the
memory references to all regions in the TPC-C address
space, only analyses of the most-referenced shared and
private data regions are presented below.

5.3.1. Shared Data. Shared data, e.g., global variables
and application code, are accessible by every TPC-C and
database process in the system. Ideally, shared data
remains resident at the high levels of the memory
hierarchy until it is no longer referenced. For the p690
this means that shared data remains in the extensive L2-
cache level, accessible via L2, 1.2.5, and L2.75 hits, until
it is no longer referenced. Hits at these levels of the
hierarchy carry smaller access penalties than hits at the
L3-cache level or memory and, thus, lead to better
performance.

The Buffer Pool is a shared address region that stores
data associated with the most heavily accessed database
tables. It serves as a shared database cache between the
application and the database management system and is
the largest address region in the TPC-C address space. As
such, during the 10-minute observation interval of TPC-
C’s execution on the 32-way p690, it is the target of
approximately 36% of the sampled L1-cache data-load
misses. Figure 3 shows the distribution of these data-load
hits among the levels of the p690 memory hierarchy. For

each level of the hierarchy, the dark-colored bar
represents the number of data-load hits, while the light-
colored bar represents the unique cache line count. The
number of unique cache lines referenced gives an
indication of locality of reference.

Distribution of Data Load Hits: BUFFER_POOL
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Figure 3. Distribution of Buffer Pool data-load
hits across 32-way p690 memory hierarchy

As shown in Figure 3, for the 32-way p690,
approximately 93% of the L2-cache Buffer Pool data-load
misses that are serviced by main memory (MEM hit
events) reference data that maps to unique cache lines.
(For the eight-way p690, the percentage is approximately
86%.) The large overlap of the MEM hit event’s
unique_cache line bar with its data load hits bar
indicates that the majority of L2-cache Buffer Pool data-
load misses serviced by main memory are compulsory
misses (misses associated with first-time data accesses).
This is corroborated by analyses of the timestamps
associated with these events. If this was not the case, i.e.,
if a large number of the data-load hits serviced by main
memory were due to premature evictions from higher
levels of the memory hierarchy (due to capacity or
conflict misses), there would be a smaller overlap,
indicating multiple data-load hits per cache line. This
memory access behavior indicates efficient p690 main
memory usage and represents a match between the
architecture and application — ideally, each cache line
would be accessed from main memory only once.

The data depicted in Figure 3 also shows that once
Buffer Pool data is loaded from main memory, it migrates
across and is accessed from all levels of the memory
hierarchy. This distribution of data-load hits indicates that
a processor, rather than exploiting the caches associated
with its own MCM is forced to obtain this shared data
from caches on other MCMs. This is illustrated by the
fact that in the 32-way p690 approximately 44% of L2-
cache Buffer Pool data-load misses are satisfied at the
L2.75 and L3.5 levels of the memory hierarchy, while
only 31% are satisfied at the L2, L2.5, and L3 levels.



Referring to Table 1, note that the penalty for an L2-cache
miss satisfied at a remote L2 cache (L2.75 hit) is cheaper
than one satisfied at the local L3 cache.

Ideally, all L2-cache data-load misses would be satisfied
locally via L2.5 hits. In this case, we do not see this
behavior. Instead, approximately 25% of Buffer Pool data
references are satisfied by L2.75 hits, as opposed to only
5% being satisfied by L2.5 hits. The unique cache line
bar for the L2.75 hit event is only a very small percentage
of the corresponding data load_hits bar, indicating good
locality of reference w.r.t. the L2.75 level of the memory
hierarchy and significant sharing of a relatively small
number of cache lines. It appears that this sharing may
have resulted in premature eviction of these lines from L2
caches. If the evictions were due to false sharing or
process sharing that could be localized to an MCM, then
this behavior would be considered a mismatch between
the application and the architecture and would present a
target for potential performance improvement.

In contrast, as depicted in Figure 4, the distribution of
Buffer Pool data-load hits associated with the eight-way
p690 shows that approximately 20% of references are
satisfied by L2.5 hits, as opposed to 16% of references
being satisfied by L2.75 hits. Furthermore, approximately
53% of L2-cache Buffer Pool data-load misses are
serviced at the L2.5 and L3 levels of the memory
hierarchy, while only 26% are serviced at the L2.75 and
L3.5 levels. This distribution indicates that a processor in
the eight-way p690 references data mainly from local L2
caches.

The difference in this memory behavior may be due
to the fact that the eight-way p690 used in this study
consists of “single core good” chips, i.e., chips with one
functional processor, while the 32-way p690 is comprised
of chips with two functional processors. As such, each
MCM in the 32-processor system contains twice as many
functional processors, and potentially twice as many
processes, as the eight-processor system. Accordingly, in
the 32-processor system, there is increased contention for
both local and remote L2 caches. Intra-MCM L2-cache
contention can cause premature eviction of cache lines
from local L2 caches and can increase the need to access
either the local L3 cache or remote L2 caches. Further
analysis is necessary to validate whether or not this is the
case.

5.3.2. Private Data. Private data, e.g., a process’ return
stack and local variables, can be accessed only by the
process that owns them. Ideally, a process’ private data
remains as close as possible to the executing processor. In
the case of the p690, this means that process-private data
to be used in the future should be L1-cache resident. In
addition, data-load hits to memory should occur only to
satisfy compulsory misses. The only reason a process
should access its private data from a remote cache is to re-

load its working set as a result of process migration.
However, in reality, contention between processes sharing
an L2 cache can evict private data lines in a process’
working set, forcing them to the L3 cache or memory.

Distribution of Data Load Hits: BUFFER_POOL
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Figure 4. Distribution of Buffer Pool data-load
hits across 8-way p690 memory hierarchy

The Data/BSS/Heap address region is a process-
private region that contains data such as initialized and
uninitialized variables referenced by a process, as well as
the process’ heap space. During the 10-minute
observation of TPC-C executing on the 32-way p690,
approximately 20% of sampled data-load hits target it.
Figures 5 and 6 depict the distribution of data-load hits
generated by L1-cache misses, to this region, arranged by
levels of the eight- and 32-way p690 memory hierarchies,
respectively.

As shown in Figures 5 and 6, approximately 79%
(25%) of the L2-cache Data/BSS/Heap data-load misses
generated by the eight-(32-)processor system that result in
MEM hit events reference data that maps to unique cache
lines. As is the case with the Buffer Pool, for
Data/BSS/Heap, the unique cache line bar for the MEM
hit event overlaps significantly with the associated
data_load hits bar, indicating that the majority of
references satisfied by main memory are generated by
compulsory misses. Unlike the Buffer Pool, for
Data/BSS/Heap, once data is loaded from main memory,
for the most part, it is accessed locally. This is illustrated
by the fact that for TPC-C executed on the eight- (32-)
way p690 approximately 73% (62%) of the Ll-cache
Data/BSS/Heap data-load misses are serviced by local
caches, while less than 2% (1%) are serviced by remote
caches. The remaining 25% (37%) of cache misses are
satisfied by main memory. This indicates a good match
between application and architecture.

The major difference between the distributions of
Data/BSS/Heap data-load hits across the memory
hierarchy of the eight- and 32-processor systems is the
increased number of L2.5 events for the eight-way p690.



In fact, this is characteristic of all private address regions
in the TPC-C address space. One possible explanation is
that processes migrate more frequently in the eight-
processor system. Again, the different number of
processors/processes per MCM can account for this
behavior. With fewer processors on which to execute,
processes are forced to migrate more often in order to
accomplish their work. And, on each migration a process
is forced to reload its working set from the L2 cache of
the processor on which it was previously executing. This
is illustrated in Figure 6 by the L2.5 hit
unique_cache line bar being a fairly small percentage of
its corresponding data-load hit bar, indicating repeated
accesses to a small number of unique cache lines.
Analyses of process migration, using the timestamp and
processor and thread ids associated with every sample,
corroborate these findings.
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Figure 5. Distribution of Data/BSS/Heap data-
load hits across 32-way p690 memory hierarchy
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Figure 6. Distribution of Data/BSS/Heap data-
load hits across 8-way p690 memory hierarchy

5.3.3. Summary. These results point out one similarity
and two key differences between the memory access
behavior of TPC-C private and shared data loads.

In common is an application/architecture match:
main memory accesses, the highest-penalty hit,
primarily are associated with compulsory misses.
In general, references to private data are serviced
within an MCM-—an application/architecture
match, while references to shared data are
satisfied outside an MCM. This makes shared data
references, in general, more costly and identifies a
potential source of performance degradation.
Furthermore, as compared to shared data-load hits,
private data-load hits have decreased locality of
reference with respect to the memory hierarchy,
1.e., references to shared data are much more
localized. With respect to shared data, this
identifies a target for further analysis to determine
if processes that access common cache lines can
be scheduled on the same MCM.
Some of the differences observed between the eight- and
32-processor data may be attributable to the fact that the
32-processsor event traces capture a subset of the sampled
events. For example, the 32-processor L3 hit event traces
capture the sampled events from 17 of the 32 processors,
while the eight-processor traces capture the sampled
events from all eight processors. This, however, does not
affect the insights gained from the memory access
behavior of the individual systems and the demonstration
of the power and flexibility of our multiprocessor
performance evaluation framework, which, as shown, can
be used to characterize and evaluate
application/architecture memory access behavior and
performance.

6. Summary, Conclusions, and Future Work

This paper describes a powerful, fast, and flexible
performance evaluation framework to study the behavior
of large, complex applications executed on multiprocessor
systems. Sampled event traces are captured in real time
via on-chip performance counters and stored in databases
via Java tools. Java report-generation software facilitates
the analysis of the event traces by querying the database
and processing the results. This methodology was used to
study L1- and L2-cache data-load misses generated by the
TPC-C benchmark executed on eight- and 32-way IBM
~pSeries 690 systems. The framework facilitates the
characterization of the locality of reference exhibited by
TPC-C data loads at the various levels of the memory
hierarchy and the evaluation of the efficacy of design
aspects of and policies associated with the p690 memory
hierarchy with respect to workload demands.

The study demonstrates good matches between
design aspects of the architecture and the workload’s
memory access behavior. For example, main memory
accesses primarily are associated with compulsory misses
and memory references to private data are generally



satisfied within the MCM, while references to shared data
are satisfied outside the MCM.

Future work will use other insights presented in this
paper, e.g., observations that indicate contention between
private and shared data at L1 and L2 caches, and our
performance evaluation framework, to explore ways to
improve performance, either through modifications to the
application, the operating system, the hardware, or a
combination of these.

In addition, future work will study the degree to
which sampled event traces represent actual dynamic
application behavior. And, it will track potential TPC-C
performance impediments to actual code and/or data
structures in the application or operating system, and
study related application, operating system, and/or
hardware modifications that may improve performance.
Improvements to the performance evaluation framework
will continue; in particular, user-friendly graphical user
interfaces (GUIs) and automatic graph creation will be
added.
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