
L2-Cache Miss Profiling on the p690 for a Large-scale Database Application 
 

 
Trevor Morgan, Diana Villa, Patricia J. Teller, and Jaime Acosta 

The University of Texas at El Paso 
Department of Computer Science 

trevormorgan31@hotmail.com, dvilla@utep.edu, pteller@cs.utep.edu, jacosta@cs.utep.edu 
 

Bret Olszewski  
IBM Corporation-Austin 

breto@us.ibm.com 
 

Abstract 
 

This paper profiles L2-cache data-load misses 
generated by the TPC-C benchmark executed on 8- and 
32-way configurations of the IBM eserver pSeries 690 
(p690). Using sampled performance monitor event traces, 
the resolution sites of L2-cache data-load misses are 
identified. To determine ways to enhance performance, 
the heavily hit resolution sites, L3 caches and main 
memory, are studied with respect to associated memory 
regions, segments, pages, cache blocks, routines, and 
instructions. Collected data indicates that the related 
data-load hits have high concentration within regions of 
the address space, segments, and pages. Specifically, our 
results show that the buffer pool and heap regions of the 
TPC-C address space tend to dominate as the effective 
address regions for data loads satisfied in L3 caches and 
main memory.  Furthermore, for those data loads 
satisfied in L3 caches, the segments, pages, and cache 
blocks that constitute the buffer pool exhibit a rather 
dense distribution. Future work will continue the analysis 
in an effort to define ways to remedy the performance 
degradation associated with L2-cache data-load misses 
being serviced at high-penalty levels of the p690 memory 
hierarchy.  
 
 
1. Motivation 
 

The research reported in this paper represents a first 
step in addressing the following question: “As processors 
get faster and memories get larger, can we generate the 
address traces and/or memory-hierarchy miss rate 
information that is needed to permit us to study how to 
optimize memory subsystem performance?” To answer 
this question, we are endeavoring to design and develop a 
general method that, given a workload, can be used to 
generate a characterization, i.e., a model, of the workload 
in terms of its memory access parameters. Such a 
workload model could be used to either generate traces or 

directly model cache miss rates. The model would allow a 
parametric exploration of the system and workload design 
spaces.  

The initial workload under study is that of TPC-C, a 
transaction-processing application that is understood 
fairly well and is representative of workloads of interest 
to IBM customers. The initial data access streams under 
study are those produced by level-two cache (L2-cache) 
misses for data loads generated by the TPC-C benchmark 
executed on an 8-way and a 32-way IBM eserver pSeries 
690. Data analysis of information concerning these access 
streams indicates that there is opportunity for 
performance enhancement. In addition, it indicates that 
accesses to particular areas of the address space, e.g., 
working storage, the buffer pool, and components of the 
operating system, may be targets for this performance 
enhancement.  

As described below, sampled event traces were used in 
this study. Historically, cache analysis is done using 
traces generated from hardware measurement or software 
architecture simulation, for example, SimOS [4]. As 
systems become faster and caches become much larger, it 
is very difficult to collect traces that are long enough to 
accurately model the memory hierarchy. In addition, for 
workloads like TPC-C, system simulation requires as 
much disk space as the workload (multiple terabytes 
today) and usually more memory. Also, the time to 
simulate a large n-way system is intimidating. An 
alternative to tracing is a cache simulator built in 
hardware and connected to a running system [3] or 
sampled event traces, the alternative that we adopted. 

Using sampled traces from an 8-way configuration of 
the IBM eserver pSeries 690, also referred to in the 
remainder of this paper as the p690, we identify (1) the 
areas of the address space, down to a granularity of 128-
byte cache lines (a.k.a. cache blocks), that are referenced 
repeatedly and generate L2-cache data-load misses that 
are resolved in high-penalty areas of the memory 
hierarchy and (2) the addresses of instructions that access 
these “hot” data areas. Analysis of the 8-way



and 32-way sampled event traces indicates that a fairly 
large number of L2-cache misses are resolved principally 
at the level-three (L3) caches and main memory of the 
p690, where the latencies are relatively high. The 
resolution of these misses at these high-penalty areas of 
the memory hierarchy does not seem intuitive for two 
reasons. First, the p690 architecture allows L2-cache 
misses generated by a processor to be serviced by any 
other L2 cache in the system. Since each processor has its 
own defined memory hierarchy, including a L2 cache that 
it physically shares with only one other (chip co-resident) 
processor, the fraction of accesses going to the L3 cache, 
or beyond, should be small. In addition, note that in the 
32-way system there are 256GB of physical memory in 
use and 44.8MB of L2 cache. Second, it has been 
demonstrated that the data-load addresses for these L2-
cache misses are not distributed uniformly throughout the 
address space, but rather tend to cluster in relatively small 
regions of the address space. Such clustering indicates 
locality of reference that, if exploited, should lead to hits 
in the upper-level caches.  

Given the identification of the reasons for this 
behavior, program modifications can be made to alleviate 
resolution of L2-cache data-load misses at high-penalty 
areas of the memory hierarchy. The information gathered 
thus far suggests that these costly L2-cache misses occur 
as a result of: (1) data sharing patterns, especially within 
the address space allocated to working storage, the buffer 
pool, and components of the operating system, (2) related 
cache invalidations initiated by the cache-coherence 
protocol, and (3) process migration. A subsequent study 
using a 32-way configuration, which is underway and for 
which partial results are presented, corroborates some of 
these findings.  

This paper presents the data analysis described above 
but, since the research that will identify the reasons for 
the observed behavior is not yet complete, it does not 
present evidence of the causes of this behavior. Given the 
database, and associated tools, that are under 
development, identification of the reasons for this 
behavior will be straightforward. The database stores 
information obtained from sampled event traces of data-
load hit and miss events at the various levels of the p690 
memory hierarchy. An interface allows a user to query the 
database to view statistics derived from the stored 
information, which includes the data address at the byte 
level, the corresponding instruction address (also at the 
byte level), the thread id, the process id, the CPU id, and 
the timestamp.  

The remainder of the paper, which discusses this work 
in more detail, is organized as follows. Section 2 presents 
related research. Section 3 focuses on data collection, 
describing the workload under study (TPC-C), the 
platform from which the data was collected, the events of 
interest, and the tools used to collect the data. Section 4 

targets data analysis, describing the tools and 
methodology used and the results of the analysis. Sections 
5 and 6 present the conclusions, the database design, and 
future work. 

 
2. Related research  
 

Related research focuses on two aspects of this study: 
the performance of TPC-C on other multiprocessor 
platforms and the use of event trace sampling. With 
respect to the performance of TPC-C,  Tsuei, Packer, and 
Ko [5] study TPC-C executed on an unidentified Sun 
Microsystems 16-CPU shared-memory multiprocessor 
system with 4GB of memory using IBM’s DB2 for 
Solaris Version 2.1.1, while Leutenegger and Dias [2] 
study TPC-C executed on an unidentified multiple-node 
distributed system.  

 [2] and [5] investigate the buffer hit rates for TPC-C. 
In contrast, we investigate the levels of the memory 
hierarchy at which most cycles are consumed in servicing 
load instructions, the levels of the memory hierarchy at 
which load hits are recorded, and the data-load access 
distribution across the address space by region, segment, 
page, and cache block. Our findings, i.e., that load 
accesses are dominant in certain regions and within those 
regions, smaller defined areas are heavily accessed, 
corroborates the study by [2], which investigates the 
memory access characteristics of the TPC-C benchmark. 
[2] shows that data access skew, i.e., non-uniform data 
memory access, exists at the tuple and page levels, citing 
that 84% of the accesses are directed at approximately 
20% of the hottest tuples.  [5] also notes this skew, 
making reference to [2].   

The work of [5] uses IBM’s DB2 database engine on a 
commercial shared-memory multiprocessor and 
investigates the performance impact of changes to the 
database size, the number of CPUs, the database buffer 
size, or some combination of the three. Performance is 
measured in terms of transactions per minute (TPM), or 
throughput, buffer hit rates, and index hit rates.  The 
motivation behind this work is to show that simply 
increasing the size of the buffer in physical memory, 
which becomes an increasingly tempting option to 
improve performance as technology advances and 
memory becomes cheaper, does not necessarily improve 
the performance factors just mentioned. The authors 
demonstrate that in order to maintain the same rate of 
performance, an increase in buffer size requires an even 
greater increase in the size of physical memory.  [5] 
quantifies relationships between data hit rate, buffer size, 
and database size; between TPM, data hit rate, and 
database size; and between TPM and the number of 
CPUs.  From this data the authors developed algorithms 
that are able to predict throughput when the buffer size 



and number of CPUs change.  Our study compares results 
obtained for 8-way and 32-way systems, and the size of 
the system’s physical memory is a consequence of the 
number of processors in the system.  In our study, the 
percentage of memory used to store the database buffer is 
considerably larger than that recommended by [5] (about 
66%); in addition, the size of physical memory is much 
larger than that with which the authors experimented. But 
again, our concern is not buffer hit rates, but rather access 
patterns for L2-cache misses.  Note, however, that future 
work certainly will investigate the affect of different 
buffer sizes on locality of reference patterns. 

With respect to using event trace sampling, Desikan, et 
al. [1] use the Compaq DCPI (DIGITAL Continuous 
Profiling Infrastructure) tool to sample certain events. The 
samples are used to derive for the Compaq DS-10L 
workstation performance measurements, such as IPC, 
which are used to check the reliability of an Alpha 21264 
simulator. Care is taken in selecting a reasonable interval 
between samples. Decreasing the interval size ensures that 
collected data is more representative of the machine’s 
actual performance, but increases execution time.  
Conversely, increasing the interval size has a smaller 
affect on execution time but the resulting data set is less 
representative and, consequently, errors may be 
introduced. In a range from 1000 to 64K cycles, the best 
results are obtained when samples are taken every 40,000 
cycles. For the 1.3 GHz POWER4 used in this study, we 
take samples about every 13 million cycles. 
 
3. Data collection 
 

This section provides information on the data collected 
for this study. First, we describe the workload, TPC-C, 
and the platform on which TPC-C was executed and 
monitored. Next, we discuss the events of interest and the 
methodology used to collect the sampled traces of the 
data access streams produced by L2-cache data-load 
misses generated by the TPC-C benchmark.  

 
3.1. Workload: TPC-C 

 
To collect the data used in this study, a fully-

implemented TPC-C benchmark drives a commercially-
available relational database, which was compiled using 
the IBM C for AIX version 5 compiler. The TPC-C 
(Transaction Processing Performance Council Benchmark 
C) workload [6] is a well-known benchmark that emulates 
read-only and update-intensive transactions found in 
complex on-line transaction processing (OLTP) 
application environments [5]. It has been used widely in 
the database server industry as a basis of server 
performance analysis and platform comparison.  

 

3.2. Compute platform: IBM eserver pSeries 690 
architecture 

 
The eserver pSeries 690 family of symmetric 

multiprocessor (SMP) architectures includes the 8-way 
and 32-way configurations used in this study [7,8]. The 
operating system for these configurations is AIX version 
5.2. The MultiChip Module (MCM) is the building block 
of the architecture. An MCM contains four chips, each of 
which is comprised of two 1.3 GHz POWER4 processors; 
each MCM contains eight processors. Thus, the 32-way 
configuration contains four MCMs. Normally, the 8-way 
configuration contains one MCM. In contrast, the 8-way 
configuration used in this study contains two – each 
MCM contains four “single core good” chips, each of 
which has only one functional processor.  

For the configurations under study,  
 
• each CPU is accompanied by a 64KB L1 

instruction cache and a 32KB L1 data cache;  
• a 1.44MB L2 unified cache  is associated with 

each chip, i.e., it is shared by the two processors 
on a chip;  

• a 128MB L3 unified cache is shared by the four 
chips/eight processors on an MCM; and 

• main memory is 128GB for the 8-way 
configuration and 256GB for the 32-way. 

 
The L1 and L2 caches have a cache line size of 128 

bytes, while the L3 cache has a 512B line size. Data 
private to and shared by processes are managed via the 
cache coherence protocol implemented in the studied 
architectures. An L2-cache miss for either type of data 
generated by a processor in an MCM can be serviced at 
five different levels of the memory hierarchy: 

 
1. another L2 cache within the same MCM, the L2.5 

level;  
2. an L2 cache in another MCM, the L2.75 level; 
3. the MCM’s L3 cache, the L3 level; 
4. an L3 cache in another MCM, the L3.5 level; and 
5. main memory. 

 
3.3. L2-cache miss events 
 

 L2-cache miss events are classified according to the 
level at which they are resolved and the state of the block, 
with respect to other levels of cache and memory, at the 
resolution site. Misses serviced at the L2.5 level generate 
one of two types of events: an L2.5-shared or L2.5-
modified hit. An L2.5-shared hit event (L25_SHR) 
denotes that although the requested block may reside 
simultaneously in more than one L2 cache, it is resolved 
by the MCM containing the processor experiencing the 



miss. An L2.5-modified hit event (L25_MOD) denotes 
that the requested block resides in only one cache and that 
cache is on the MCM that contains the processor 
experiencing the miss. A modified block is exclusively 
owned by one cache and contains more recent data than is 
in the backing physical memory.  

Similarly, L2-cache misses serviced at the L2.75 level 
of the memory hierarchy generate either an L2.75-shared 
or L2.75-modified hit event. The former (L275_SHR) 
denotes that the requested block resides in more than one 
L2 cache but not in any L2 cache on the  MCM of the 
processor experiencing the miss. The latter (L275_MOD) 
denotes that the requested block resides in only one L2 
cache and that cache is not on the processor’s MCM.  

At the L3 level, the cache-hit events are called L3-
shared, L3-modified, L3.5-shared, and L3.5-modified. An 
L3-shared hit event denotes that the requested block 
resides in more than one L3 cache, including the one 
associated with the MCM of the processor experiencing 
the miss. An L3.5-shared hit event denotes that the 
requested block resides in more than one L3 cache, but 
not the one associated with the processor’s MCM. An L3-
modified hit event denotes that the requested block 
resides in only one cache, the one on the processor’s 
MCM. An L3.5-modified hit event denotes that the 
requested block resides in only one cache and that cache 
is not the one on the processor’s MCM. 

 
Table 1. Load latencies of 8-way configuration 

 
For this study we consider all these events in addition 

to main memory hit events (MEM). However, instead of 
monitoring the four events associated with the L3 level of 
the memory hierarchy, only two events are monitored: L3 
and L3.5 hits (L3 and L35).  Approximate load latencies 
associated with these events are given in Table 1. The 
latencies are about the same for the 32-way system. 
 
3.4. Event Trace Sampling Methodology: PMU, 
eprof, and trcrpt 
   

On selected pSeries hardware models, through the use 
of tools such as eprof and trcrpt, described in this section, 
trace information for specified events can be collected. 
These tools were used in this study to collect two traces, 
one for an 8-way and one for a 32-way configuration of 
the p690 multiprocessor. The trace information for the 

events described in Section 3.3 was gathered during the 
execution of TPC-C, which consumed 10-minutes of 
execution time. Regardless of the event being sampled, 
the default sampling rate of 100 events/second per CPU 
was used.  Sample information was recorded upon the 
periodic occurrence of the event being monitored.  The 
information collected during each sample includes the 
timestamp indicating when the event occurred, the 
effective instruction and data addresses associated with 
the event, as well as the CPU id, process id, and thread id 
of the entity that triggered the event. This information was 
then used to conduct the performance analysis described 
in Section 4.   

The POWER4 microprocessor includes performance 
monitoring facilities that can collect data on various 
events that occur within the processor, such as the 
completion of a load instruction or an L2 instruction 
cache miss, and, thus, provide valuable performance 
information. The performance-monitoring unit (PMU) 
includes eight counters that permit up to eight concurrent 
events to be monitored. Special-purpose registers, only 
accessible via the operating system through a 
programming interface that accesses the registers through 
a kernel extension, control the state of the counters. This 
interface permits, among other things, the specification of 
the events to be monitored, the execution points at which 
to start and stop counters, and the points at which 
software is to retrieve results. In addition to recording 
aggregate counts for either a section of code or an entire 
program, the PMU is capable of capturing instruction and 
data addresses associated with events. This is of particular 
value when event-based sampling is desired. Event-based 
sampling, which is important for long-running programs 
with extremely large numbers of events, is provided by 
the PMU and associated software via user-selected trigger 
events and Performance Monitor (PM) interrupts. As is 
exemplified below, the former can be used to trigger the 
increment of a counter and the latter can be used to write 
PMU data to a file. 

L2-Cache Access Resolution Site Load Latency 
L2 cache 12 cycles 
L2.5 cache 73 cycles 
L2.75 cache 96 cycles 
L3 cache 112 cycles 
L3.5 cache 143 cycles 
main memory 320 cycles 

The AIX operating system contains a time-based 
profiling tool called tprof. In addition to tprof, there exists 
an in-house IBM tool that uses tprof functionality for data 
collection and reduction, and is tied to the PMU on 
selected pSeries hardware models.  This tool, eprof, 
programs the PMU to sample hardware countable events 
at a defined rate.  For this research, we employed eprof 
and event-based sampling, using eprof’s default sampling 
rate of approximately 100 events per second per CPU. In 
this way, using the default sampling rate, if the event 
sampled is processor cycles, time-based sampling is 
accomplished and a sample is collected every 10 
milliseconds. In contrast, if the event is one that occurs at 
a variable rate, e.g., cache misses, and if the rate of event 
occurrence is greater than the default sampling rate, then 
eprof adjusts the rate at which samples are collected so 



that the 100 samples per CPU per second collection rate is 
approximated. Accordingly, the interval between PM 
interrupts can be variable, and because some events occur 
more often than others, it follows that a different number 
of samples are collected for different types of events 
despite the adoption of the default sampling rate and a 10-
minute workload.  The size of the collected data set for 
each event of interest is given in Table 2. Due to memory 
limitations of the data analysis tools used in this study and 
the immense amount of samples collected for the 
L25_SHR and L275_SHR events, the sample counts for 
the 8-way are reduced counts.  For this same reason, the 
sample counts for L25_SHR and L275_SHR events for 
the 32-way configuration could not be analyzed and are, 
therefore, not presented. 

 
Table 2. Event sample counts 

 

 
When an event is sampled, i.e., at each increment of 

the performance counter, the instruction address and data 
address (if applicable) are captured by the PMU, and a 
PM interrupt is delivered. The interrupt causes the sample 
information to be extracted from the PMU and an AIX 
trace hook to be generated and added to the trace. The 
AIX trace hook describes the associated trace record. 
Using the AIX trace allows samples to be either written to 
disk or collected via a daemon that can summarize the 
data. The profiling also enables selected AIX trace hooks, 
such as those related to dispatching, so that the sampled 
events can be correlated with the processes/threads.  If 
AIX trace is used to collect events in a file, the file can be 
formatted with the trcrpt utility to create a time-stamped 
text file of events.  For this study, we used trcrpt as well 
as a program that reads the formatted trace and extracts 
summary information.   
 
4. Data Analysis 
 

This section describes the tools used to perform the 
data analysis, the partitioning of the address space, and 
the results of the data analysis.  
 
 

4.1. Methodology 
 

As mentioned in Section 3.3, the IBM tool trcrpt was 
used to post-process the sampled AIX event trace 
generated by eprof. The specified output of trcrpt includes 
the effective instruction and data addresses, the process 
id, and the timestamp for each sampled event. This is 
input to a program written in C that 

 
• sorts each sample, according to its effective data 

address, into its corresponding address space 
region (described in Section 4.2) and, within a 
region, into its corresponding segment, page, and 
cache block, and, in this way, acquires data-load 
hit counts for regions, segments, pages, and cache 
blocks  

• stores process ids along with data addresses and, 
using this data, calculates the amount of private 
and shared memory “touched”, i.e., accessed, by 
the cooperating processes — note that two 
samples having the same effective address but a 
unique process id denote two references to two 
distinct “per-process” or private regions 

• utilizes the program’s symbol table to determine 
the number of data-load hits associated with and  
the amount of memory touched by a set of 
routines that are suspected to be affecting 
performance  

Event Sample Count 
 8-way 32-way 
L2 312,252 259,716 
L25_MOD 313,431 197,592 
L25_SHR 748,064 n/a 
L275_MOD 126,376 167,485 
L275_SHR 835,339 n/a 
L3 301,791 170,910 
L35 121,274 172,008 
MEM 272,835 262,941 

• filters out data that is insignificant — for example, 
the program can identify regions that are the target 
of 90-100% of the memory accesses, i.e., 
concentrated areas of locality of reference.  

 
4.2. Data Partitioning 
 
The address space for TPC-C ranges from 
0x0000000000000000 to 0xF10000B6FFFFFFFF and is 
partitioned as illustrated in Table 3, which appears at the 
end of the paper. The segment size is 256MB, while each 
page in a segment is 4096KB in size.  As can be seen 
from the table, the address range used for lock 
instrumentation begins at 0xF100009E00000000 and ends 
at 0xF100009E0fffffff. 

The TPC-C application used in this study is based on a 
process model. The process model allows for private data 
per process, as well as sharing of global database 
information via a shared memory region. For this 
workload, the shared memory region contains the 
database's state information and buffer pool. The buffer 
pool is the largest consumer of physical memory.  It 
contains unmodified data, currently on disk, as well as 
data that has been modified by transactions and is not yet 
updated on disk. Since the size of the database is much 
larger than physical memory and the pattern of access to 



disk data is unpredictable, disk I/O is continuous. 
Incoming database transactions are passed off to idle 
processes for service. The number of processes available 
for processing transactions is based on the number needed 
to achieve nearly 100% CPU utilization. Because most 
transactions experience some number of disk I/O's, many 
transactions must be executing concurrently to maximize 
CPU utilization. 

 
Figure 1. Distribution of TPC-C L2-cache data-
load miss resolution sites of the p690 memory 
hierarchy 
 
4.3. Results 
 

The goal of this analysis is to pinpoint the application-
specific sources of performance degradation associated 
with data references. This is done in three phases.  
 

Phase 1. The platform-specific causes of performance 
degradation are identified. For example, as is true in 
this study, it may be the case that a high number of L2-
cache misses are satisfied by the L3 caches or main 
memory, rather than by other L2 caches.  

 
Phase 2. The concentrated areas of locality of 
reference are identified. For example, references may 
be concentrated in the buffer pool. 

 
Phase 3. The subroutines, instructions, and/or 
variables associated with these areas of locality of 
reference are identified. For example, a lock variable 
may be the target of a significant number of these 
references. (Note that Phase 3 is in progress.)  

 
4.3.1. Phase 1. Figure 1 presents, for both the 8-way and 
32-way configurations of the p690, performance monitor 
event counts that are associated with L2-cache data-load 
misses. These event counts show the distribution of these 
misses across the resolution sites of the p690 memory 
hierarchy.  Recall that in this architecture, L2-cache 
misses can be resolved by another L2 cache within the 

MCM of the processor experiencing the miss (L2.5), an 
L2 cache outside the processor’s MCM (L2.75), the L3 
cache of the processor’s MCM (L3), an L3 cache outside 
the processor’s MCM (L3.5), or main memory. This data 
identifies the platform-specific causes of performance 
degradation associated with L2-cache data-load misses, 
i.e.,  
 

• L3 caches and main memory dominate as the 
levels of the p690 memory hierarchy where L2-
cache data-load misses are resolved. 

Resolution of L2 Data Load Misses
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• The distribution of L2-cache data-load misses 
across resolution sites is similar for the 8-way, 2-
MCM configuration and the full 32-way, 4-MCM 
configuration. 

 
4.3.2. Phase 2. During Phase 2, the analysis hones in on 
the concentrated areas of locality of reference.  The 
analysis progresses from a level of the memory hierarchy 
to a region of the address space, then to segments, pages, 
and, finally, cache blocks. From cache blocks, the 
analysis can continue to instructions, processes, CPUs, 
etc.  
 
Regions of the Address Space – L3 Caches: As shown 
in Figure 1, data-load hits in the L3 caches appear to be 
one of the main factors affecting the performance of the 
TPC-C benchmark running on the p690. Thus, we first 
explore the reason for this. Figure 2 depicts, for the 8-way 
configuration of the p690, the hit percentages for the eight 
most-referenced regions of the TPC-C address space. A 
hit percentage for a region is calculated by dividing the 
number of references to the region by the total number of 
memory references. By examining the light-colored hit 
bars, we see that the data/bss/heap and buffer pool 
regions clearly are the hardest hit.  The dark-colored bar, 
called the unique_cache_line bar, indicates the number of 
unique cache lines (in the associated address region) 
referenced; it gives us an idea of the density of the data 
loads for this region.  For example, the kernel region 
shows a unique_cache_line bar that is only a small 
portion of the size of its corresponding hit bar. This 
indicates that all the L3-cache hits associated with the 
kernel region reference a relatively small number of 
cache lines. Conversely, the stack section of the graph 
indicates that the data references to the stack region of the 
address space are much more dispersed. That is, there are 
probably many cache lines in the stack region associated 
with L3 data-load hits that only get referenced once or 
twice. This is not surprising for a per-process or private 
region of the address space, such as the stack region. 
Another per-process region, such as the data/bss/heap 
region, illustrates this as well. 

Figure 3 depicts this same information for the 32-way 
configuration of the p690. Note that the eight most-



referenced regions of the TPC-C address space are the 
same for both the 8-way and 32-way configurations and 
that the hit percentages are very similar as well. Again, 
we see that the data/bss/heap and buffer pool regions 
clearly are the hardest hit.   

 
Figure 2. Distribution of TPC-C L3-cache data-
load hits across memory regions for the 8-way 
p690 configuration  

 
Figure 3. Distribution of TPC-C L3-cache data-
load hits across memory regions for the 32-way 
p690 configuration (traces of only 19 CPUs are 
represented) 
 
Regions of the Address Space – Main Memory: Since 
data-load hits in main memory also appear to be a main 
factor affecting the performance of the TPC-C benchmark 
running on the p690, we compare the distribution of data-
load memory hits among the eight most-referenced 
regions with that of L3-cache data-load hits. Figure 4 
depicts the distribution of data-load hits in memory for 
the 8-way configuration, while Figure 5 represents the 
data-load hits in memory for the 32-way configuration. 
Comparing this distribution with that of the L3-cache 
data-load hits, we see contrasts in locality of reference for 
the various regions of the address space. For example, the 
data loads that are targeted at the buffer pool and miss 
the local and remote L3 caches no longer exhibit the same 
tight reference pattern, i.e., these loads exhibit a larger 
footprint – they are distributed across a relatively large 

number of cache lines. The other regions exhibit this same 
behavior. 
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Figure 4. Distribution of TPC-C main memory 
data-load hits across memory regions for the 8-
way p690 configuration 
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Figure 5. Distribution of TPC-C main memory 
data-load hits across memory regions for the 32-
way p690 configuration  
 
Regions of the Address Space – Segments: For the ten-
minute duration in which samples were collected, 109 
unique segments were touched in the buffer pool.  Of 
these 109 segments, four of them account for over 90% of 
the data-load activity in L3 caches. Figure 6 shows the 
four segments and their respective hit and 
unique_cache_line bars.  In this figure, we can see the 
continuing pattern first seen in Figure 3, i.e., the majority 
of the hits reference a relatively small number of cache 
lines.  One of the segments, however, appears to have 
been referenced in a much more uniform manner. 
 
Regions of the Address Space – Pages: Continuing to 
hone in on the suspect causes of performance degradation, 
we next take a closer look at segment 0x070000004 of the 
buffer pool for data loads that hit in L3 caches. 
Examining Figure 7, which plots the distribution of L3-
cache data-load hits across the pages of the TPC-C buffer 
pool segment for the 8-way p690 configuration, we see a 
very dense reference pattern. It shows that greater than 
70% of the hits for this segment are located within a range 
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of approximately 200, out of 65,536, pages.  In addition to 
this clustering of hot pages, we see that each page 
exhibits, as did the segments in the buffer pool region, a 
very dense reference pattern.   

 
Figure 6. Distribution of TPC-C L3-cache data-
load hits across segments of buffer pool for the 
8-way p690 configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
l
f
 
R
p
w
j
l
i
 
R
i
u
d
m
r
r
a
t
i

any notable impact on performance. The data shows that 
the disable_lock and simple_lock routines, whose data 
address is retrieved from an L3.5 cache, make up the 
biggest portion of data-load hits that are associated with 
lock and atomic operations.  However, these percentages 
are insignificant, 1.1% and 2.2% respectively, and, 
therefore, do not contribute greatly to performance 
degradation with respect to L2-cache misses. 
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Table 4. List of routines under analysis 

 
Lock routines Atomic operations 
simple_lock fetch_and_add 
simple_lock_ppc fetch_and_add_h 
simple_unlock fetch_and_addlp 
disable_lock fetch_and_or 
unlock_enable fetch_and_orlp 
simple_unlock_mem fetch_and_and 
unlock_enable_mem fetch_and_andlp 

8-way L3 Data Load Hits by Cache Line
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igure 7. Distribution of TPC-C L3-cache data-
oad hits across pages of buffer pool segment 
or the 8-way p690 configuration  

egions of the Address Space - L3 Caches: From the 
age-related data, we would expect that within a page we 
ould see heavily-referenced cache lines. Figure 8, shows 

ust that.  It is quite clear that only a handful of cache 
ines are responsible for the majority of the references, 
.e., greater than 70% of the references.   

egions of the Address Space – Instructions: As we 
ndicated in Section 4.1, our data analysis tools allow a 
ser to specify a list of routines and obtain a report that 
isplays data-load hit percentages and the amount of 
emory touched for regions of the address space 

eferenced by the routines. For this study, the lock 
outines and atomic operations of Table 4 were targeted 
s being potentially responsible for data loads resolved in 
he lower levels of the memory hierarchy. Our results 
ndicate that only two routines from the ones listed had 
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Figure 8. Distribution of TPC-C L3-cache data-
load hits across the cache lines of a hard-hit 
page for the 8-way p690 configuration 
 
5. Conclusions 
 

Data collected from the 8-way and 32-way 
configurations of the p690 indicate that L2-cache data-
load misses are often resolved in L3 caches or main 
memory.  This information, coupled with the fact that 
load hit latencies for L3 caches and main memory are 
very high in comparison to L2-cache load latencies (see 
Table 1), presents an obvious target for performance 
enhancement.  Through analysis, we will endeavor to 
attain this enhancement by (1) uncovering the application-
specific causes for the L2-cache data-load misses that are 
resolved in L3 caches and main memory and (2) applying 
appropriate remedies that shift the resolution site of these 
expensive data-load misses to the L2 level of the memory 
hierarchy. The work presented in this paper provides the 
foundation for accomplishing this by honing in on the 
areas of memory, down to the cache block level, that 



demonstrate a high concentration of data-load hits.  
Specifically, our results show that the buffer pool and 
heap regions of the TPC-C address space tend to 
dominate as the effective data address regions for data 
loads satisfied in L3 caches and main memory.  
Furthermore, for those data loads satisfied in L3 caches, 
the segments, pages, and cache blocks that constitute the 
buffer pool exhibit a rather dense distribution. 

We were able to confirm through the use of our tools 
that routines associated with lock variables and atomic 
operations do not play a dominant role in the cause of L2-
cache data-load misses. In fact, the percentage of these 
functions that are attributed to L2-cache data-load misses 
is so small that we did not even present the distribution of 
these misses across the address space as was done with 
the entire sample set. 
 
6. Future Work 
 

After reviewing the data that is presented here, the 
authors began discussing the approaches one could take to 
take advantage of the ability to determine locality of 
reference.  It was realized that ideally one would want to 
not only isolate a concentrated region of L3-cache data-
load hits, for example, but also be able to analyze this 
region by determining if this repeated occurrence of L2-
cache data-load misses could be related to certain CPUs, 
processes, threads, or routines. Having this kind of 
information would almost certainly provide more insight 
into the p690 memory hierarchy behavior and help 
determine the causes of L2-cache data-load misses 
generated by TPC-C as well as other applications. 
Due to limitations associated with the data structures that 
are currently being used in the data analysis tools, this 
type of information cannot be generated efficiently, 
especially for the 32-way traces. Therefore, a database is 
under development. Using this database, repeated 
occurrences of L2-cache misses can be easily correlated 
with the threads, processes, and CPUs that generated 
them. 

The database accepts as input the event information 
generated by trcrpt.  It also accepts user input regarding 
information necessary to document the experiment 
including the following: 

 
• specific address regions, such as the address range 

of the segments,  
• event names, 
• machine configuration, e.g., whether it is an 8-way 

or 32-way configuration, 
• run information, such as the run duration and date 

the run was conducted, and 
• workload information, e.g., the workload used to 

generate the event information. 

Through the use of a script, the user-specified 
information, and input file are used to populate the 
database. The script also stores in the database a low-level 
count of the number of accesses to a specific word; this is 
maintained in an effort to minimize the time required to 
calculate the more complicated queries, such as deriving 
the segment and page counts.  As a result, the user will be 
able to query the database and view the event information 
in a number of different ways.  For example, the user will 
be able to view information such as the CPU that is 
associated with the majority of L2-cache misses.  In this 
way, the database will allow us to better understand the 
relationship between the L2-cache misses and their 
related causes. 
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Table 3. TPC-C address space 
 

Address Space Range 
Kernel 0x000000000 - 0x000000001 
Proc. Priv., shmat/mmap & Loader Use 0x000000002 - 0x00000000F 
Text 0x000000010 - 0x000000010 
Data,BSS,Heap 0x000000011 - 0x06FFFFFFF 
Buffer Pool 0x070000000 - 0x07FFFFFFF 
Private Load 0x080000000 - 0x08FFFFFFF 
Shared Library Text 0x090000000 - 0x090010009 
Shared Data 0x09001000A - 0x09001000A 
Reserved 0x0A0000000 - 0xEFFFFFFFF 
Stack 0x0F0000000 - 0x0FFFFFFFF 
U-Block and Kernel Stack 0xF00000002 - 0xF00000002 
DATA 0xF10000004 - 0xF10000004 
PTA 0xF10000005 - 0xF10000005 
DMAP 0xF10000006 - 0xF10000006 
AME 0xF10000007 - 0xF1000000A 
SCB 0xF1000000B - 0xF100000BA 
SWHAT 0xF100000BB - 0xF1000013A 
SWPFT 0xF1000013B - 0xF1000083B 
Reserved 0xF1000083C - 0xF10000877 
PROC_THRD 0xF10000878 - 0xF1000089B 
M_BUF 0xF1000089C - 0xF1000099F 
LDR_LIB 0xF100009A0 - 0xF100009BF 
JFS_SEG 0xF100009C0 - 0xF100009C0 
JFS_LKW 0xF100009C1 - 0xF100009CF 
LFS_SEG 0xF100009D0 - 0xF100009DF 
LOCK_INSTR 0xF100009E0 - 0xF100009E0 
KERN_HEAP 0xF100009E1 - 0xF10000AE0 
MP_DATA 0xF10000AE1 - 0xF10000AF0 
GLOB_EXTREG 0xF10000AF1 - 0xF10000B6F 
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