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Abstract

This paper profiles L2-cache data-load misses
generated by the TPC-C benchmark executed on 8- and
32-way configurations of the IBM eserver pSeries 690
(p690). Using sampled performance monitor event traces,
the resolution sites of L2-cache data-load misses are
identified. To determine ways to enhance performance,
the heavily hit resolution sites, L3 caches and main
memory, are studied with respect to associated memory
regions, segments, pages, cache blocks, routines, and
instructions. Collected data indicates that the related
data-load hits have high concentration within regions of
the address space, segments, and pages. Specifically, our
results show that the buffer pool and heap regions of the
TPC-C address space tend to dominate as the effective
address regions for data loads satisfied in L3 caches and
main memory.  Furthermore, for those data loads
satisfied in L3 caches, the segments, pages, and cache
blocks that constitute the buffer pool exhibit a rather
dense distribution. Future work will continue the analysis
in an effort to define ways to remedy the performance
degradation associated with L2-cache data-load misses
being serviced at high-penalty levels of the p690 memory
hierarchy.

1. Motivation

The research reported in this paper represents a first
step in addressing the following question: “As processors
get faster and memories get larger, can we generate the
address traces and/or memory-hierarchy miss rate
information that is needed to permit us to study how to
optimize memory subsystem performance?” To answer
this question, we are endeavoring to design and develop a
general method that, given a workload, can be used to
generate a characterization, i.e., a model, of the workload
in terms of its memory access parameters. Such a
workload model could be used to either generate traces or

directly model cache miss rates. The model would allow a
parametric exploration of the system and workload design
spaces.

The initial workload under study is that of TPC-C, a
transaction-processing application that is understood
fairly well and is representative of workloads of interest
to IBM customers. The initial data access streams under
study are those produced by level-two cache (L2-cache)
misses for data loads generated by the TPC-C benchmark
executed on an 8-way and a 32-way IBM eserver pSeries
690. Data analysis of information concerning these access
streams indicates that there is opportunity for
performance enhancement. In addition, it indicates that
accesses to particular areas of the address space, e.g.,
working storage, the buffer pool, and components of the
operating system, may be targets for this performance
enhancement.

As described below, sampled event traces were used in
this study. Historically, cache analysis is done using
traces generated from hardware measurement or software
architecture simulation, for example, SimOS [4]. As
systems become faster and caches become much larger, it
is very difficult to collect traces that are long enough to
accurately model the memory hierarchy. In addition, for
workloads like TPC-C, system simulation requires as
much disk space as the workload (multiple terabytes
today) and usually more memory. Also, the time to
simulate a large n-way system is intimidating. An
alternative to tracing is a cache simulator built in
hardware and connected to a running system [3] or
sampled event traces, the alternative that we adopted.

Using sampled traces from an 8-way configuration of
the IBM eserver pSeries 690, also referred to in the
remainder of this paper as the p690, we identify (1) the
areas of the address space, down to a granularity of 128-
byte cache lines (a.k.a. cache blocks), that are referenced
repeatedly and generate L2-cache data-load misses that
are resolved in high-penalty areas of the memory
hierarchy and (2) the addresses of instructions that access
these “hot” data areas. Analysis of the 8-way



and 32-way sampled event traces indicates that a fairly
large number of L2-cache misses are resolved principally
at the level-three (L3) caches and main memory of the
p690, where the latencies are relatively high. The
resolution of these misses at these high-penalty areas of
the memory hierarchy does not seem intuitive for two
reasons. First, the p690 architecture allows L2-cache
misses generated by a processor to be serviced by any
other L2 cache in the system. Since each processor has its
own defined memory hierarchy, including a L2 cache that
it physically shares with only one other (chip co-resident)
processor, the fraction of accesses going to the L3 cache,
or beyond, should be small. In addition, note that in the
32-way system there are 256GB of physical memory in
use and 44.8MB of L2 cache. Second, it has been
demonstrated that the data-load addresses for these L2-
cache misses are not distributed uniformly throughout the
address space, but rather tend to cluster in relatively small
regions of the address space. Such clustering indicates
locality of reference that, if exploited, should lead to hits
in the upper-level caches.

Given the identification of the reasons for this
behavior, program modifications can be made to alleviate
resolution of L2-cache data-load misses at high-penalty
areas of the memory hierarchy. The information gathered
thus far suggests that these costly L2-cache misses occur
as a result of: (1) data sharing patterns, especially within
the address space allocated to working storage, the buffer
pool, and components of the operating system, (2) related
cache invalidations initiated by the cache-coherence
protocol, and (3) process migration. A subsequent study
using a 32-way configuration, which is underway and for
which partial results are presented, corroborates some of
these findings.

This paper presents the data analysis described above
but, since the research that will identify the reasons for
the observed behavior is not yet complete, it does not
present evidence of the causes of this behavior. Given the
database, and associated tools, that are under
development, identification of the reasons for this
behavior will be straightforward. The database stores
information obtained from sampled event traces of data-
load hit and miss events at the various levels of the p690
memory hierarchy. An interface allows a user to query the
database to view statistics derived from the stored
information, which includes the data address at the byte
level, the corresponding instruction address (also at the
byte level), the thread id, the process id, the CPU id, and
the timestamp.

The remainder of the paper, which discusses this work
in more detail, is organized as follows. Section 2 presents
related research. Section 3 focuses on data collection,
describing the workload under study (TPC-C), the
platform from which the data was collected, the events of
interest, and the tools used to collect the data. Section 4

targets data analysis, describing the tools and
methodology used and the results of the analysis. Sections
5 and 6 present the conclusions, the database design, and
future work.

2. Related research

Related research focuses on two aspects of this study:
the performance of TPC-C on other multiprocessor
platforms and the use of event trace sampling. With
respect to the performance of TPC-C, Tsuei, Packer, and
Ko [5] study TPC-C executed on an unidentified Sun
Microsystems 16-CPU shared-memory multiprocessor
system with 4GB of memory using IBM’s DB2 for
Solaris Version 2.1.1, while Leutenegger and Dias [2]
study TPC-C executed on an unidentified multiple-node
distributed system.

[2] and [5] investigate the buffer hit rates for TPC-C.
In contrast, we investigate the levels of the memory
hierarchy at which most cycles are consumed in servicing
load instructions, the levels of the memory hierarchy at
which load hits are recorded, and the data-load access
distribution across the address space by region, segment,
page, and cache block. Our findings, i.e., that load
accesses are dominant in certain regions and within those
regions, smaller defined areas are heavily accessed,
corroborates the study by [2], which investigates the
memory access characteristics of the TPC-C benchmark.
[2] shows that data access skew, i.e., non-uniform data
memory access, exists at the tuple and page levels, citing
that 84% of the accesses are directed at approximately
20% of the hottest tuples. [5] also notes this skew,
making reference to [2].

The work of [5] uses IBM’s DB2 database engine on a
commercial ~ shared-memory  multiprocessor  and
investigates the performance impact of changes to the
database size, the number of CPUs, the database buffer
size, or some combination of the three. Performance is
measured in terms of transactions per minute (TPM), or
throughput, buffer hit rates, and index hit rates. The
motivation behind this work is to show that simply
increasing the size of the buffer in physical memory,
which becomes an increasingly tempting option to
improve performance as technology advances and
memory becomes cheaper, does not necessarily improve
the performance factors just mentioned. The authors
demonstrate that in order to maintain the same rate of
performance, an increase in buffer size requires an even
greater increase in the size of physical memory. [5]
quantifies relationships between data hit rate, buffer size,
and database size; between TPM, data hit rate, and
database size; and between TPM and the number of
CPUs. From this data the authors developed algorithms
that are able to predict throughput when the buffer size



and number of CPUs change. Our study compares results
obtained for 8-way and 32-way systems, and the size of
the system’s physical memory is a consequence of the
number of processors in the system. In our study, the
percentage of memory used to store the database buffer is
considerably larger than that recommended by [5] (about
66%); in addition, the size of physical memory is much
larger than that with which the authors experimented. But
again, our concern is not buffer hit rates, but rather access
patterns for L2-cache misses. Note, however, that future
work certainly will investigate the affect of different
buffer sizes on locality of reference patterns.

With respect to using event trace sampling, Desikan, et
al. [1] use the Compag DCPI (DIGITAL Continuous
Profiling Infrastructure) tool to sample certain events. The
samples are used to derive for the Compaq DS-10L
workstation performance measurements, such as IPC,
which are used to check the reliability of an Alpha 21264
simulator. Care is taken in selecting a reasonable interval
between samples. Decreasing the interval size ensures that
collected data is more representative of the machine’s
actual performance, but increases execution time.
Conversely, increasing the interval size has a smaller
affect on execution time but the resulting data set is less
representative and, consequently, errors may be
introduced. In a range from 1000 to 64K cycles, the best
results are obtained when samples are taken every 40,000
cycles. For the 1.3 GHz POWERA4 used in this study, we
take samples about every 13 million cycles.

3. Data collection

This section provides information on the data collected
for this study. First, we describe the workload, TPC-C,
and the platform on which TPC-C was executed and
monitored. Next, we discuss the events of interest and the
methodology used to collect the sampled traces of the
data access streams produced by L2-cache data-load
misses generated by the TPC-C benchmark.

3.1. Workload: TPC-C

To collect the data used in this study, a fully-
implemented TPC-C benchmark drives a commercially-
available relational database, which was compiled using
the IBM C for AIX version 5 compiler. The TPC-C
(Transaction Processing Performance Council Benchmark
C) workload [6] is a well-known benchmark that emulates
read-only and update-intensive transactions found in
complex on-line transaction processing (OLTP)
application environments [5]. It has been used widely in
the database server industry as a basis of server
performance analysis and platform comparison.

3.2. Compute platform: IBM eserver pSeries 690
architecture

The eserver pSeries 690 family of symmetric
multiprocessor (SMP) architectures includes the 8-way
and 32-way configurations used in this study [7,8]. The
operating system for these configurations is AIX version
5.2. The MultiChip Module (MCM) is the building block
of the architecture. An MCM contains four chips, each of
which is comprised of two 1.3 GHz POWER4 processors;
each MCM contains eight processors. Thus, the 32-way
configuration contains four MCMs. Normally, the 8-way
configuration contains one MCM. In contrast, the 8-way
configuration used in this study contains two — each
MCM contains four “single core good” chips, each of
which has only one functional processor.

For the configurations under study,

e ecach CPU is accompanied by a 64KB L1
instruction cache and a 32KB L1 data cache;

e a 1.44MB L2 unified cache is associated with
each chip, i.e., it is shared by the two processors
on a chip;

e a 128MB L3 unified cache is shared by the four
chips/eight processors on an MCM; and

e main memory is 128GB for the
configuration and 256GB for the 32-way.

8-way

The L1 and L2 caches have a cache line size of 128
bytes, while the L3 cache has a 512B line size. Data
private to and shared by processes are managed via the
cache coherence protocol implemented in the studied
architectures. An L2-cache miss for either type of data
generated by a processor in an MCM can be serviced at
five different levels of the memory hierarchy:

1. another L2 cache within the same MCM, the L2.5
level;

an L2 cache in another MCM, the L2.75 level;

the MCM’s L3 cache, the L3 level;

an L3 cache in another MCM, the L3.5 level; and
main memory.

arwn

3.3. L2-cache miss events

L2-cache miss events are classified according to the
level at which they are resolved and the state of the block,
with respect to other levels of cache and memory, at the
resolution site. Misses serviced at the L2.5 level generate
one of two types of events: an L2.5-shared or L2.5-
modified hit. An L2.5-shared hit event (L25 SHR)
denotes that although the requested block may reside
simultaneously in more than one L2 cache, it is resolved
by the MCM containing the processor experiencing the



miss. An L2.5-modified hit event (L25 _MOD) denotes
that the requested block resides in only one cache and that
cache is on the MCM that contains the processor
experiencing the miss. A modified block is exclusively
owned by one cache and contains more recent data than is
in the backing physical memory.

Similarly, L2-cache misses serviced at the L2.75 level
of the memory hierarchy generate either an L2.75-shared
or L2.75-modified hit event. The former (L275 SHR)
denotes that the requested block resides in more than one
L2 cache but not in any L2 cache on the MCM of the
processor experiencing the miss. The latter (L275_MOD)
denotes that the requested block resides in only one L2
cache and that cache is not on the processor’s MCM.

At the L3 level, the cache-hit events are called L3-
shared, L3-modified, L3.5-shared, and L3.5-modified. An
L3-shared hit event denotes that the requested block
resides in more than one L3 cache, including the one
associated with the MCM of the processor experiencing
the miss. An L3.5-shared hit event denotes that the
requested block resides in more than one L3 cache, but
not the one associated with the processor’s MCM. An L3-
modified hit event denotes that the requested block
resides in only one cache, the one on the processor’s
MCM. An L3.5-modified hit event denotes that the
requested block resides in only one cache and that cache
is not the one on the processor’s MCM.

Table 1. Load latencies of 8-way configuration

L2-Cache Access Resolution Site | Load Latency
L2 cache 12 cycles

L2.5 cache 73 cycles
L2.75 cache 96 cycles

L3 cache 112 cycles
L3.5 cache 143 cycles
main memory 320 cycles

For this study we consider all these events in addition
to main memory hit events (MEM). However, instead of
monitoring the four events associated with the L3 level of
the memory hierarchy, only two events are monitored: L3
and L3.5 hits (L3 and L35). Approximate load latencies
associated with these events are given in Table 1. The
latencies are about the same for the 32-way system.

3.4. Event Trace Sampling Methodology: PMU,
eprof, and trcrpt

On selected pSeries hardware models, through the use
of tools such as eprof and trcrpt, described in this section,
trace information for specified events can be collected.
These tools were used in this study to collect two traces,
one for an 8-way and one for a 32-way configuration of
the p690 multiprocessor. The trace information for the

events described in Section 3.3 was gathered during the
execution of TPC-C, which consumed 10-minutes of
execution time. Regardless of the event being sampled,
the default sampling rate of 100 events/second per CPU
was used. Sample information was recorded upon the
periodic occurrence of the event being monitored. The
information collected during each sample includes the
timestamp indicating when the event occurred, the
effective instruction and data addresses associated with
the event, as well as the CPU id, process id, and thread id
of the entity that triggered the event. This information was
then used to conduct the performance analysis described
in Section 4.

The POWER4 microprocessor includes performance
monitoring facilities that can collect data on various
events that occur within the processor, such as the
completion of a load instruction or an L2 instruction
cache miss, and, thus, provide valuable performance
information. The performance-monitoring unit (PMU)
includes eight counters that permit up to eight concurrent
events to be monitored. Special-purpose registers, only
accessible via the operating system through a
programming interface that accesses the registers through
a kernel extension, control the state of the counters. This
interface permits, among other things, the specification of
the events to be monitored, the execution points at which
to start and stop counters, and the points at which
software is to retrieve results. In addition to recording
aggregate counts for either a section of code or an entire
program, the PMU is capable of capturing instruction and
data addresses associated with events. This is of particular
value when event-based sampling is desired. Event-based
sampling, which is important for long-running programs
with extremely large numbers of events, is provided by
the PMU and associated software via user-selected trigger
events and Performance Monitor (PM) interrupts. As is
exemplified below, the former can be used to trigger the
increment of a counter and the latter can be used to write
PMU data to a file.

The AIX operating system contains a time-based
profiling tool called tprof. In addition to tprof, there exists
an in-house IBM tool that uses tprof functionality for data
collection and reduction, and is tied to the PMU on
selected pSeries hardware models. This tool, eprof,
programs the PMU to sample hardware countable events
at a defined rate. For this research, we employed eprof
and event-based sampling, using eprof’s default sampling
rate of approximately 100 events per second per CPU. In
this way, using the default sampling rate, if the event
sampled is processor cycles, time-based sampling is
accomplished and a sample is collected every 10
milliseconds. In contrast, if the event is one that occurs at
a variable rate, e.g., cache misses, and if the rate of event
occurrence is greater than the default sampling rate, then
eprof adjusts the rate at which samples are collected so



that the 100 samples per CPU per second collection rate is
approximated. Accordingly, the interval between PM
interrupts can be variable, and because some events occur
more often than others, it follows that a different number
of samples are collected for different types of events
despite the adoption of the default sampling rate and a 10-
minute workload. The size of the collected data set for
each event of interest is given in Table 2. Due to memory
limitations of the data analysis tools used in this study and
the immense amount of samples collected for the
L25 SHR and L275_SHR events, the sample counts for
the 8-way are reduced counts. For this same reason, the
sample counts for L25 SHR and L275_SHR events for
the 32-way configuration could not be analyzed and are,
therefore, not presented.

Table 2. Event sample counts

Event Sample Count
8-way 32-way
L2 312,252 259,716
L25_MOD 313,431 197,592
L25 SHR 748,064 n/a
L275_MOD 126,376 167,485
L275_SHR 835,339 n/a
L3 301,791 170,910
L35 121,274 172,008
MEM 272,835 262,941

When an event is sampled, i.e., at each increment of
the performance counter, the instruction address and data
address (if applicable) are captured by the PMU, and a
PM interrupt is delivered. The interrupt causes the sample
information to be extracted from the PMU and an AIX
trace hook to be generated and added to the trace. The
AIX trace hook describes the associated trace record.
Using the AIX trace allows samples to be either written to
disk or collected via a daemon that can summarize the
data. The profiling also enables selected AlX trace hooks,
such as those related to dispatching, so that the sampled
events can be correlated with the processes/threads. If
AlX trace is used to collect events in a file, the file can be
formatted with the trcrpt utility to create a time-stamped
text file of events. For this study, we used trcrpt as well
as a program that reads the formatted trace and extracts
summary information.

4. Data Analysis

This section describes the tools used to perform the
data analysis, the partitioning of the address space, and
the results of the data analysis.

4.1. Methodology

As mentioned in Section 3.3, the IBM tool trcrpt was
used to post-process the sampled AIX event trace
generated by eprof. The specified output of trcrpt includes
the effective instruction and data addresses, the process
id, and the timestamp for each sampled event. This is
input to a program written in C that

e sorts each sample, according to its effective data
address, into its corresponding address space
region (described in Section 4.2) and, within a
region, into its corresponding segment, page, and
cache block, and, in this way, acquires data-load
hit counts for regions, segments, pages, and cache
blocks

e stores process ids along with data addresses and,
using this data, calculates the amount of private
and shared memory “touched”, i.e., accessed, by
the cooperating processes — note that two
samples having the same effective address but a
unique process id denote two references to two
distinct “per-process” or private regions

e utilizes the program’s symbol table to determine
the number of data-load hits associated with and
the amount of memory touched by a set of
routines that are suspected to be affecting
performance

o filters out data that is insignificant — for example,
the program can identify regions that are the target
of 90-100% of the memory accesses, i.e.,
concentrated areas of locality of reference.

4.2. Data Partitioning

The address space for TPC-C ranges from
0x0000000000000000 to 0xF10000B6FFFFFFFF and is
partitioned as illustrated in Table 3, which appears at the
end of the paper. The segment size is 256MB, while each
page in a segment is 4096KB in size. As can be seen
from the table, the address range used for lock
instrumentation begins at 0xF100009E00000000 and ends
at OxF100009EOfffffff.

The TPC-C application used in this study is based on a
process model. The process model allows for private data
per process, as well as sharing of global database
information via a shared memory region. For this
workload, the shared memory region contains the
database's state information and buffer pool. The buffer
pool is the largest consumer of physical memory. It
contains unmodified data, currently on disk, as well as
data that has been modified by transactions and is not yet
updated on disk. Since the size of the database is much
larger than physical memory and the pattern of access to



disk data is unpredictable, disk 1/O is continuous.
Incoming database transactions are passed off to idle
processes for service. The number of processes available
for processing transactions is based on the number needed
to achieve nearly 100% CPU utilization. Because most
transactions experience some number of disk 1/O's, many
transactions must be executing concurrently to maximize
CPU utilization.
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Figure 1. Distribution of TPC-C L2-cache data-
load miss resolution sites of the p690 memory
hierarchy

4.3. Results

The goal of this analysis is to pinpoint the application-
specific sources of performance degradation associated
with data references. This is done in three phases.

Phase 1. The platform-specific causes of performance
degradation are identified. For example, as is true in
this study, it may be the case that a high number of L2-
cache misses are satisfied by the L3 caches or main
memory, rather than by other L2 caches.

Phase 2. The concentrated areas of locality of
reference are identified. For example, references may
be concentrated in the buffer pool.

Phase 3. The subroutines, instructions, and/or
variables associated with these areas of locality of
reference are identified. For example, a lock variable
may be the target of a significant number of these
references. (Note that Phase 3 is in progress.)

4.3.1. Phase 1. Figure 1 presents, for both the 8-way and
32-way configurations of the p690, performance monitor
event counts that are associated with L2-cache data-load
misses. These event counts show the distribution of these
misses across the resolution sites of the p690 memory
hierarchy. Recall that in this architecture, L2-cache
misses can be resolved by another L2 cache within the

MCM of the processor experiencing the miss (L2.5), an
L2 cache outside the processor’s MCM (L2.75), the L3
cache of the processor’s MCM (L3), an L3 cache outside
the processor’s MCM (L3.5), or main memory. This data
identifies the platform-specific causes of performance
degradation associated with L2-cache data-load misses,
ie.,

e L3 caches and main memory dominate as the
levels of the p690 memory hierarchy where L2-
cache data-load misses are resolved.

e The distribution of L2-cache data-load misses
across resolution sites is similar for the 8-way, 2-
MCM configuration and the full 32-way, 4-MCM
configuration.

4.3.2. Phase 2. During Phase 2, the analysis hones in on
the concentrated areas of locality of reference. The
analysis progresses from a level of the memory hierarchy
to a region of the address space, then to segments, pages,
and, finally, cache blocks. From cache blocks, the
analysis can continue to instructions, processes, CPUs,
etc.

Regions of the Address Space — L3 Caches: As shown
in Figure 1, data-load hits in the L3 caches appear to be
one of the main factors affecting the performance of the
TPC-C benchmark running on the p690. Thus, we first
explore the reason for this. Figure 2 depicts, for the 8-way
configuration of the p690, the hit percentages for the eight
most-referenced regions of the TPC-C address space. A
hit percentage for a region is calculated by dividing the
number of references to the region by the total number of
memory references. By examining the light-colored hit
bars, we see that the data/bss/heap and buffer pool
regions clearly are the hardest hit. The dark-colored bar,
called the unique_cache_line bar, indicates the number of
unique cache lines (in the associated address region)
referenced; it gives us an idea of the density of the data
loads for this region. For example, the kernel region
shows a unique_cache_line bar that is only a small
portion of the size of its corresponding hit bar. This
indicates that all the L3-cache hits associated with the
kernel region reference a relatively small number of
cache lines. Conversely, the stack section of the graph
indicates that the data references to the stack region of the
address space are much more dispersed. That is, there are
probably many cache lines in the stack region associated
with L3 data-load hits that only get referenced once or
twice. This is not surprising for a per-process or private
region of the address space, such as the stack region.
Another per-process region, such as the data/bss/heap
region, illustrates this as well.

Figure 3 depicts this same information for the 32-way
configuration of the p690. Note that the eight most-



referenced regions of the TPC-C address space are the
same for both the 8-way and 32-way configurations and
that the hit percentages are very similar as well. Again,
we see that the data/bss/heap and buffer pool regions
clearly are the hardest hit.
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Figure 2. Distribution of TPC-C L3-cache data-
load hits across memory regions for the 8-way
p690 configuration
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Figure 3. Distribution of TPC-C L3-cache data-
load hits across memory regions for the 32-way
p690 configuration (traces of only 19 CPUs are
represented)

Regions of the Address Space — Main Memory: Since
data-load hits in main memory also appear to be a main
factor affecting the performance of the TPC-C benchmark
running on the p690, we compare the distribution of data-
load memory hits among the eight most-referenced
regions with that of L3-cache data-load hits. F—=re 4
depicts the distribution of data-load hits in me for
the 8-way configuration, while Figure 5 represents the
data-load hits in memory for the 32-way configuration.
Comparing this distribution with that of the L3-cache
data-load hits, we see contrasts in locality of reference for
the various regions of the address space. For example, the
data loads that are targeted at the buffer pool and miss
the local and remote L3 caches no longer exhibit the same
tight reference pattern, i.e., these loads exhibit a larger
footprint — they are distributed across a relatively large

number of cache lines. The other regions exhibit this same
behavior.
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Figure 4. Distribution of TPC-C main memory
data-load hits across memory regions for the 8-
way p690 configuration
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Figure 5. Distribution of TPC-C main memory
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way p690 configuration

Regions of the Address Space — Segments: For the ten-
minute duration in which samples were collected, 109
unique segments were touched in the buffer pool. Of
these 109 segments, four of them account for over 90% of
the data-load activity in L3 caches. Figure 6 shows the
four segments and their respective hit and
unique_cache_line bars. In this figure, we can see the
continuing pattern first seen in Figure 3, i.e., the majority
of the hits reference a relatively small number of cache
lines. One of the segments, however, appears to have
been referenced in a much more uniform manner.

Regions of the Address Space — Pages: Continuing to
hone in on the suspect causes of performance degradation,
we next take a closer look at segment 0x070000004 of the
buffer pool for data loads that hit in L3 caches.
Examining Figure 7, which plots the distribution of L3-
cache data-load hits across the pages of the TPC-C buffer
pool segment for the 8-way p690 configuration, we see a
very dense reference pattern. It shows that greater than
70% of the hits for this segment are located within a range
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of approximately 200, out of 65,536, pages. In addition to
this clustering of hot pages, we see that each page
exhibits, as did the segments in the buffer pool region, a
very dense reference pattern.

Distribution of L3 Data Load Hits in Buffer Pool by
Segment
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Figure 6. Distribution of TPC-C L3-cache data-
load hits across segments of buffer pool for the
8-way p690 configuration
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Figure 7. Distribution of TPC-C L3-cache data-
load hits across pages of buffer pool segment
for the 8-way p690 configuration

Regions of the Address Space - L3 Caches: From the
page-related data, we would expect that within a page we
would see heavily-referenced cache lines. Figure 8, shows
just that. It is quite clear that only a handful of cache
lines are responsible for the majority of the references,
i.e., greater than 70% of the references.

Regions of the Address Space — Instructions: As we
indicated in Section 4.1, our data analysis tools allow a
user to specify a list of routines and obtain a report that
displays data-load hit percentages and the amount of
memory touched for regions of the address space
referenced by the routines. For this study, the lock
routines and atomic operations of Table 4 were targeted
as being potentially responsible for data loads resolved in
the lower levels of the memory hierarchy. Our results
indicate that only two routines from the ones listed had

any notable impact on performance. The data shows that
the disable lock and simple_lock routines, whose data
address is retrieved from an L3.5 cache, make up the
biggest portion of data-load hits that are associated with
lock and atomic operations. However, these percentages
are insignificant, 1.1% and 2.2% respectively, and,
therefore, do not contribute greatly to performance
degradation with respect to L2-cache misses.

Table 4. List of routines under analysis

Lock routines
simple_lock
simple_lock_ppc
simple_unlock
disable lock
unlock_enable
simple_unlock_mem
unlock_enable_mem

Atomic operations
fetch_and_add
fetch_and _add_h
fetch_and_addlp
fetch_and or
fetch_and_orlp
fetch_and_and
fetch_and_andlp
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Figure 8. Distribution of TPC-C L3-cache data-
load hits across the cache lines of a hard-hit
page for the 8-way p690 configuration

5. Conclusions

Data collected from the 8-way and 32-way
configurations of the p690 indicate that L2-cache data-
load misses are often resolved in L3 caches or main
memory. This information, coupled with the fact that
load hit latencies for L3 caches and main memory are
very high in comparison to L2-cache load latencies (see
Table 1), presents an obvious target for performance
enhancement. Through analysis, we will endeavor to
attain this enhancement by (1) uncovering the application-
specific causes for the L2-cache data-load misses that are
resolved in L3 caches and main memory and (2) applying
appropriate remedies that shift the resolution site of these
expensive data-load misses to the L2 level of the memory
hierarchy. The work presented in this paper provides the
foundation for accomplishing this by honing in on the
areas of memory, down to the cache block level, that



demonstrate a high concentration of data-load hits.
Specifically, our results show that the buffer pool and
heap regions of the TPC-C address space tend to
dominate as the effective data address regions for data
loads satisfied in L3 caches and main memory.
Furthermore, for those data loads satisfied in L3 caches,
the segments, pages, and cache blocks that constitute the
buffer pool exhibit a rather dense distribution.

We were able to confirm through the use of our tools
that routines associated with lock variables and atomic
operations do not play a dominant role in the cause of L2-
cache data-load misses. In fact, the percentage of these
functions that are attributed to L2-cache data-load misses
is so small that we did not even present the distribution of
these misses across the address space as was done with
the entire sample set.

6. Future Work

After reviewing the data that is presented here, the

authors began discussing the approaches one could take to
take advantage of the ability to determine locality of
reference. It was realized that ideally one would want to
not only isolate a concentrated region of L3-cache data-
load hits, for example, but also be able to analyze this
region by determining if this repeated occurrence of L2-
cache data-load misses could be related to certain CPUs,
processes, threads, or routines. Having this kind of
information would almost certainly provide more insight
into the p690 memory hierarchy behavior and help
determine the causes of L2-cache data-load misses
generated by TPC-C as well as other applications.
Due to limitations associated with the data structures that
are currently being used in the data analysis tools, this
type of information cannot be generated efficiently,
especially for the 32-way traces. Therefore, a database is
under development. Using this database, repeated
occurrences of L2-cache misses can be easily correlated
with the threads, processes, and CPUs that generated
them.

The database accepts as input the event information
generated by trcrpt. It also accepts user input regarding
information necessary to document the experiment
including the following:

o specific address regions, such as the address range
of the segments,

e event names,

e machine configuration, e.g., whether it is an 8-way
or 32-way configuration,

¢ run information, such as the run duration and date
the run was conducted, and

e workload information, e.g., the workload used to
generate the event information.

Through the use of a script, the user-specified
information, and input file are used to populate the
database. The script also stores in the database a low-level
count of the number of accesses to a specific word; this is
maintained in an effort to minimize the time required to
calculate the more complicated queries, such as deriving
the segment and page counts. As a result, the user will be
able to query the database and view the event information
in a number of different ways. For example, the user will
be able to view information such as the CPU that is
associated with the majority of L2-cache misses. In this
way, the database will allow us to better understand the
relationship between the L2-cache misses and their
related causes.
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Table 3. TPC-C address space

Address Space

Range

Kernel

0x000000000 - 0x000000001

Proc. Priv., shmat/mmap & Loader Use

0x000000002 - 0x00000000F

Text

0x000000010 - 0x000000010

Data,BSS,Heap

0x000000011 - OXO6FFFFFFF

Buffer Pool

0x070000000 - OxO7FFFFFFF

Private Load

0x080000000 - OXO8FFFFFFF

Shared Library Text

0x090000000 - 0x090010009

Shared Data

0x09001000A - 0x09001000A

Reserved 0x0A0000000 - OXEFFFFFFFF
Stack 0xOF0000000 - OXOFFFFFFFF
U-Block and Kernel Stack 0xF00000002 - OxFO0000002
DATA 0xF10000004 - 0xF10000004
PTA 0xF10000005 - 0xF10000005
DMAP 0xF10000006 - 0xF10000006
AME 0xF10000007 - OXxF1000000A
SCB 0xF1000000B - 0OxF100000BA
SWHAT 0xF100000BB - 0xF1000013A
SWPFT 0xF1000013B - 0xF1000083B
Reserved 0xF1000083C - 0xF10000877
PROC THRD 0xF10000878 - 0xF1000089B
M_BUF 0xF1000089C - OxF1000099F
LDR LIB 0xF100009A0 - OxF100009BF
JFS_SEG 0xF100009CO0 - 0xF100009C0O
JFS LKW 0xF100009C1 - OxF100009CF
LFS SEG 0xF100009D0 - 0xF100009DF
LOCK_INSTR 0xF100009EO - 0xF100009E0
KERN_HEAP OxF100009E1 - OxF10000AEOQ
MP_DATA 0xF10000AE1 - 0xF10000AF0

GLOB_EXTREG

0xF10000AF1 - OxF10000B6F




	IBM Corporation-Austin
	Abstract
	1. Motivation
	2. Related research
	3.1. Workload: TPC-C
	3.2. Compute platform: IBM eserver pSeries 690 architecture
	3.3. L2-cache miss events
	3.4. Event Trace Sampling Methodology: PMU, eprof, and trcrp

	4. Data Analysis
	4.1. Methodology
	4.2. Data Partitioning

	4.3. Results
	Table 4. List of routines under analysis

	5. Conclusions
	6. Future Work
	Acknowledgements
	References
	Address Space


