Memory Performance Profiling via Sampled Performance Monitor Event Traces

Diana Villa, Jaime Acosta, and Patricia Teller
The University of Texas at El Paso
Department of Computer Science
demarquez @utep.edu, jaime.acosta@wsmr.army.mil, and pteller@cs.utep.edu

Bret Olszewski
IBM Corporation-Austin
breto@us.ibm.com

Abstract

Memory performance can be studied, process behavior
can be characterized, and application performance can
be improved through the use of sampled performance
monitor event traces. As an example, this paper
demonstrates how sampled traces of the TPC-C
benchmark executed on eight- and 32-processor
configurations of the IBM eServer pSeries 690 (p690) are
analyzed to identify the resolution sites of level-two (L2)
cache data-load misses and study the heavily-hit
resolution sites, i.e., level-three (L3) caches and main
memory, with the goal of recognizing the heavily-hit
regions of the application’s address space, segments,
pages, cache blocks, routines, instructions, and data
structures. Preliminary data analysis of the traces, using
a powerful and flexible performance evaluation
framework, indicates that data-load hits at heavily-hit
resolution sites have high locality of reference within
regions of the address space, segments, and pages.
Specifically, the buffer pool and heap regions of the TPC-
C address space dominate as the effective address regions
for data loads satisfied by local L3 caches and main
memory. Furthermore, for the data loads satisfied by
local L3 caches, the segments, pages, and cache blocks
that comprise the buffer pool exhibit a dense distribution.
Work continues to characterize related process behaviors
as well as other workloads, and to define ways to remedy
the performance degradation associated with L2-cache
data-load misses serviced at high-penalty levels of the
p690 memory hierarchy.

1. Introduction

In the long run, the research reported in this paper is being
performed to answer the following question: “As
processor frequency and memory size increase, can we
generate the address traces and/or memory-hierarchy miss
rate information needed to permit us to study how to
optimize memory subsystem performance?” To begin to
answer this question, we use sampled performance

Trevor Morgan
Exxon/Mobil
trevormorgan31 @sbcglobal.net

monitor event traces to profile the memory performance
of large, complex applications. To facilitate the analysis
of the traces, we developed a powerful and flexible
performance evaluation framework, which can be used in
many ways, e.g., to characterize process behavior and to
understand what modifications to the application,
operating system, and/or architecture will improve
application performance. To demonstrate the usefulness
of sampled event traces, this paper analyzes the traces of
the TPC-C benchmark executed on eight- and 32-
processor IBM eServer pSeries 690 systems (p690s). The
foci of the analysis are the sources of L2-cache data-load
misses and their points of resolution

Why focus on just L2-cache data-load misses? While
not the only source of memory subsystem activity, data
cache misses are the most dominant, and for workloads
like TPC-C, they are the most important. Other potentially
interesting events include instruction cache misses,
translation-lookaside buffer (TLB) misses, address-only
coherence operations, and uncached memory accesses for
I/0.

TPC-C L1-cache Miss Resolution Sites
Memory D hit [
Memory | hit]
L3.5D hit i
L3.5 I hit |
L3 D hit)

L3 1 hit =3
L2.75 D hit modified [
L2.5 D hit modified |
L2.5 D hit shared [0
L2.5/2.75 | hit shared [
L2 D hit |]

1 I I I
L2 1 hit - - -] ‘

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

Figure 1. TPC-C L1-cache misses resolution
sites for the 32-processor p690

The performance monitor unit of the POWER4
microprocessor, the basis of the p690, makes it possible to
count instruction and data cache misses serviced at the
different levels of the memory hierarchy. In addition, it is
possible to sample the instruction and data addresses
associated with data cache misses, but it is not possible to

sample the instruction addresses associated with
instruction cache misses. In general, this is acceptable,
since the instruction cache footprint of commercial
workloads tends to be well cached in large level-two (L2)
and level-three (L3) caches. As shown in Figure 1, which
identifies the points of resolution for level-one (LI) cache
misses, this is the case for TPC-C, i.e., data cache misses
dominate the activity at the L2 and L3 caches, as well as
memory. From a CPI viewpoint, the L2-cache data-load
misses that hit at high-penalty resolution sites, i.e., L3
caches and memory, are most important given the load
latencies presented in Table 1 and if decreased, could
have a positive impact on performance. Note that the
different cache events, i.e., L2, L.2.5, L2.75, L3, L3.5, and
main memory, are described in more detail in Section 4.3.

L2-cache Service Site Load Latency
L2 cache 12 cycles
L2.5 cache 73 cycles
L2.75 cache 96 cycles
L3 cache 112 cycles
L3.5 cache 143 cycles
Main memory 320 cycles

Table 1. Load latencies of the
eight-processor p690

With respect to TLB misses, the rate of TPC-C TLB
misses is reduced by mapping the database buffer pool
using 16MB “large pages” rather than standard 4KB
pages. Additionally, unlike cache and TLB misses,
address-only coherence operations do not involve
movement of data. For example, if a cache line is held
shared by two processes on different POWER4 chips,
when one processor stores into the cache line, an address-
only operation is initiated to ensure that other caches
invalidate copies of the shared data. Because data is not
transferred for these operations, their impact on the
performance of POWER4-based systems tends to be
small.

Finally, uncached memory accesses for I/O via loads
and stores have very high latency, which is driven by the
fact that many of these operations must pass all the way
through to a PCI adapter for acknowledgement. Luckily,
most of the actual I/O traffic is handled by DMA, which
is asynchronous to processor execution. Accordingly, the
high-latency uncached accesses tend to be fairly
infrequent.

Why TPC-C? TPC-C is a transaction-processing
application that is understood fairly well and is
representative of commercial workloads of interest to
IBM customers. Additionally, preliminary data analysis of
information concerning the data access streams generated
on the p690 by TPC-C L2-cache data-load misses [7]
indicates that there is opportunity for performance

improvement. It indicates that accesses to particular areas
of the address space, e.g., working storage, the buffer
pool, and components of the operating system, may be
targets for this performance improvement.

Why sampled performance event traces? Historically,
cache analysis is done using traces generated by hardware
or by software architecture simulation, for example,
SimOS [10]. As systems become faster and caches
become much larger, it is very difficult to collect traces
that are long enough to accurately model the memory
hierarchy. In addition, for workloads like TPC-C, system
simulation requires as much disk space as the workload
(multiple terabytes by today’s standards), and usually
more memory. Also, the time to simulate a large
multiprocessor system is intimidating. Alternatives to
tracing are a cache simulator built in hardware and
connected to a running system [8], and sampled event
traces, the alternative that we adopted.

2. Motivation

In this paper, we demonstrate how analysis of sampled
event traces, facilitated by a powerful and flexible
performance evaluation framework, described in Section
5.1 and pictured in Figure 14 at the end of the paper, can
be used to identify (1) the areas of the address space,
down to a granularity of 128B cache lines, that are
referenced repeatedly and generate L2-cache data-load
misses that are resolved in high-penalty areas of the
memory hierarchy and (2) the addresses of instructions
that access these “hot” data areas.

In the case of the TPC-C benchmark executed on eight-
and 32-processor configurations of the p690, this analysis
indicates that a fairly large number of L2-cache misses
are resolved at local L3 caches and main memory, where
latencies are relatively high in comparison to load-hit
latencies at local and remote L2 caches and remote L3
caches, respectively. The resolution of these misses at
high-penalty levels of the memory hierarchy does not
seem intuitive for two reasons. First, the p690
architecture, further described in Section 4.2, allows L2-
cache misses generated by a processor to be serviced by
any other L2 cache in the system. Since each processor
has its own defined memory hierarchy, including an L2
cache that it physically shares with only one other (chip
co-resident) processor, the fraction of accesses going to
the L3 cache, or beyond, should be small. In addition,
note that in the 32-processor system there are 256GB of
physical memory in use and 44.8MB of L2 cache.
Second, it has been demonstrated that the data-load
addresses for these L2-cache misses are not distributed
uniformly throughout the address space, but rather tend to
cluster in relatively small regions of the address space [7].
Such clustering indicates locality of reference that, if
exploited, should lead to hits in the upper-level caches.

Given the identification of the reasons why L2-cache
misses are resolved at high-penalty levels of the p690
memory hierarchy, it may be possible to modify the
application, operating system, and/or hardware to
alleviate or at least decrease them. Research in progress,
facilitated by our performance evaluation framework, is
aimed at identifying the reasons. Information gathered
thus far suggests the following: (1) data sharing patterns,
especially within the address space allocated to working
storage, the buffer pool, and components of the operating
system, (2) related cache invalidations initiated by the
cache-coherence protocol, and (3) process migration.

The remainder of the paper, which discusses this
work in more detail, is organized as follows. Section 3
presents related research. Section 4 focuses on data
collection, describing the workload under study, the
platform from which the data was collected, the events of
interest, and the tools used to collect the data. Section 5
targets data analysis, describing the tools and
methodology used to perform the analysis, as well as the
results of the analysis. Section 6 presents conclusions and
future work.

3. Related Research

Related research focuses on two aspects of this study: the
use of event trace sampling and the performance of TPC-
C on other multiprocessor platforms. Performance
monitor event traces captured via performance counters
have been used to characterize application behavior in the
past. Barroso et al. [2] use event traces, captured by tools
such as IPROBE and DCPI (Digital Continuous Profiling
Infrastructure) [1,3], to characterize applications,
including OLTP workloads, executed on a four-processor
AlphaServer 4100 using Oracle 7.3.2. And, Keeton et al.
[5] use performance monitors to analyze the behavior of
an OLTP workload executed on a four-processor Pentium
Pro-based server. Both explore the performance effects of
architectural modifications. In [2] this is done by
workload characterization, accomplished by source code
instrumentation coupled with simulation methodologies
and in [5] this is accomplished by physically changing the
hardware. Desikan et al., like Barroso et al., also use the
DCPI tool [1] to check the reliability of an Alpha 21264
simulator by sampling certain events that are used to
derive performance measurements for the Compaq DS-
10L workstation.

With respect to the performance of TPC-C, Tsuei et al.
[11] study TPC-C executed on an unidentified Sun
Microsystems 16-processor shared-memory
multiprocessor with 4GB of memory using IBM’s DB2
for Solaris version 2.1.1, while Leutenegger and Dias [6]
study it executed on an unidentified multiple-node
distributed system. Both investigate TPC-C’s buffer hit
rate. Our initial results [7] and those presented in this

paper, which indicate that load accesses are concentrated
in certain memory regions and within those regions
smaller defined areas are heavily accessed, corroborate
the study of Leutenegger and Dias, which also
investigates the memory access characteristics of TPC-C
and show that data access skew, i.e., non-uniform data
memory access, exists at the tuple and page levels.

Unlike the research described above, Itzkowitz, et al.
[4] discuss and demonstrate the use, on a dual 900 MHz
UltraSPARC-III Cu Sun Fire 280R™ system, of
extensions to the Sun ONE Studio™ compilers and
performance tools that provide information related to the
data space of an application. This information, gathered
either by clock or hardware-counter profiling, provides
per-instruction details of memory accesses in the
annotated disassembly and provides data aggregated and
sorted by object structure types and elements. Compiler-
generated padding introduces minor inaccuracies and
collection perturbation can be controlled through
configuration of the processors’ counter overflow rates.
Future work described by Itzkowitz, et al., i.e., analysis of
event data addresses by machine entity, e.g., memory
segment, page, etc., is presented in this paper but, of
course, our performance evaluation framework and
compute platform are used to perform the analysis.

The major differences between our work and the
related research described above are the scale of the
systems and the methodology used. Itzkowitz, et al. use a
two-processor system, Barroso et al. and Keeton et al.
each use a four-processor system, and Tsuei et al. use a
16-processor system, while we analyze performance data
obtained from both eight- and 32-processor systems. In
addition, our work attempts to extract information about
the dynamic behavior of a large, complex application with
a considerably simpler, more powerful, faster, and, in
some cases, more precise methodology. Our methodology
does not require source code instrumentation and it is not
restricted to memory access behavior analysis. Our
performance evaluation framework provides numerous
ways to analyze sampled event traces. A description of
the type of analyses that can be performed is presented in
Section 5.

4. Data Collection

This section provides information on the data collected
for this study. First, we describe the workload, TPC-C,
and the platform on which TPC-C was executed and
monitored. Next, we discuss the events of interest and the
methodology used to collect the sampled event traces of
the data access streams produced by L2-cache data-load
misses.

4.1. Workload: TPC-C

To collect the data used in this study, a fully-implemented
TPC-C benchmark drives a commercially-available
relational database, which was compiled using the IBM C
for AIX version 5 compiler. The TPC-C (Transaction
Processing Performance Council Benchmark C)
workload [13] is a well-known benchmark that emulates
read-only and update-intensive transactions found in
complex on-line transaction processing (OLTP)
application environments [11]. It has been used widely in
the database server industry as a basis of server
performance analysis and platform comparison.

4.2. Compute platform: IBM eServer pSeries 690

IBM’s eServer pSeries 690 family of symmetric
multiprocessor (SMP) architectures includes eight- and
32-processor configurations [14,15]. The operating
system for these configurations is AIX version 5.2. The
MultiChip Module (MCM), the building block of the
architecture, contains four chips. Each chip is comprised
of two 1.3 GHz POWER4 processors and, thus, in
general, each MOCM contains eight processors.
Accordingly, the eight- and 32-processor configurations
normally are comprised of one and four MCMs,
respectively. In contrast, the eight-processor p690
configuration used in this study is comprised of two
MCMs — each MCM contains four “single core good”
chips, i.e. only one functional processor per chip, instead
of the typical eight-processor configuration that only
contains one MCM with eight functional processors.
Note that, as expected, the 32-processor p690
configuration used in this study consists of four MCMs,
each with all eight functional processors.
For the p690s under study,

e cach CPU has a 64KB L1 instruction cache and a
32KB L1 data cache;

e each chip has a 1.44MB L2 unified cache shared
by the two processors on the chip;

e the four chips/eight processors on an MCM share
a 128MB L3 unified cache; and

® main memory is 128GB (256GB) for the eight-
(32-)processor p690.

The L1 and L2 caches have 128B lines, while the L3
cache has 512B lines. Data private to and shared by
processes are managed via the p690 cache coherence
protocol. As illustrated in Figure 2, an L2-cache miss for
either type of data generated by a processor in an MCM
can be serviced at five different levels of the memory
hierarchy:

1. another L2 cache within the same MCM, the L2.5
level;

an L2 cache in another MCM, the L2.75 level;

the MCM’s L3 cache, the L3 level;

an L3 cache in another MCM, the L3.5 level; and
main memory.

DAl

L1 Miss in

cpujcpu| [cpujcpu cpu Jcpu cpu|cpu

L2 * L2 A 120 12 ¢
S| al
o) o)
| —

cpu |cpu cpu |cpu| cpu |cpu| cpu |cpu

L2 A 12 A] 12 0 L2 o

MCM,
Legend
* L2 Serviced
AL2.5 Serviced
¢ L2.75 Serviced

MCM,

Wy L3 Serviced
Q 1.3.5 Serviced

Figure 2. Two (double core good) MCMs of
32-processor p690

4.3. L2-cache miss events

L2-cache miss events are classified according to the level
at which they are resolved and the state (with respect to
the cache coherency protocol) of the block at the
resolution site. Note that the load latencies associated
with each of the L2-cache miss events described below is
presented in Table 1.

Misses serviced at the L.2.5 level generate one of two
types of events: an L2.5-shared (L25_SHR) or L2.5-
modified (L25_MOD) hit event. An L25_SHR denotes
that, although the requested block may reside
simultaneously in more than one L2 cache, it is resolved
by a local L2 cache, i.e., one associated with the MCM
containing the processor that generated the miss. An
L25_MOD denotes that the requested modified block is
exclusively owned by and, thus, resides in only one L2
cache, a local L2 cache; this L2 cache contains a more
recent version of the block than is in the backing physical
memory.

Similarly, L2-cache misses serviced at the L2.75
level of the memory hierarchy generate either an L2.75-
shared (L275_SHR) or L2.75-modified (L275_MOD) hit
event. The former denotes that the requested block resides
in more than one L2 cache but not in a local L2 cache,
rather in an L2 cache on another MCM, i.e., a remote L2
cache. The latter denotes that the requested block resides
in only one L2 cache, a remote L2 cache.

At the L3 level, the cache-hit events are called L3-
shared, L3-modified, L3.5-shared, and L3.5-modified. An
L3-shared hit event denotes that the requested block may
reside in more than one L3 cache and is resident in the
local L3 cache, i.e., the one associated with the MCM of
the processor that generated the miss. An L3.5-shared hit
event denotes that the requested block resides in more
than one L3 cache but not in the local L3 cache. An L3-
modified hit event denotes that the requested block resides
in only one L3 cache, the local L3 cache. An L3.5-
modified hit event denotes that the requested block resides
in only one L3 cache, a remote L3 cache.

For this study we monitored cache hit events as well
as main memory hit events (MEM). However, instead of
monitoring the four events associated with the L3 level of
the memory hierarchy, only two events were monitored:
L3 and L3.5 hits (L3 and L35). Additionally, only the
L25_MOD and the L275_MOD hit events are analyzed
due to the unmanageable size of the event traces
associated with the L25_SHR and L275_SHR hit events.

4.4. Event trace sampling methodology: PMU,
eprof, and trcrpt

On selected pSeries hardware models, through the use of
tools such as eprof and trcrpt, described in this section,
trace information for specified events can be collected.
These tools were used in this study to collect one event
trace from the eight-processor p690 and one from the 32-
processor system. The trace information for the events
described in Section 4.3 was gathered during a 10-minute
interval of the steady-state execution of TPC-C. As
described below, sample information was recorded upon
the periodic occurrence of the event being monitored. The
information collected during each sample includes the
timestamp which indicates when the event occurred, the
effective instruction and data addresses associated with
the event, and the CPU, process, and thread IDs of the
entity that triggered the event.

To collect data on various events that occur within
the processor, such as the completion of a load instruction
or an L2 instruction cache miss, and, thus, provide
valuable performance information, the POWER4
microprocessor includes performance monitoring
facilities. The performance monitor unit (PMU) includes
eight counters that permit up to eight concurrent events to
be monitored. In addition to recording aggregate counts
for either a section of code or an entire program, the PMU
is capable of capturing instruction and data addresses
associated with events. This is of particular value when
event-based sampling is desired.

Special-purpose registers, only accessible via the
operating system through a programming interface that
accesses the registers through a kernel extension, control
the state of the counters. This interface permits, among

other things, the specification of the events to be
monitored and execution points at which to start and stop
counters and at which software is to retrieve results.

Event-based sampling, which is important for long-
running programs with extremely large numbers of
events, like TPC-C, is provided by the PMU and
associated software via user-selected trigger events and
Performance Monitor (PM) interrupts. As is exemplified
below, the former can be used to trigger the increment of
a counter and the latter can be used to write PMU data to
a file. The AIX operating system contains a time-based
profiling tool called #prof. In addition to tprof, there exists
an in-house IBM tool, eprof, which uses tprof
functionality for data collection and reduction, and is tied
to the PMU on selected pSeries hardware models. eprof
is used to program the PMU to sample hardware
countable events at a defined rate.

Event Sample Count
8-processor 32-processor

L2 312,252 259,716
L25 MOD 313,431 197,592
L25_SHR 748,064 n/a

L275_MOD 126,376 167,485
L275 SHR 835,339 n/a

L3 301,791 170,910
L35 121,274 172,008
MEM 272,835 262,941

Table 2. Event sample counts

For this research, we employed eprof and event-
based sampling, using eprof’s default sampling rate of
approximately 100 events per second per CPU. In this
way, using the default sampling rate, if the event sampled
is processor cycles, time-based sampling is accomplished
and a sample is collected every 10 milliseconds. In
contrast, if the event is one that occurs at a variable rate,
e.g., cache misses, and if the rate of event occurrence is
greater than the default sampling rate, then eprof adjusts
the rate at which samples are collected so that the 100
samples per CPU per second collection rate is
approximated. Accordingly, the interval between PM
interrupts can be variable, and because some events occur
more often than others, it follows that a different number
of samples are collected for different types of events
despite the adoption of the default sampling rate and a 10-
minute workload. The size of the collected data set for
each event of interest is given in Table 2.

When an event is sampled, i.e., at each increment of
the performance counter, the instruction address and data
address (if applicable) are captured by the PMU, and a
PM interrupt is delivered. The interrupt causes the sample
information to be extracted from the PMU and an AIX
trace hook to be generated and added to the trace. The
AIX trace hook describes the associated trace record.

Using the AIX trace allows samples to be either written to
disk or collected via a daemon that can summarize the
data. The profiling also enables selected AIX trace hooks,
such as those related to dispatching, so that the sampled
events can be correlated with the processes/threads. If
AIX trace is used to collect events in a file, the file can be
formatted with the trcrpt utility to create a time-stamped
text file of events. For this study, we used trcrpt as well
as a program that reads the formatted trace and extracts
summary information.

5. Data Analysis

This section describes the tools used to perform the data
analysis, the partitioning of the address space, and some
results of the data analysis.

5.1. Methodology — Performance Evaluation
Framework

As mentioned in Section 4.4, the IBM tool trcrpt was used
to post-process the sampled AIX event trace generated by
eprof. The specified output of trcrpt includes for each
sampled event the effective instruction and data
addresses, the CPU, process, and thread IDs, and the
timestamp. As part of our performance evaluation
framework, depicted in Figure 14 at the end of the paper,
a set of Java tools processes each sample and stores it in a
MySQL database according to the workload being
monitored, the number of processors used to execute the
workload, and the event being sampled. For example,
database tpcc_32_g48cl stores the sampled event trace
for the TPC-C benchmark executed on a 32-processor
system associated with the L2-cache data-load misses
resolved in local L3 caches (g48cl identifies a local L3
hit event). Each database consists of 12 tables that store
information related to the experiment itself, e.g., a
description of the workload and compute platform, and
data contained within the samples themselves. Once the
sampled events are loaded into their corresponding
databases, a second set of tools in our framework is used
to query the databases and produce results of the queries,
i.e., default and customized reports, in the form of
formatted text files. These text files are transformed into
graphs via a spreadsheet application with built-in
graphing capabilities. In this way, the performance
evaluation framework facilitates the analysis of the
sampled event traces.

Storing the sampled performance monitor event
traces in databases facilitates data analysis and provides
numerous ways to easily examine and explore the data.
Accordingly, the analysis and results presented in this
paper is only a sample of the kind of information that can
be obtained using this methodology. The potential of our
performance evaluation framework is exemplified in [9]

and [12], which describe different kinds of analyses that
can be conducted using our methodology and the same
sampled event traces used in this study.

Even though the work presented in this paper studies
the behavior of a commercial application, i.e., the TPC-C
benchmark, the methodology can be applied to study the
memory subsystem behavior of any kind of application.
Furthermore, it is not restricted to Power-based systems;
it can be applied to any system with the capability of
producing sampled event traces.

5.2. Data Partitioning

The address space for TPC-C ranges from
0x0000000000000000 to 0xF10000B6FFFFFFFF and is
partitioned as illustrated in Table 4, which appears at the
end of the paper. The segment size is 256MB, while each
page in a segment is 4KB. As can be seen from the table,
the different memory regions are identified by address
ranges, e.g., the range used for lock instrumentation
begins at 0xF100009E00000000 and ends at
0xF100009EOfffffff.

The TPC-C application used in this study is based on
a process model. The process model allows for a private
memory region per process, as well as a shared memory
region that stores global database information, i.e., the
database's state information and buffer pool. The buffer
pool is the largest consumer of physical memory; it
contains unmodified data, currently on disk, as well as
data that has been modified by transactions and is not yet
updated on disk. Since the size of the database is much
larger than physical memory and the pattern of access to
disk data is unpredictable, disk I/O is continuous.
Incoming database transactions are passed off to idle
processes for service. The number of processes available
for processing transactions is based on the number needed
to achieve nearly 100% CPU utilization. Because most
transactions experience some number of disk I/Os, many
transactions must be executing concurrently to maximize
CPU utilization.

5.3. Results

As mentioned above, the goal of this analysis is to
pinpoint the sources of performance degradation
associated with data references. This is done in three
phases.

Phase 1. The platform-specific causes of performance
degradation are identified. For example, as is true in
this study, it may be the case that a high number of L2-
cache misses are satisfied by local L3 caches or main
memory, rather than by other, local or remote, L2
caches.

Phase 2. The concentrated areas of locality of
reference are identified. For example, references may
be concentrated in the buffer pool.

Phase 3. The subroutines, instructions, and/or data
structures associated with these areas of locality of
reference are identified. For example, a lock variable
may be the target of a significant number of these
references. (Note that Phase 3 is in progress.)

5.3.1. Phase 1. Figure 3 presents, for both the eight-
processor, i.e., 8-way, and 32-processor, i.e., 32-way,
p690, sampled performance monitor event counts that are
associated with L2-cache data-load misses. These hit
event counts show the distribution of L2-cache data-load
misses across the resolution sites of the p690 memory
hierarchy. Recall that in this architecture, L2-cache
misses can be resolved by a local (on-MCM) L2 cache
(L2.5 hit), a remote (off-MCM) L2 cache (L.2.75 hit), the
local L3 cache (L3 hit), a remote L3 cache (L3.5 hit), or
main memory (MEM hit). This data, which is similar for
the eight-processor, two-MCM p690 and 32-processor,
four-MCM system, identifies the platform-specific causes
of performance degradation associated with L2-cache
data-load misses, i.e., local L3 caches and main memory
dominate as the levels of the p690 memory hierarchy
where L2-cache data-load misses are resolved.

Resolution of L2 Data Load Misses

Memory
L3.5
L3

% L2.75 Modified m 32-way
I.I>J @ 8-way
L2.75 Shared
L2.5 Modified

L2.5 Shared

0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of loads satisfied

Figure 3. Distribution of sampled hit events
among TPC-C L2-cache data-load miss
resolution sites of the p690 memory hierarchy

5.3.2. Phase 2. During Phase 2, the analysis hones in on
the concentrated areas of locality of reference. The
analysis progresses from a level of the memory hierarchy
to a region of the address space, then to segments, pages,
and, finally, cache blocks. From cache blocks, the
analysis can continue to instructions, data structures,
processes, CPUs, etc.

Regions of the Address Space — Local L3 Caches: As
shown in Figure 3, data-load hits in local L3 caches,
rather than hits in either local or remote L2 caches, appear

to be one of the main factors affecting the performance of
TPC-C running on the p690. Thus, we first explore the
reason for this.

Figures 4 and 5 depict, for the eight- and 32-
processor systems, respectively, the L3-cache hit
percentages for the eight most-referenced regions of the
TPC-C address space; note that the eight regions are the
same for both data sets. Due to errors during the
collection of the sampled event traces for the L2-cache
data load misses that are resolved in the L3 cache for the
32-processor p690 configuration, the event traces for only
19, rather than 32, processors were successfully collected.
As such, the 32-processor data set is based on only 19,
rather than 32, event traces. Despite this, the two data sets
expose similar data-load behavior in the L3 caches.

Distribution of L3 Data Load Hits

KERN_HEAP M5

M_BUF |y

Ublock&KemelStack 7&,

Stack 7&.

BufferPool | o Hit %
Data,BSS,Heap :)

Text g

ion

B Unique cache line

Address reg

Kernel —

0 0.1 0.2 0.3 0.4 0.5
Fraction of data loads

Figure 4. Distribution of TPC-C local L3-cache
data-load hits across address regions of the
eight-processor p690

Distribution of L3 Data Load Hits

KERN_HEAP [
M_BUF |
Ublock&KemelStack 7&,
Stack 7=| m Unique cache line

BufferPool @Hit %
Data,BSS,Heap I
Text 7D

Address region

Kernel —

0 0.1 0.2 0.3 0.4 0.5
Fraction of data loads

Figure 5. Distribution of TPC-C local L3-cache
data-load hits across address regions of the 32-
processor p690 (traces of only 19 CPUs are
represented)

The light-colored Hit_ % bar for a region is
calculated by dividing the number of references to the
region by the total number of references to the level of the
memory hierarchy under study, in this case, local L3
caches. By examining the region Hit_% bars, we see that
for both the eight- and 32-processor systems the
Data,BSS,Heap and buffer pool regions clearly are the
hardest hit at this level of the hierarchy.

A region’s dark-colored bar, the Unique_cache_line
bar, indicates the number of unique cache lines
referenced in the region; it gives an idea of the density of
the data loads, i.e., the locality of reference, for the
region. In order to determine the cache block that is
accessed by a particular data address, the address is
partitioned into a tag, index, and offset using the L3 cache
configuration, i.e., a 128MB eight-way associative cache
with 512B blocks/lines, i.e., four 128B sectors. (Note that
the L2-cache line size is 128B.)

With respect to locality of reference, four of the eight
regions, M-BUF, Buffer Pool, Text, and Kernel exhibit
the same behavior in both systems and all exhibit good
locality of reference. For example, for both systems the
Unique_cache_line bar for the buffer pool region is a
relatively small portion (less than one-third) of the size of
its corresponding Hit % bar. This indicates that a
majority of the local L3-cache hits associated with the
buffer pool reference a relatively small number of cache
lines and, thus, exhibit relatively good locality of
reference.

In general, for the other four regions, the eight-
processor system exhibits better locality of reference than
the 32-processor system. In fact, the eight-processor
system exhibits this behavior for the entire address space
comprised of the eight regions depicted in Figure 4. That
is, if the Unique_cache_line bars for the eight regions are
aggregated and compared to an aggregated Hit_% bar, the
aggregated Unique_cache_line bar is less than one-third
the size of the aggregated Hit_% bar. This indicates that
in the eight-processor system the majority of L2-cache
data-load misses resolved in local L3 caches are to data
previously referenced and pre-maturely evicted from L2
caches. If the evictions are due to false sharing or process
sharing that can be localized to an MCM, then this
behavior would be considered a mismatch between the
application and the architecture and would present a target
for potential performance improvement.

In contrast, in the 32-processor system, data-load hits
to the “other” four regions, i.e., KERN_HEAP, Ublock &
Kernel Stack, Stack, and Data,BSS,Heap, are more
dispersed. This is illustrated by the large overlap of their
Unique_cache_line bars and Hit_% bars, which indicates
that a relatively large number of the referenced cache
lines are only referenced once or twice. Thus, as is
exemplified by the Data,BSS,Heap region, references to
this region in the local L3 caches of the 32-processor
system display worse locality of reference than in the
eight-processor system.

Regions of the Address Space — Main Memory: Since
data-load hits in main memory also appear to be a main
factor affecting the performance of the TPC-C benchmark
running on the p690, next we compare the distribution of
memory data-load hits among the eight most-referenced

regions with that of L3-cache data-load hits. Figures 6 and
7 depict the distribution of memory data-load hits in the
eight-and 32-processor systems, respectively. Comparing
the distributions of memory and L3-cache data-load hits,
we see contrasts in locality of reference for most of the
regions of the address space. For example, the data loads
that are targeted at the buffer pool and miss the local and
remote L3 caches no longer exhibit the same tight
reference pattern exhibited by the data loads that hit in
local L3 caches, i.e., the memory hits exhibit a larger
footprint than the local L3-cache hits. This is illustrated in
Figures 6 and 7 by the buffer pool Unique_cache_line bar
being a large percentage of its Hit_% bar, meaning the
data-load hits to the buffer pool are distributed across a
relatively large number of cache lines. The same behavior
is exhibited by most of the other address regions of both
the eight- and 32-processor systems. If the memory hits
are the result of compulsory misses, then this indicates
that the application is well matched to the architecture.

Distribution of Memory Data Load Hits

KERN_HEAP M
M_BUF
Ublock&KemelStack
Stack 7&.

BufferPool |
Data,BSS,Heap 7:::'
Text 1
Kemel |

@ Unique cache line
@ Hit %

Address region

0 0.1 0.2 0.3 0.4 0.5
Fraction of data loads

Figure 6. Distribution of TPC-C main memory
data-load hits across memory regions of the
eight-processor p690

Distribution of Memory Data Load Hits

KERN_HEAP |[mm_

M_BUF Jy
Ublock8&KemelStack [

Stack 7&.

BufferPool |]

Data,BSS,Heap ——|

Text |

Kemel |

@ Unique cache line
O Hit %

Address region

0 0.1 0.2 0.3 0.4 0.5
Fraction of data loads

Figure 7. Distribution of TPC-C main memory
data-load hits across memory regions of the
32-processor p690

Because the data-load hits in local L3 caches display
better locality of reference when compared to those that
hit in main memory, we now refine the analysis and study
the references associated with L2-cache data-load misses
that are resolved in local L3 caches, i.e., L3 hit events.
Considering that Buffer Pool and Data,BSS,Heap are the

two most frequently referenced address regions in the L3
caches and the buffer pool region displays a more
concentrated locality of reference than Data,BSS,Heap,
the analysis now focuses on it.

Regions of the Address Space — Segments: For the 10-
minute duration during which samples were collected,
302 and 570 unique segments in the buffer pool region
were touched in the eight- and 32-processor p690s,
respectively. Of the 302 (570) segments, four (six)
account for over 90% of the buffer pool data-load activity
in local L3 caches. Figure 8 (9) shows the four (six)
segments and their respective Hit_ % and
Unique_cache_line bars.

Distribution of L3 Data Load Hits
In Buffer Pool by Segment

070000005
070000004]

070000001

@ Unique cache line
o Hit %

-
c
)
£
=
@

(/2]

070000000 o

0 0.1 0.2 0.3 0.4
Fraction of data loads

Figure 8. Distribution of TPC-C local L3-cache
data-load hits across segments of Buffer Pool
of the eight-processor p690

Distribution of L3 Data Load Hits
in Buffer Pool by Segment

07000039C
070000336
070000009 @ Unique cache line
070000002) o Hit %

070000001
070000000 |

Segment

0 0.1 0.2 0.3 0.4 0.5
Fraction of data loads

Figure 9. Distribution of TPC-C local L3-cache
data-load hits across segments of Buffer Pool
of the 32-processor p690

In these figures, we see that the majority of the hits
reference a relatively small number of cache lines. In
contrast, in the eight-processor system segment
0x070000005 and in the 32-processor system segments
0x07000039C, 0x070000336, and 0x070000009 appear to
have been referenced in a much more uniform manner,

i.e., the Unique_cache_line bar is a larger percentage of
the corresponding Hit_% bar.

Note that because the 32-processor p690 consists of
four MCMs, while the eight-processor system consists of
two MCMs, the amount of physical memory available in
the memory hierarchy of the 32-processor system is larger
than that of the eight-processor system. As such, the
amount of physical memory allocated to the buffer pool
address region differs. Consequently, the number of
segments touched, as well as those accounting for the
majority of data-load references, during the 10-minute
observation period is significantly larger in the 32-
processor system.

Regions of the Address Space — Pages: Continuing to
hone in on the suspect causes of performance degradation,
we next take a closer look at a buffer pool segment
frequently referenced in the local L3 caches of both the
eight-and 32-processor p690s. Examining Figures 10 and
11, which plot the distribution of local L3-cache data-load
hits across the pages of a TPC-C buffer pool segment for
the eight- and 32-processor systems, respectively, we see
very dense reference patterns. The dark-colored
Total_Loads bar for a page represents the number of
references to the page, while the Unique_Cache_Line bar
indicates the number of unique cache lines referenced
within the page.

Figures 10 and 11 show the pages of the 65,536-page
segment that 70% of the L3-cache data loads reference.
Although the range of targeted pages are different for the
eight- and 32-processor p690s, in both cases
approximately 200 pages are the source of these data
loads. In addition to this clustering of hot pages, we see
that each page exhibits, as did the segments in the buffer
pool region, a very dense reference pattern.

900
T T T T T T Total Loads |

Unique Cache Lines _ _ _

800
700
600
Hit/Cache Line 5p9 }-
400 t+
300
200 t+

100 +

o 4
45800 45850 45900 45950 46000 46050 46100 46150 46200

Page [0-65536]
Figure 10. Distribution of TPC-C local L3-cache

data-load hits across pages of a Buffer Pool
segment of the eight-processor p690

Distribution of L3 Data Load Hits Across
Pages of a Buffer Pool Segment

400
350
300

m Total loads

m Unique cache line

Hit/Cache line count

3100 4600 6100

Page [0-65536]

100 1600 7600

Figure 11. Distribution of TPC-C local L3-cache
data-load hits across pages of a Buffer Pool
segment of the 32-processor p690

Regions of the Address Space - L3 Caches: From the
page-related data just presented, one would expect that
within a page of the studied buffer pool segment we
would see heavily-referenced cache lines. Figures 12 and
13, which illustrate the distribution of buffer pool data-
load hits across cache lines of a hard hit page of the
studied segment in the eight- and 32-processor p690s,
respectively, show just that.

Distribution of L3 Data Load Hits by Cache Line

30

g g

25

20 +

Cache Line

=

: 'ig
D : B

i

]

|

o
k]
.
.

0 100 200 300 400 500 600
Time (s)

Figure 12. Distribution of TPC-C local L3-cache
data-load hits across the cache lines of a hard-
hit Buffer Pool page of the eight-processor p690

Distribution of L3 Data Load Hits by Cache Line

30

251"
20 - . - . o‘

15 A

Cache line
=]

o o
+
k]
.

0 100 200 300

Time (s)

400 500 600

Figure 13. Distribution of TPC-C local L3-cache
data-load hits across the cache lines of a hard-
hit Buffer Pool page of the 32-processor p690

10

Referring to Figures 12 and 13, it is quite clear that in
both the eight- and 32-processor systems only a handful
of cache lines are the target of a majority (greater than
70%) of the local L3-cache data-load hits recorded during
the 10-minute monitoring interval. Note that the y-axes of
Figures 12 and 13 denote the 32 128-byte sectors (there
are four sectors per 512-byte cache line) that comprise a
4KB section of a 16MB page of the buffer pool. In this
way, using our performance evaluation framework, we
can identify down to the cache-line level, sources of
performance degradation in p690 systems.

Regions of the Address Space - Instructions:
Additionally, our performance evaluation framework
allows a user to specify a list of routines and obtain a
report that displays data-load hit percentages and the
amount of memory touched for regions of the address
space referenced by the routines. For this study, the lock
routines and atomic operations of Table 3 were specified
since they were potentially responsible for data loads
resolved in the lower levels of the memory hierarchy.

The data retrieved from analyzing the event traces
indicate that only two routines from the ones listed above
had any notable impact on performance: disable_lock and
simple_lock. The data referenced by these routines was
retrieved from a remote cache (via an L3.5 hit) and make
up the biggest portion of data-load hits that are associated
with lock and atomic operations. However, these
percentages are insignificant, 1.1% and 2.2%,
respectively, and, therefore, do not contribute greatly to
performance degradation with respect to L2-cache misses.

Lock routines
simple_lock
simple_lock_ppc
simple_unlock
disable_lock
unlock_enable

Atomic operations
fetch_and_add
fetch_and_add_h
fetch_and_add_h
fetch_and_or
fetch_and_orlp
simple_unlock_mem fetch_and_and
unlock_enable_mem fetch_and_andlp
Table 3. List of routines under analysis

6. Conclusions and Future Work

The work presented in this paper demonstrates the
usefulness of p690 sampled performance monitor event
traces and the power and flexibility of the performance
evaluation framework that we developed to analyze them.
Since the traces are stored in databases, they can be
analyzed easily via queries to the database management
system, producing reports and graphs that allow large
amounts of information to be gleaned from the traces.

In the paper sampled event traces collected from
eight- and 32-processor configurations of IBM’s p690

executing TPC-C are analyzed to identify targets for
performance improvement. The analysis focuses on
memory subsystem performance, in particular, high-
penalty L2-cache data-load misses, and shows how the
framework can be used to ascertain reasons why a
majority of these misses are resolved in p690 local L3
caches and main memory, which carry high load-hit
latencies in comparison to L2-cache load latencies. The
analysis is continually refined, identifying first the
address regions most heavily referenced by L2-cache
data-load misses, and then the most heavily referenced
segments, pages, and cache lines.

Specifically, the analysis presented in the paper
shows that the eight- and 32-processor data is very
similar. Both indicate that the buffer pool and
Data,BSS,Heap regions of the TPC-C address space
dominate as the effective data address regions for data
loads satisfied in local L3 caches and main memory.
Furthermore, for those data loads satisfied in local L3
caches, the segments, pages, and cache blocks that
comprise the buffer pool exhibit a rather dense
distribution. In addition, using our framework, we are
able to confirm that routines associated with lock
variables and atomic operations do not play a dominant
role in the cause of L2-cache data-load misses. In fact, the
percentage of these functions that are attributed to L2-
cache data-load misses is so small that we did not even
present the distribution of these misses across the address

space.
Although the presented analysis falls short of
identifying application sources of performance

degradation, this analysis prompted modifications to the
operating system’s management of the buffer pool region,
which yielded observable performance improvements.
Due to the proprietary nature of the application and
operating system used in this research, the specific
sources of performance degradation and associated
modifications that were implemented are not described in
this paper. Currently, we are working on obtaining
sampled event traces of publicly available benchmarks,
such as RUBiS and Stock-Online [16], which will allow
us to not only publicly identify targets for possible
performance improvement, but also uncover and present
the application-specific sources of performance problems
and associated solutions via modifications to the
application source code that enhance performance.

Future research also will attempt to quantify the
accuracy of sampled event traces and will enhance the
performance evaluation framework.

Acknowledgements

We want to thank Robert Acosta, Robert Amezcua,
Carole Gottlieb, Cathy Nunez, and Bret Olszewski, IBM-

11

Austin, for their help in defining a research area of mutual
interest and establishing a research partnership that has
proven to be very effective. In addition, we want to thank
The Austin Center for Advanced Studies (ACAS), Carole
Gottlieb, and Bret Olszewski for the faculty research
awards that made this research possible, Cathy Nunez for
arranging Trevor Morgan’s summer 2002 internship,
which kicked-off this research, and Carole Gottlieb for
arranging Diana Villa’s summer 2003 and 2004
internships which have helped further this research.

References

[1]J. Anderson, L. Berg, J. Dean, S. Ghermawat, M. Henzinger,
S-T. Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and W.
Weihl, “Continuous profiling: Where have all the cycles gone?,"
ACM Transaction on Computer Systems, Vol 15, No. 4,
November 1997, pp. 357-390.

[2] L. Barroso, K. Gharachorloo, and E. Bugnion., “Memory
System Characterization of Commercial Workloads,”
Proceedings of the 25th International Symposium on Computer
Architecture, Barcelona, Spain, June 1998, pp. 3-14.

[3] R. Desikan, D. Burger, and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation”, Proceedings
of the 28" Annual International Symposium on Computer
Architecture, Goteborg, Sweden, July
2001, pp. 266-277.

[4] M. Itzkowitz, B. Wylie, C. Aoki, and N. Kosche, “Memory
Profiling Using Hardware Counters,” CD Proceedings of SC
2003, Phoenix, AZ, November 2003.

[5] K. Keeton, D. Patterson, et al., ‘Performance
Characterization of a Quad Pentium Pro SMP Using OLTP
Workloads,” Proceedings of the 25th Annual International
Symposium on Computer Architecture, June 1998, pp. 15-26.

[6] S. Leutenegger and D. Dias, “A Modeling Study of the TPC-
C Benchmark”, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington,
DC, USA, June 1993, pp. 22-31.

[7] T. Morgan, D. Villa, P. Teller, B. Olszewski, and J. Acosta,
"L2 Miss Profiling on the p690 for a Large-scale Database
Application," Proceedings of the 4th Annual Austin CAS
Conference, February 2003.

[8] A. Nanda, K. Mak, K. Sugavanam, R. Sahoo, V.
Soundararajan, and T. Smith, “MemorIES: a Programmable,
Real-time Hardware Emulation Tool for Multiprocessor Server
Design”, Proceedings of the 9" International Conference on
Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, November 2000, pp. 37-
48.

[9] R. Portillo, D. Villa, P.J. Teller, and B. Olszewski, “Mining
Performance Data From Sampled Event Traces”, To appear in
the Proceedings of the 12" Annual Meeting of the IEEE/ACM
International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, Volendam, The
Netherlands, October 2004.

[10] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.,
“Complete Computer Simulation: The SimOS Approach”, IEEE
Parallel and Distributed Technology: Systems and Applications,
Winter 1995, pp. 34-43.

[11] T-F Tsuei, A. Packer, and K-T Ko, “Database Buffer Size
Investigation for OLTP Workloads”, Proceedings of the 1997
ACM SIGMOD International Conference on Management of
Data, Tucson, AZ, June 1997, pp. 112-122.

[12] D. Villa, J. Acosta, P.J. Teller, B. Olszewski, and T.
Morgan, "A Framework for Profiling Multiprocessor Memory
Performance", Proceedings of the 10th International Conference
on Parallel and Distributed Systems, Newport Beach, CA, July,
2004, pp. 530-538.

[13] TPC Benchmark C Standard Specification Revision 3.0,
Transaction Processing Performance Council, February 15,
1995.

[14] The POWER4 Processor Introduction and Tuning Guide,
IBM, ibm.com/redbooks

[15]http://www.ibm.com/servers/eserver/pseries/hardware/white
papers/power4d_4.html#hier

[16] ObjectWeb, Open Source Widdleware.
http://jmob.objectweb.org.

Address Space Range

Kernel 0x000000000 - 0x000000001
Proc. Priv., shmat/mmap & Loader Use 0x000000002 - 0x00000000F
Text 0x000000010 - 0x000000010
Data,BSS,Heap 0x000000011 - OXO6FFFFFFF
Buffer Pool 0x070000000 - 0x07FFFFFFF
Private Load 0x080000000 - 0OXO8FFFFFFF
Shared Library Text 0x090000000 - 0x090010009
Shared Data 0x09001000A - 0x09001000A
Reserved 0x0A0000000 - OXEFFFFFFFF
Stack 0x0F0000000 - OXOFFFFFFFF
U-Block and Kernel Stack 0xF00000002 - 0xF00000002
DATA 0xF10000004 - 0xF10000004
PTA 0xF10000005 - 0xF10000005
DMAP 0xF10000006 - 0xF10000006
AME 0xF10000007 - 0xF1000000A
SCB 0xF1000000B - 0OxF100000BA
SWHAT 0xF100000BB - 0xF1000013A
SWPFT 0xF1000013B - 0xF1000083B
Reserved 0xF1000083C - 0xF10000877
PROC THRD 0xF10000878 - 0xF1000089B
M BUF 0xF1000089C - 0xF1000099F
LDR_LIB 0xF100009A0 - 0OxF100009BF
JFS SEG 0xF100009C0 - 0xF100009C0O
JFS LKW 0xF100009C1 - 0xF100009CF
LFS SEG 0xF100009D0 - 0xF100009DF
LOCK INSTR 0xF100009E0 - 0OxF100009E0
KERN_HEAP 0xF100009E1 - OxF10000AEO
MP_DATA 0xF10000AE1 - 0OxF10000AF0
GLOB EXTREG 0xF10000AF1 - 0xF10000B6F

Table 2. TPC-C address space

12

Data Collection Environment

Sampled Event Traces

PID TID Timestamp InstrAddr DataAddr
PID TID Timestamp InstrAddr DataAddr

Java Tool: Load DB ::>

Database

Java Tool: Report Generation

Reports

5 BufferPool 56893 29384
6 Data,BSS,Heap 8799 4855
1 Kernel 23485 9840

i Spreadsheet Application

Figure 14. Performance evaluation framework

13

