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Abstract 
 
Memory performance can be studied, process behavior 
can be characterized, and application performance can 
be improved through the use of sampled performance 
monitor event traces. As an example, this paper 
demonstrates how sampled traces of the TPC-C 
benchmark executed on eight- and 32-processor 
configurations of the IBM eServer pSeries 690 (p690) are 
analyzed to identify the resolution sites of level-two (L2) 
cache data-load misses and study the heavily-hit 
resolution sites, i.e., level-three (L3) caches and main 
memory, with the goal of recognizing the heavily-hit 
regions of the application’s address space, segments, 
pages, cache blocks, routines, instructions, and data 
structures. Preliminary data analysis of the traces, using 
a powerful and flexible performance evaluation 
framework, indicates that data-load hits at heavily-hit 
resolution sites have high locality of reference within 
regions of the address space, segments, and pages. 
Specifically, the buffer pool and heap regions of the TPC-
C address space dominate as the effective address regions 
for data loads satisfied by local L3 caches and main 
memory. Furthermore, for the data loads satisfied by 
local L3 caches, the segments, pages, and cache blocks 
that comprise the buffer pool exhibit a dense distribution. 
Work continues to characterize related process behaviors 
as well as other workloads, and to define ways to remedy 
the performance degradation associated with L2-cache 
data-load misses serviced at high-penalty levels of the 
p690 memory hierarchy. 
 
1. Introduction 
 
In the long run, the research reported in this paper is being 
performed to answer the following question: “As 
processor frequency and memory size increase, can we 
generate the address traces and/or memory-hierarchy miss 
rate information needed to permit us to study how to 
optimize memory subsystem performance?” To begin to 
answer this question, we use sampled performance 

monitor event traces to profile the memory performance 
of large, complex applications. To facilitate the analysis 
of the traces, we developed a powerful and flexible 
performance evaluation framework, which can be used in 
many ways, e.g., to characterize process behavior and to 
understand what modifications to the application, 
operating system, and/or architecture will improve 
application performance. To demonstrate the usefulness 
of sampled event traces, this paper analyzes the traces of 
the TPC-C benchmark executed on eight- and 32-
processor IBM eServer pSeries 690 systems (p690s). The 
foci of the analysis are the sources of L2-cache data-load 
misses and their points of resolution 

Why focus on just L2-cache data-load misses? While 
not the only source of memory subsystem activity, data 
cache misses are the most dominant, and for workloads 
like TPC-C, they are the most important. Other potentially 
interesting events include instruction cache misses, 
translation-lookaside buffer (TLB) misses, address-only 
coherence operations, and uncached memory accesses for 
I/O.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. TPC-C L1-cache misses resolution 
sites for the 32-processor p690  

 
The performance monitor unit of the POWER4 

microprocessor, the basis of the p690, makes it possible to 
count instruction and data cache misses serviced at the 
different levels of the memory hierarchy. In addition, it is 
possible to sample the instruction and data addresses 
associated with data cache misses, but it is not possible to 

32-way L1 cache miss resolution sources

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

L2 I hit

L2 D hit

L2.5/2.75 I hit shared

L2.5 D hit shared

L2.5 D hit modified

L2.75 D hit modified

L3 I hit

L3 D hit

L3.5 I hit

L3.5 D hit

Memory I hit

Memory D hit

TPC-C L1-cache Miss Resolution Sites 

 



2 

sample the instruction addresses associated with 
instruction cache misses. In general, this is acceptable, 
since the instruction cache footprint of commercial 
workloads tends to be well cached in large level-two (L2) 
and level-three (L3) caches. As shown in Figure 1, which 
identifies the points of resolution for level-one (L1) cache 
misses, this is the case for TPC-C, i.e., data cache misses 
dominate the activity at the L2 and L3 caches, as well as 
memory. From a CPI viewpoint, the L2-cache data-load 
misses that hit at high-penalty resolution sites, i.e., L3 
caches and memory, are most important given the load 
latencies presented in Table 1 and if decreased, could 
have a positive impact on performance. Note that the 
different cache events, i.e., L2, L2.5, L2.75, L3, L3.5, and 
main memory, are described in more detail in Section 4.3. 

 
L2-cache Service Site Load Latency 

L2 cache 12 cycles 
L2.5 cache 73 cycles 

L2.75 cache 96 cycles 
L3 cache 112 cycles 

L3.5 cache 143 cycles 
Main memory 320 cycles 

Table 1. Load latencies of the  
eight-processor p690 

 
With respect to TLB misses, the rate of TPC-C TLB 

misses is reduced by mapping the database buffer pool 
using 16MB “large pages” rather than standard 4KB 
pages. Additionally, unlike cache and TLB misses, 
address-only coherence operations do not involve 
movement of data. For example, if a cache line is held 
shared by two processes on different POWER4 chips, 
when one processor stores into the cache line, an address-
only operation is initiated to ensure that other caches 
invalidate copies of the shared data. Because data is not 
transferred for these operations, their impact on the 
performance of POWER4-based systems tends to be 
small.  

Finally, uncached memory accesses for I/O via loads 
and stores have very high latency, which is driven by the 
fact that many of these operations must pass all the way 
through to a PCI adapter for acknowledgement. Luckily, 
most of the actual I/O traffic is handled by DMA, which 
is asynchronous to processor execution. Accordingly, the 
high-latency uncached accesses tend to be fairly 
infrequent. 

Why TPC-C? TPC-C is a transaction-processing 
application that is understood fairly well and is 
representative of commercial workloads of interest to 
IBM customers. Additionally, preliminary data analysis of 
information concerning the data access streams generated 
on the p690 by TPC-C L2-cache data-load misses [7] 
indicates that there is opportunity for performance 

improvement. It indicates that accesses to particular areas 
of the address space, e.g., working storage, the buffer 
pool, and components of the operating system, may be 
targets for this performance improvement. 

Why sampled performance event traces? Historically, 
cache analysis is done using traces generated by hardware 
or by software architecture simulation, for example, 
SimOS [10]. As systems become faster and caches 
become much larger, it is very difficult to collect traces 
that are long enough to accurately model the memory 
hierarchy. In addition, for workloads like TPC-C, system 
simulation requires as much disk space as the workload 
(multiple terabytes by today’s standards), and usually 
more memory. Also, the time to simulate a large 
multiprocessor system is intimidating. Alternatives to 
tracing are a cache simulator built in hardware and 
connected to a running system [8], and sampled event 
traces, the alternative that we adopted. 

 
2. Motivation 
 
In this paper, we demonstrate how analysis of sampled 
event traces, facilitated by a powerful and flexible 
performance evaluation framework, described in Section 
5.1 and pictured in Figure 14 at the end of the paper, can 
be used to identify (1) the areas of the address space, 
down to a granularity of 128B cache lines, that are 
referenced repeatedly and generate L2-cache data-load 
misses that are resolved in high-penalty areas of the 
memory hierarchy and (2) the addresses of instructions 
that access these “hot” data areas.  
In the case of the TPC-C benchmark executed on eight- 
and 32-processor configurations of the p690, this analysis 
indicates that a fairly large number of L2-cache misses 
are resolved at local L3 caches and main memory, where 
latencies are relatively high in comparison to load-hit 
latencies at local and remote L2 caches and remote L3 
caches, respectively. The resolution of these misses at 
high-penalty levels of the memory hierarchy does not 
seem intuitive for two reasons. First, the p690 
architecture, further described in Section 4.2, allows L2-
cache misses generated by a processor to be serviced by 
any other L2 cache in the system. Since each processor 
has its own defined memory hierarchy, including an L2 
cache that it physically shares with only one other (chip 
co-resident) processor, the fraction of accesses going to 
the L3 cache, or beyond, should be small. In addition, 
note that in the 32-processor system there are 256GB of 
physical memory in use and 44.8MB of L2 cache. 
Second, it has been demonstrated that the data-load 
addresses for these L2-cache misses are not distributed 
uniformly throughout the address space, but rather tend to 
cluster in relatively small regions of the address space [7]. 
Such clustering indicates locality of reference that, if 
exploited, should lead to hits in the upper-level caches.  
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Given the identification of the reasons why L2-cache 
misses are resolved at high-penalty levels of the p690 
memory hierarchy, it may be possible to modify the 
application, operating system, and/or hardware to 
alleviate or at least decrease them. Research in progress, 
facilitated by our performance evaluation framework, is 
aimed at identifying the reasons. Information gathered 
thus far suggests the following: (1) data sharing patterns, 
especially within the address space allocated to working 
storage, the buffer pool, and components of the operating 
system, (2) related cache invalidations initiated by the 
cache-coherence protocol, and (3) process migration.  

The remainder of the paper, which discusses this 
work in more detail, is organized as follows. Section 3 
presents related research. Section 4 focuses on data 
collection, describing the workload under study, the 
platform from which the data was collected, the events of 
interest, and the tools used to collect the data. Section 5 
targets data analysis, describing the tools and 
methodology used to perform the analysis, as well as the 
results of the analysis. Section 6 presents conclusions and 
future work. 

 
3. Related Research  
 
Related research focuses on two aspects of this study: the 
use of event trace sampling and the performance of TPC-
C on other multiprocessor platforms. Performance 
monitor event traces captured via performance counters 
have been used to characterize application behavior in the 
past. Barroso et al. [2] use event traces, captured by tools 
such as IPROBE and DCPI (Digital Continuous Profiling 
Infrastructure) [1,3], to characterize applications, 
including OLTP workloads, executed on a four-processor 
AlphaServer 4100 using Oracle 7.3.2. And, Keeton et al. 
[5] use performance monitors to analyze the behavior of 
an OLTP workload executed on a four-processor Pentium 
Pro-based server. Both explore the performance effects of 
architectural modifications. In [2] this is done by 
workload characterization, accomplished by source code 
instrumentation coupled with simulation methodologies 
and in [5] this is accomplished by physically changing the 
hardware. Desikan et al., like Barroso et al., also use the 
DCPI tool [1] to check the reliability of an Alpha 21264 
simulator by sampling certain events that are used to 
derive performance measurements for the Compaq DS-
10L workstation. 

With respect to the performance of TPC-C, Tsuei et al. 
[11] study TPC-C executed on an unidentified Sun 
Microsystems 16-processor shared-memory 
multiprocessor with 4GB of memory using IBM’s DB2 
for Solaris version 2.1.1, while Leutenegger and Dias [6] 
study it executed on an unidentified multiple-node 
distributed system. Both investigate TPC-C’s buffer hit 
rate. Our initial results [7] and those presented in this 

paper, which indicate that load accesses are concentrated 
in certain memory regions and within those regions 
smaller defined areas are heavily accessed, corroborate 
the study of Leutenegger and Dias, which also 
investigates the memory access characteristics of TPC-C 
and show that data access skew, i.e., non-uniform data 
memory access, exists at the tuple and page levels. 

Unlike the research described above, Itzkowitz, et al. 
[4] discuss and demonstrate the use, on a dual 900 MHz 
UltraSPARC-III Cu Sun Fire 280R™ system, of 
extensions to the Sun ONE Studio™ compilers and 
performance tools that provide information related to the 
data space of an application. This information, gathered 
either by clock or hardware-counter profiling, provides 
per-instruction details of memory accesses in the 
annotated disassembly and provides data aggregated and 
sorted by object structure types and elements. Compiler-
generated padding introduces minor inaccuracies and 
collection perturbation can be controlled through 
configuration of the processors’ counter overflow rates. 
Future work described by Itzkowitz, et al., i.e., analysis of 
event data addresses by machine entity, e.g., memory 
segment, page, etc., is presented in this paper but, of 
course, our performance evaluation framework and 
compute platform are used to perform the analysis. 

The major differences between our work and the 
related research described above are the scale of the 
systems and the methodology used. Itzkowitz, et al. use a 
two-processor system, Barroso et al. and Keeton et al. 
each use a four-processor system, and Tsuei et al. use a 
16-processor system, while we analyze performance data 
obtained from both eight- and 32-processor systems. In 
addition, our work attempts to extract information about 
the dynamic behavior of a large, complex application with 
a considerably simpler, more powerful, faster, and, in 
some cases, more precise methodology. Our methodology 
does not require source code instrumentation and it is not 
restricted to memory access behavior analysis. Our 
performance evaluation framework provides numerous 
ways to analyze sampled event traces. A description of 
the type of analyses that can be performed is presented in 
Section 5.  
 
4. Data Collection 
 
This section provides information on the data collected 
for this study. First, we describe the workload, TPC-C, 
and the platform on which TPC-C was executed and 
monitored. Next, we discuss the events of interest and the 
methodology used to collect the sampled event traces of 
the data access streams produced by L2-cache data-load 
misses.  
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4.1. Workload: TPC-C 
 

To collect the data used in this study, a fully-implemented 
TPC-C benchmark drives a commercially-available 
relational database, which was compiled using the IBM C 
for AIX version 5 compiler. The TPC-C (Transaction 
Processing Performance Council Benchmark C) 
workload [13] is a well-known benchmark that emulates 
read-only and update-intensive transactions found in 
complex on-line transaction processing (OLTP) 
application environments [11]. It has been used widely in 
the database server industry as a basis of server 
performance analysis and platform comparison.  
 
4.2. Compute platform: IBM eServer pSeries 690  

 
IBM’s eServer pSeries 690 family of symmetric 
multiprocessor (SMP) architectures includes eight- and 
32-processor configurations [14,15]. The operating 
system for these configurations is AIX version 5.2. The 
MultiChip Module (MCM), the building block of the 
architecture, contains four chips. Each chip is comprised 
of two 1.3 GHz POWER4 processors and, thus, in 
general, each MCM contains eight processors. 
Accordingly, the eight- and 32-processor configurations 
normally are comprised of one and four MCMs, 
respectively. In contrast, the eight-processor p690 
configuration used in this study is comprised of two 
MCMs – each MCM contains four “single core good” 
chips, i.e. only one functional processor per chip, instead 
of the typical eight-processor configuration that only 
contains one MCM with eight functional processors.  
Note that, as expected, the 32-processor p690 
configuration used in this study consists of four MCMs, 
each with all eight functional processors. 

For the p690s under study,  
 

• each CPU has a 64KB L1 instruction cache and a 
32KB L1 data cache;  

• each chip has a 1.44MB L2 unified cache shared 
by the two processors on the chip;  

• the four chips/eight processors on an MCM share 
a 128MB L3 unified cache; and 

• main memory is 128GB (256GB) for the eight- 
(32-)processor p690. 

 
The L1 and L2 caches have 128B lines, while the L3 

cache has 512B lines. Data private to and shared by 
processes are managed via the p690 cache coherence 
protocol. As illustrated in Figure 2, an L2-cache miss for 
either type of data generated by a processor in an MCM 
can be serviced at five different levels of the memory 
hierarchy: 

 

1. another L2 cache within the same MCM, the L2.5 
level;  

2. an L2 cache in another MCM, the L2.75 level; 
3. the MCM’s L3 cache, the L3 level; 
4. an L3 cache in another MCM, the L3.5 level; and 
5. main memory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two (double core good) MCMs of  
32-processor p690 

 
4.3. L2-cache miss events 
 
L2-cache miss events are classified according to the level 
at which they are resolved and the state (with respect to 
the cache coherency protocol) of the block at the 
resolution site. Note that the load latencies associated 
with each of the L2-cache miss events described below is 
presented in Table 1.   

Misses serviced at the L2.5 level generate one of two 
types of events: an L2.5-shared (L25_SHR) or L2.5-
modified (L25_MOD) hit event. An L25_SHR denotes 
that, although the requested block may reside 
simultaneously in more than one L2 cache, it is resolved 
by a local L2 cache, i.e., one associated with the MCM 
containing the processor that generated the miss. An 
L25_MOD denotes that the requested modified block is 
exclusively owned by and, thus, resides in only one L2 
cache, a local L2 cache; this L2 cache contains a more 
recent version of the block than is in the backing physical 
memory.  

Similarly, L2-cache misses serviced at the L2.75 
level of the memory hierarchy generate either an L2.75-
shared (L275_SHR) or L2.75-modified (L275_MOD) hit 
event. The former denotes that the requested block resides 
in more than one L2 cache but not in a local L2 cache, 
rather in an L2 cache on another MCM, i.e., a remote L2 
cache. The latter denotes that the requested block resides 
in only one L2 cache, a remote L2 cache.  
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At the L3 level, the cache-hit events are called L3-
shared, L3-modified, L3.5-shared, and L3.5-modified. An 
L3-shared hit event denotes that the requested block may 
reside in more than one L3 cache and is resident in the 
local L3 cache, i.e., the one associated with the MCM of 
the processor that generated the miss. An L3.5-shared hit 
event denotes that the requested block resides in more 
than one L3 cache but not in the local L3 cache. An L3-
modified hit event denotes that the requested block resides 
in only one L3 cache, the local L3 cache. An L3.5-
modified hit event denotes that the requested block resides 
in only one L3 cache, a remote L3 cache. 

For this study we monitored cache hit events as well 
as main memory hit events (MEM). However, instead of 
monitoring the four events associated with the L3 level of 
the memory hierarchy, only two events were monitored: 
L3 and L3.5 hits (L3 and L35). Additionally, only the 
L25_MOD and the L275_MOD hit events are analyzed 
due to the unmanageable size of the event traces 
associated with the L25_SHR and L275_SHR hit events.  

 
4.4. Event trace sampling methodology: PMU, 
eprof, and trcrpt 
   
On selected pSeries hardware models, through the use of 
tools such as eprof and trcrpt, described in this section, 
trace information for specified events can be collected. 
These tools were used in this study to collect one event 
trace from the eight-processor p690 and one from the 32-
processor system. The trace information for the events 
described in Section 4.3 was gathered during a 10-minute 
interval of the steady-state execution of TPC-C. As 
described below, sample information was recorded upon 
the periodic occurrence of the event being monitored. The 
information collected during each sample includes the 
timestamp which indicates when the event occurred, the 
effective instruction and data addresses associated with 
the event, and the CPU, process, and thread IDs of the 
entity that triggered the event.  

To collect data on various events that occur within 
the processor, such as the completion of a load instruction 
or an L2 instruction cache miss, and, thus, provide 
valuable performance information, the POWER4 
microprocessor includes performance monitoring 
facilities. The performance monitor unit (PMU) includes 
eight counters that permit up to eight concurrent events to 
be monitored. In addition to recording aggregate counts 
for either a section of code or an entire program, the PMU 
is capable of capturing instruction and data addresses 
associated with events. This is of particular value when 
event-based sampling is desired.  

Special-purpose registers, only accessible via the 
operating system through a programming interface that 
accesses the registers through a kernel extension, control 
the state of the counters. This interface permits, among 

other things, the specification of the events to be 
monitored and execution points at which to start and stop 
counters and at which software is to retrieve results. 

Event-based sampling, which is important for long-
running programs with extremely large numbers of 
events, like TPC-C, is provided by the PMU and 
associated software via user-selected trigger events and 
Performance Monitor (PM) interrupts. As is exemplified 
below, the former can be used to trigger the increment of 
a counter and the latter can be used to write PMU data to 
a file. The AIX operating system contains a time-based 
profiling tool called tprof. In addition to tprof, there exists 
an in-house IBM tool, eprof, which uses tprof 
functionality for data collection and reduction, and is tied 
to the PMU on selected pSeries hardware models.  eprof 
is used to program the PMU to sample hardware 
countable events at a defined rate.   

 

Table 2. Event sample counts 
 
For this research, we employed eprof and event-

based sampling, using eprof’s default sampling rate of 
approximately 100 events per second per CPU. In this 
way, using the default sampling rate, if the event sampled 
is processor cycles, time-based sampling is accomplished 
and a sample is collected every 10 milliseconds. In 
contrast, if the event is one that occurs at a variable rate, 
e.g., cache misses, and if the rate of event occurrence is 
greater than the default sampling rate, then eprof adjusts 
the rate at which samples are collected so that the 100 
samples per CPU per second collection rate is 
approximated. Accordingly, the interval between PM 
interrupts can be variable, and because some events occur 
more often than others, it follows that a different number 
of samples are collected for different types of events 
despite the adoption of the default sampling rate and a 10-
minute workload. The size of the collected data set for 
each event of interest is given in Table 2. 

When an event is sampled, i.e., at each increment of 
the performance counter, the instruction address and data 
address (if applicable) are captured by the PMU, and a 
PM interrupt is delivered. The interrupt causes the sample 
information to be extracted from the PMU and an AIX 
trace hook to be generated and added to the trace. The 
AIX trace hook describes the associated trace record. 

Event Sample Count 
 8-processor 32-processor 
L2 312,252 259,716 
L25_MOD 313,431 197,592 
L25_SHR 748,064 n/a 
L275_MOD 126,376 167,485 
L275_SHR 835,339 n/a 
L3 301,791 170,910 
L35 121,274 172,008 
MEM 272,835 262,941 



6 

Using the AIX trace allows samples to be either written to 
disk or collected via a daemon that can summarize the 
data. The profiling also enables selected AIX trace hooks, 
such as those related to dispatching, so that the sampled 
events can be correlated with the processes/threads.  If 
AIX trace is used to collect events in a file, the file can be 
formatted with the trcrpt utility to create a time-stamped 
text file of events.  For this study, we used trcrpt as well 
as a program that reads the formatted trace and extracts 
summary information.   

 
5. Data Analysis 
 
This section describes the tools used to perform the data 
analysis, the partitioning of the address space, and some 
results of the data analysis.  
 
5.1. Methodology – Performance Evaluation 
Framework 
 
As mentioned in Section 4.4, the IBM tool trcrpt was used 
to post-process the sampled AIX event trace generated by 
eprof. The specified output of trcrpt includes for each 
sampled event the effective instruction and data 
addresses, the CPU, process, and thread IDs, and the 
timestamp. As part of our performance evaluation 
framework, depicted in Figure 14 at the end of the paper, 
a set of Java tools processes each sample and stores it in a 
MySQL database according to the workload being 
monitored, the number of processors used to execute the 
workload, and the event being sampled. For example, 
database tpcc_32_g48c1 stores the sampled event trace 
for the TPC-C benchmark executed on a 32-processor 
system associated with the L2-cache data-load misses 
resolved in local L3 caches (g48c1 identifies a local L3 
hit event). Each database consists of 12 tables that store 
information related to the experiment itself, e.g., a 
description of the workload and compute platform, and 
data contained within the samples themselves. Once the 
sampled events are loaded into their corresponding 
databases, a second set of tools in our framework is used 
to query the databases and produce results of the queries, 
i.e., default and customized reports, in the form of 
formatted text files. These text files are transformed into 
graphs via a spreadsheet application with built-in 
graphing capabilities.  In this way, the performance 
evaluation framework facilitates the analysis of the 
sampled event traces.  

Storing the sampled performance monitor event 
traces in databases facilitates data analysis and provides 
numerous ways to easily examine and explore the data. 
Accordingly, the analysis and results presented in this 
paper is only a sample of the kind of information that can 
be obtained using this methodology.  The potential of our 
performance evaluation framework is exemplified in [9] 

and [12], which describe different kinds of analyses that 
can be conducted using our methodology and the same 
sampled event traces used in this study.  

Even though the work presented in this paper studies 
the behavior of a commercial application, i.e., the TPC-C 
benchmark, the methodology can be applied to study the 
memory subsystem behavior of any kind of application.  
Furthermore, it is not restricted to Power-based systems; 
it can be applied to any system with the capability of 
producing sampled event traces. 

 
5.2. Data Partitioning 
 
The address space for TPC-C ranges from 
0x0000000000000000 to 0xF10000B6FFFFFFFF and is 
partitioned as illustrated in Table 4, which appears at the 
end of the paper. The segment size is 256MB, while each 
page in a segment is 4KB. As can be seen from the table, 
the different memory regions are identified by  address 
ranges, e.g., the range used for lock instrumentation 
begins at 0xF100009E00000000 and ends at 
0xF100009E0fffffff. 

The TPC-C application used in this study is based on 
a process model. The process model allows for a private 
memory region per process, as well as a shared memory 
region that stores global database information, i.e., the 
database's state information and buffer pool. The buffer 
pool is the largest consumer of physical memory; it 
contains unmodified data, currently on disk, as well as 
data that has been modified by transactions and is not yet 
updated on disk. Since the size of the database is much 
larger than physical memory and the pattern of access to 
disk data is unpredictable, disk I/O is continuous. 
Incoming database transactions are passed off to idle 
processes for service. The number of processes available 
for processing transactions is based on the number needed 
to achieve nearly 100% CPU utilization. Because most 
transactions experience some number of disk I/Os, many 
transactions must be executing concurrently to maximize 
CPU utilization. 

 
5.3. Results 
 
As mentioned above, the goal of this analysis is to 
pinpoint the sources of performance degradation 
associated with data references. This is done in three 
phases.  
 

Phase 1. The platform-specific causes of performance 
degradation are identified. For example, as is true in 
this study, it may be the case that a high number of L2-
cache misses are satisfied by local L3 caches or main 
memory, rather than by other, local or remote, L2 
caches.  
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Phase 2. The concentrated areas of locality of 
reference are identified. For example, references may 
be concentrated in the buffer pool. 
 
Phase 3. The subroutines, instructions, and/or data 
structures associated with these areas of locality of 
reference are identified. For example, a lock variable 
may be the target of a significant number of these 
references. (Note that Phase 3 is in progress.)  
 

5.3.1. Phase 1. Figure 3 presents, for both the eight-
processor, i.e., 8-way, and 32-processor, i.e., 32-way, 
p690, sampled performance monitor event counts that are 
associated with L2-cache data-load misses. These hit 
event counts show the distribution of L2-cache data-load 
misses across the resolution sites of the p690 memory 
hierarchy. Recall that in this architecture, L2-cache 
misses can be resolved by a local (on-MCM) L2 cache 
(L2.5 hit), a remote (off-MCM) L2 cache (L2.75 hit), the 
local L3 cache (L3 hit), a remote L3 cache (L3.5 hit), or 
main memory (MEM hit). This data, which is similar for 
the eight-processor, two-MCM p690 and 32-processor, 
four-MCM system, identifies the platform-specific causes 
of performance degradation associated with L2-cache 
data-load misses, i.e., local L3 caches and main memory 
dominate as the levels of the p690 memory hierarchy 
where L2-cache data-load misses are resolved. 
 

Figure 3. Distribution of sampled hit events 
among TPC-C L2-cache data-load miss 

resolution sites of the p690 memory hierarchy 
 
5.3.2. Phase 2. During Phase 2, the analysis hones in on 
the concentrated areas of locality of reference. The 
analysis progresses from a level of the memory hierarchy 
to a region of the address space, then to segments, pages, 
and, finally, cache blocks. From cache blocks, the 
analysis can continue to instructions, data structures, 
processes, CPUs, etc.  
 
Regions of the Address Space – Local L3 Caches: As 
shown in Figure 3, data-load hits in local L3 caches, 
rather than hits in either local or remote L2 caches, appear 

to be one of the main factors affecting the performance of 
TPC-C running on the p690. Thus, we first explore the 
reason for this.  

Figures 4 and 5 depict, for the eight- and 32-
processor systems, respectively, the L3-cache hit 
percentages for the eight most-referenced regions of the 
TPC-C address space; note that the eight regions are the 
same for both data sets. Due to errors during the 
collection of the sampled event traces for the L2-cache 
data load misses that are resolved in the L3 cache for the 
32-processor p690 configuration, the event traces for only 
19, rather than 32, processors were successfully collected.  
As such, the 32-processor data set is based on only 19, 
rather than 32, event traces. Despite this, the two data sets 
expose similar data-load behavior in the L3 caches. 

Figure 4. Distribution of TPC-C local L3-cache 
data-load hits across address regions of the 

eight-processor p690 
 

Figure 5. Distribution of TPC-C local L3-cache 
data-load hits across address regions of the 32-

processor p690 (traces of only 19 CPUs are 
represented) 

 
The light-colored Hit_% bar for a region is 

calculated by dividing the number of references to the 
region by the total number of references to the level of the 
memory hierarchy under study, in this case, local L3 
caches. By examining the region Hit_% bars, we see that 
for both the eight- and 32-processor systems the 
Data,BSS,Heap and buffer pool regions clearly are the 
hardest hit at this level of the hierarchy. 
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Distribution of Memory Data Load Hits
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A region’s dark-colored bar, the Unique_cache_line 
bar, indicates the number of unique cache lines 
referenced in the region; it gives an idea of the density of 
the data loads, i.e., the locality of reference, for the 
region. In order to determine the cache block that is 
accessed by a particular data address, the address is 
partitioned into a tag, index, and offset using the L3 cache 
configuration, i.e., a 128MB eight-way associative cache 
with 512B blocks/lines, i.e., four 128B sectors. (Note that 
the L2-cache line size is 128B.)  

With respect to locality of reference, four of the eight 
regions, M-BUF, Buffer Pool, Text, and Kernel exhibit 
the same behavior in both systems and all exhibit good 
locality of reference. For example, for both systems the 
Unique_cache_line bar for the buffer pool region is a 
relatively small portion (less than one-third) of the size of 
its corresponding Hit_% bar. This indicates that a 
majority of the local L3-cache hits associated with the 
buffer pool reference a relatively small number of cache 
lines and, thus, exhibit relatively good locality of 
reference.  

In general, for the other four regions, the eight-
processor system exhibits better locality of reference than 
the 32-processor system. In fact, the eight-processor 
system exhibits this behavior for the entire address space 
comprised of the eight regions depicted in Figure 4. That 
is, if the Unique_cache_line bars for the eight regions are 
aggregated and compared to an aggregated Hit_% bar, the 
aggregated Unique_cache_line bar is less than one-third 
the size of the aggregated Hit_% bar. This indicates that 
in the eight-processor system the majority of L2-cache 
data-load misses resolved in local L3 caches are to data 
previously referenced and pre-maturely evicted from L2 
caches. If the evictions are due to false sharing or process 
sharing that can be localized to an MCM, then this 
behavior would be considered a mismatch between the 
application and the architecture and would present a target 
for potential performance improvement.     

In contrast, in the 32-processor system, data-load hits 
to the “other” four regions, i.e., KERN_HEAP, Ublock & 
Kernel Stack, Stack, and Data,BSS,Heap, are more 
dispersed. This is illustrated by the large overlap of their 
Unique_cache_line bars and Hit_% bars, which indicates 
that a relatively large number of the referenced cache 
lines are only referenced once or twice. Thus, as is 
exemplified by the Data,BSS,Heap region, references to 
this region in the local L3 caches of the 32-processor 
system display worse locality of reference than in the 
eight-processor system. 

 
Regions of the Address Space – Main Memory: Since 
data-load hits in main memory also appear to be a main 
factor affecting the performance of the TPC-C benchmark 
running on the p690, next we compare the distribution of 
memory data-load hits among the eight most-referenced 

regions with that of L3-cache data-load hits. Figures 6 and 
7 depict the distribution of memory data-load hits in the 
eight-and 32-processor systems, respectively. Comparing 
the distributions of memory and L3-cache data-load hits, 
we see contrasts in locality of reference for most of the 
regions of the address space. For example, the data loads 
that are targeted at the buffer pool and miss the local and 
remote L3 caches no longer exhibit the same tight 
reference pattern exhibited by the data loads that hit in 
local L3 caches, i.e., the memory hits exhibit a larger 
footprint than the local L3-cache hits. This is illustrated in 
Figures 6 and 7 by the buffer pool Unique_cache_line bar 
being a large percentage of its Hit_% bar, meaning the 
data-load hits to the buffer pool are distributed across a 
relatively large number of cache lines. The same behavior 
is exhibited by most of the other address regions of both 
the eight- and 32-processor systems. If the memory hits 
are the result of compulsory misses, then this indicates 
that the application is well matched to the architecture.  
 

Distribution of Memory Data Load Hits
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Figure 6. Distribution of TPC-C main memory 
data-load hits across memory regions of the 

eight-processor p690 

Figure 7. Distribution of TPC-C main memory 
data-load hits across memory regions of the 

32-processor p690  
 

Because the data-load hits in local L3 caches display 
better locality of reference when compared to those that 
hit in main memory, we now refine the analysis and study 
the references associated with L2-cache data-load misses 
that are resolved in local L3 caches, i.e., L3 hit events.  
Considering that Buffer Pool and Data,BSS,Heap are the 
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Distribution of L3 Data Load Hits
 in Buffer Pool by Segment
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two most frequently referenced address regions in the L3 
caches and the buffer pool region displays a more 
concentrated locality of reference than Data,BSS,Heap,  
the analysis now focuses on it. 

 
Regions of the Address Space – Segments: For the 10-
minute duration during which samples were collected, 
302 and 570 unique segments in the buffer pool region 
were touched in the eight- and 32-processor p690s, 
respectively. Of the 302 (570) segments, four (six) 
account for over 90% of the buffer pool data-load activity 
in local L3 caches. Figure 8 (9) shows the four (six) 
segments and their respective Hit_% and 
Unique_cache_line bars.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Distribution of TPC-C local L3-cache 
data-load hits across segments of Buffer Pool 

of the eight-processor p690 
 

Figure 9. Distribution of TPC-C local L3-cache 
data-load hits across segments of Buffer Pool 

of the 32-processor p690 
 
In these figures, we see that the majority of the hits 

reference a relatively small number of cache lines. In 
contrast, in the eight-processor system segment 
0x070000005 and in the 32-processor system segments 
0x07000039C, 0x070000336, and 0x070000009 appear to 
have been referenced in a much more uniform manner, 

i.e., the Unique_cache_line bar is a larger percentage of 
the corresponding Hit_% bar.  

Note that because the 32-processor p690 consists of 
four MCMs, while the eight-processor system consists of 
two MCMs, the amount of physical memory available in 
the memory hierarchy of the 32-processor system is larger 
than that of the eight-processor system. As such, the 
amount of physical memory allocated to the buffer pool 
address region differs. Consequently, the number of 
segments touched, as well as those accounting for the 
majority of data-load references, during the 10-minute 
observation period is significantly larger in the 32-
processor system. 

 
Regions of the Address Space – Pages: Continuing to 
hone in on the suspect causes of performance degradation, 
we next take a closer look at a buffer pool segment 
frequently referenced in the local L3 caches of both the 
eight-and 32-processor p690s. Examining Figures 10 and 
11, which plot the distribution of local L3-cache data-load 
hits across the pages of a TPC-C buffer pool segment for 
the eight- and 32-processor systems, respectively, we see 
very dense reference patterns. The dark-colored 
Total_Loads bar for a page represents the number of 
references to the page, while the Unique_Cache_Line bar 
indicates the number of unique cache lines referenced 
within the page.   
Figures 10 and 11 show the pages of the 65,536-page 
segment that 70% of the L3-cache data loads reference. 
Although the range of targeted pages are different for the 
eight- and 32-processor p690s, in both cases 
approximately 200 pages are the source of these data 
loads. In addition to this clustering of hot pages, we see 
that each page exhibits, as did the segments in the buffer 
pool region, a very dense reference pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Distribution of TPC-C local L3-cache 

data-load hits across pages of a Buffer Pool 
segment of the eight-processor p690  
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Figure 11. Distribution of TPC-C local L3-cache 

data-load hits across pages of a Buffer Pool 
segment of the 32-processor p690  

 
Regions of the Address Space - L3 Caches: From the 
page-related data just presented, one would expect that 
within a page of the studied buffer pool segment we 
would see heavily-referenced cache lines. Figures 12 and 
13, which illustrate the distribution of buffer pool data-
load hits across cache lines of a hard hit page of the 
studied segment in the eight- and 32-processor p690s, 
respectively, show just that. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 12. Distribution of TPC-C local L3-cache 
data-load hits across the cache lines of a hard-

hit Buffer Pool page of the eight-processor p690 

Figure 13. Distribution of TPC-C local L3-cache 
data-load hits across the cache lines of a hard-
hit Buffer Pool page of the 32-processor p690 

Referring to Figures 12 and 13, it is quite clear that in 
both the eight- and 32-processor systems only a handful 
of cache lines are the target of a majority (greater than 
70%) of the local L3-cache data-load hits recorded during 
the 10-minute monitoring interval. Note that the y-axes of 
Figures 12 and 13 denote the 32 128-byte sectors (there 
are four sectors per 512-byte cache line) that comprise a 
4KB section of a 16MB page of the buffer pool. In this 
way, using our performance evaluation framework, we 
can identify down to the cache-line level, sources of 
performance degradation in p690 systems. 
 
Regions of the Address Space – Instructions: 
Additionally, our performance evaluation framework 
allows a user to specify a list of routines and obtain a 
report that displays data-load hit percentages and the 
amount of memory touched for regions of the address 
space referenced by the routines. For this study, the lock 
routines and atomic operations of Table 3 were specified 
since they were potentially responsible for data loads 
resolved in the lower levels of the memory hierarchy.  

The data retrieved from analyzing the event traces 
indicate that only two routines from the ones listed above 
had any notable impact on performance: disable_lock and 
simple_lock. The data referenced by these routines was 
retrieved from a remote cache (via an L3.5 hit) and make 
up the biggest portion of data-load hits that are associated 
with lock and atomic operations. However, these 
percentages are insignificant, 1.1% and 2.2%, 
respectively, and, therefore, do not contribute greatly to 
performance degradation with respect to L2-cache misses.  

 
Lock routines Atomic operations 
simple_lock fetch_and_add 
simple_lock_ppc fetch_and_add_h 
simple_unlock fetch_and_add_h 
disable_lock fetch_and_or 
unlock_enable fetch_and_orlp 
simple_unlock_mem fetch_and_and 
unlock_enable_mem fetch_and_andlp 
Table 3. List of routines under analysis 

 
6. Conclusions and Future Work 
 
The work presented in this paper demonstrates the 
usefulness of p690 sampled performance monitor event 
traces and the power and flexibility of the performance 
evaluation framework that we developed to analyze them. 
Since the traces are stored in databases, they can be 
analyzed easily via queries to the database management 
system, producing reports and graphs that allow large 
amounts of information to be gleaned from the traces.  

In the paper sampled event traces collected from 
eight- and 32-processor configurations of IBM’s p690 
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executing TPC-C are analyzed to identify targets for 
performance improvement. The analysis focuses on 
memory subsystem performance, in particular, high-
penalty L2-cache data-load misses, and shows how the 
framework can be used to ascertain reasons why a 
majority of these misses are resolved in p690 local L3 
caches and main memory, which carry high load-hit 
latencies in comparison to L2-cache load latencies. The 
analysis is continually refined, identifying first the 
address regions most heavily referenced by L2-cache 
data-load misses, and then the most heavily referenced 
segments, pages, and cache lines.    

Specifically, the analysis presented in the paper 
shows that the eight- and 32-processor data is very 
similar. Both indicate that the buffer pool and 
Data,BSS,Heap regions of the TPC-C address space 
dominate as the effective data address regions for data 
loads satisfied in local L3 caches and main memory. 
Furthermore, for those data loads satisfied in local L3 
caches, the segments, pages, and cache blocks that 
comprise the buffer pool exhibit a rather dense 
distribution. In addition, using our framework, we are 
able to confirm that routines associated with lock 
variables and atomic operations do not play a dominant 
role in the cause of L2-cache data-load misses. In fact, the 
percentage of these functions that are attributed to L2-
cache data-load misses is so small that we did not even 
present the distribution of these misses across the address 
space. 

Although the presented analysis falls short of 
identifying application sources of performance 
degradation, this analysis prompted modifications to the 
operating system’s management of the buffer pool region, 
which yielded observable performance improvements. 
Due to the proprietary nature of the application and 
operating system used in this research, the specific 
sources of performance degradation and associated 
modifications that were implemented are not described in 
this paper. Currently, we are working on obtaining 
sampled event traces of publicly available benchmarks, 
such as RUBiS and Stock-Online [16], which will allow 
us to not only publicly identify targets for possible 
performance improvement, but also uncover and present 
the application-specific sources of performance problems 
and associated solutions via modifications to the 
application source code that enhance performance. 

Future research also will attempt to quantify the 
accuracy of sampled event traces and will enhance the 
performance evaluation framework.      
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Address Space Range 
Kernel 0x000000000 - 0x000000001 
Proc. Priv., shmat/mmap & Loader Use 0x000000002 - 0x00000000F 
Text 0x000000010 - 0x000000010 
Data,BSS,Heap 0x000000011 - 0x06FFFFFFF 
Buffer Pool 0x070000000 - 0x07FFFFFFF 
Private Load 0x080000000 - 0x08FFFFFFF 
Shared Library Text 0x090000000 - 0x090010009 
Shared Data 0x09001000A - 0x09001000A 
Reserved 0x0A0000000 - 0xEFFFFFFFF 
Stack 0x0F0000000 - 0x0FFFFFFFF 
U-Block and Kernel Stack 0xF00000002 - 0xF00000002 
DATA 0xF10000004 - 0xF10000004 
PTA 0xF10000005 - 0xF10000005 
DMAP 0xF10000006 - 0xF10000006 
AME 0xF10000007 - 0xF1000000A 
SCB 0xF1000000B - 0xF100000BA 
SWHAT 0xF100000BB - 0xF1000013A 
SWPFT 0xF1000013B - 0xF1000083B 
Reserved 0xF1000083C - 0xF10000877 
PROC_THRD 0xF10000878 - 0xF1000089B 
M_BUF 0xF1000089C - 0xF1000099F 
LDR_LIB 0xF100009A0 - 0xF100009BF 
JFS_SEG 0xF100009C0 - 0xF100009C0 
JFS_LKW 0xF100009C1 - 0xF100009CF 
LFS_SEG 0xF100009D0 - 0xF100009DF 
LOCK_INSTR 0xF100009E0 - 0xF100009E0 
KERN_HEAP 0xF100009E1 - 0xF10000AE0 
MP_DATA 0xF10000AE1 - 0xF10000AF0 
GLOB_EXTREG 0xF10000AF1 - 0xF10000B6F 

Table 2. TPC-C address space 
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Figure 14. Performance evaluation framework 
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