
Memory Performance Profiling via Sampled Performance Monitor Event Traces

Diana Villa, Jaime Acosta, and Patricia Teller
The University of Texas at El Paso
Department of Computer Science

demarquez@utep.edu, jacosta@cs.utep.edu, and pteller@cs.utep.edu

Bret Olszewski Trevor Morgan
 IBM Corporation-Austin Exxon/Mobil

 breto@us.ibm.com trevormorgan31@hotmail.com

Abstract

Memory performance can be studied, process behavior
can be characterized, and application performance can
be improved through the use of sampled performance
monitor event traces. As an example, this paper
demonstrates how sampled traces of the TPC-C
benchmark executed on eight- and 32-processor
configurations of the IBM eServer pSeries 690 (p690) are
analyzed to identify the resolution sites of level-two (L2)
cache data-load misses and study the heavily-hit
resolution sites, i.e., level-three (L3) caches and main
memory, with the goal of recognizing the heavily-hit
regions of the application’s address space, segments,
pages, cache blocks, routines, instructions, and data
structures. Preliminary data analysis of the traces, using
a powerful and flexible performance evaluation
framework, indicates that data-load hits at heavily-hit
resolution sites have high locality of reference within
regions of the address space, segments, and pages.
Specifically, the buffer pool and heap regions of the TPC-
C address space dominate as the effective address regions
for data loads satisfied by local L3 caches and main
memory. Furthermore, for the data loads satisfied by
local L3 caches, the segments, pages, and cache blocks
that comprise the buffer pool exhibit a dense distribution.
Work continues to characterize related process behaviors
as well as other workloads, and to define ways to remedy
the performance degradation associated with L2-cache
data-load misses serviced at high-penalty levels of the
p690 memory hierarchy.

1. Introduction

In the long run, the research reported in this paper is being
performed to answer the following question: “As
processor frequency and memory size increase, can we
generate the address traces and/or memory-hierarchy miss
rate information needed to permit us to study how to
optimize memory subsystem performance?” To continue
to answer this question, we developed a powerful and

flexible performance evaluation framework to facilitate
the analysis of sampled performance monitor event traces
of large, complex applications. Such analysis is used in
the paper to profile memory performance, but it also can
be used in many other ways, e.g., to characterize process
behavior and to understand what modifications to the
application, operating system, and/or architecture will
improve application performance. In the paper we analyze
the event traces of the TPC-C benchmark executed on
eight- and 32-processor IBM eServer pSeries 690 systems
(p690s). The foci of the analysis are the sources of L2-
cache data-load misses and their points of resolution

Why focus on just L2-cache data-load misses? While
not the only source of memory subsystem activity, data
cache misses are the most dominant, and for workloads
like TPC-C, they are the most important. Other potentially
interesting events include instruction cache misses,
translation-lookaside buffer (TLB) misses, address-only
coherence operations, and uncached memory accesses for
I/O.

32-way L1 cache miss resolution sources

0.00% 10.00% 20.00% 30.00% 40.00% 50.00%

L2 I hit

L2 D hit

L2.5/2.75 I hit shared

L2.5 D hit shared

L2.5 D hit modified

L2.75 D hit modified

L3 I hit

L3 D hit

L3.5 I hit

L3.5 D hit

Memory I hit

Memory D hit

Figure 1. TPC-C L1-cache misses resolution
sites for the 32-processor p690

With respect to instruction cache misses, the

performance monitor unit of the POWER4
microprocessor, the basis of the p690, makes is possible
to count instruction and data cache miss rates at the points
of resolution. In addition, it is possible to sample the
instruction and data addresses associated with data cache

mailto:jacosta@cs.utep.edu
mailto:breto@us.ibm.com
mailto:trevormorgan31@hotmail.com

misses, but it is not possible to sample the instruction
addresses associated with instruction cache misses. In
general, this is acceptable, since the instruction cache
footprint of commercial workloads tends to be well
cached in large level-two (L2) and level-three (L3) caches.
As shown in Figure 1, which identifies the points of
resolution for level-one (L1) cache misses, this is the case
for TPC-C, i.e., data cache misses dominate the activity at
the L2 and L3 caches, as well as memory. From a CPI
viewpoint, the L2-cache data-load misses that hit at high-
penalty resolution sites, i.e., L3 caches and memory, are
most important.

With respect to TLB misses, the rate of TPC-C TLB
misses is reduced by mapping the database buffer pool
using 16MB “large pages” rather than standard 4KB
pages. Additionally, unlike cache and TLB misses,
address-only coherence operations do not involve
movement of data. For example, if a cache line is held
shared by two processes on different POWER4 chips,
when one processor stores into the cache line, an address-
only operation is initiated to ensure that other caches
invalidate copies of the shared data. Because data is not
transferred for these operations, their impact on the
performance of POWER4-based systems tends to be
small.

Finally, uncached memory accesses for I/O via loads
and stores have very high latency, which is driven by the
fact that many of these operations must pass all the way
through to a PCI adapter for acknowledgement. Luckily,
most of the actual I/O traffic is handled by DMA, which
is asynchronous to processor execution. Accordingly, the
high-latency uncached accesses tend to be fairly
infrequent.

Why TPC-C? TPC-C is a transaction-processing
application that is understood fairly well and is
representative of workloads of interest to IBM customers.
Preliminary data analysis of information concerning the
data access streams generated on the p690 by TPC-C L2-
cache data-load misses [7] indicates that there is
opportunity for performance improvement. In addition, it
indicates that accesses to particular areas of the address
space, e.g., working storage, the buffer pool, and
components of the operating system, may be targets for
this performance improvement.

Why sampled performance event traces? Historically,
cache analysis is done using traces generated by hardware
or by software architecture simulation, for example,
SimOS [9]. As systems become faster and caches become
much larger, it is very difficult to collect traces that are
long enough to accurately model the memory hierarchy.
In addition, for workloads like TPC-C, system simulation
requires as much disk space as the workload (multiple
terabytes by today’s standards), and usually more
memory. Also, the time to simulate a large multiprocessor
system is intimidating. Alternatives to tracing are a cache

simulator built in hardware and connected to a running
system [8], and sampled event traces, the alternative that
we adopted.

2. Motivation

In this paper, we demonstrate how analysis of sampled
event traces via a powerful and flexible performance
evaluation framework can be used to identify (1) the areas
of the address space, down to a granularity of 128B cache
lines, that are referenced repeatedly and generate L2-
cache data-load misses that are resolved in high-penalty
areas of the memory hierarchy and (2) the addresses of
instructions that access these “hot” data areas. In addition,
we show that analysis of the eight- and 32-processor p690
sampled event traces of the execution of TPC-C indicates
that a fairly large number of L2-cache misses are resolved
at local L3 caches and main memory of the p690, where
latencies are relatively high in comparison to load-hit
latencies at local and remote L2 caches and remote L3
caches, respectively.

The resolution of these misses at high-penalty levels
of the memory hierarchy does not seem intuitive for two
reasons. First, the p690 architecture allows L2-cache
misses generated by a processor to be serviced by any
other L2 cache in the system. Since each processor has its
own defined memory hierarchy, including an L2 cache
that it physically shares with only one other (chip co-
resident) processor, the fraction of accesses going to the
L3 cache, or beyond, should be small. In addition, note
that in the 32-processor system there are 256GB of
physical memory in use and 44.8MB of L2 cache.
Second, it has been demonstrated that the data-load
addresses for these L2-cache misses are not distributed
uniformly throughout the address space, but rather tend to
cluster in relatively small regions of the address space [7].
Such clustering indicates locality of reference that, if
exploited, should lead to hits in the upper-level caches.

Given the identification of the reasons why L2-cache
misses are resolved at high-penalty levels of the p690
memory hierarchy, it may be possible to modify the
application, operating system, and/or hardware to
alleviate them. Research in progress, which is facilitated
by our performance evaluation framework, is aimed at
identifying the reasons. Information gathered thus far
suggests the following reasons: (1) data sharing patterns,
especially within the address space allocated to working
storage, the buffer pool, and components of the operating
system, (2) related cache invalidations initiated by the
cache-coherence protocol, and (3) process migration.

The remainder of the paper, which discusses this
work in more detail, is organized as follows. Section 3
presents related research. Section 4 focuses on data
collection, describing the workload under study, the
platform from which the data was collected, the events of

interest, and the tools used to collect the data. Section 5
targets data analysis, describing the tools and
methodology used to perform the analysis, as well as the
results of the analysis. Section 6 presents conclusions and
future work.

3. Related Research

Related research focuses on two aspects of this study: the
use of event trace sampling and the performance of TPC-
C on other multiprocessor platforms. Performance
monitor event traces captured via performance counters
have been used to characterize application behavior in the
past. Barroso et al. [2] use event traces, captured by tools
such as IPROBE and DCPI (Digital Continuous Profiling
Infrastructure) [1,3], to characterize applications,
including OLTP workloads, executed on a four-processor
AlphaServer 4100 using Oracle 7.3.2. And, Keeton et al.
[5] use performance monitors to analyze the behavior of
an OLTP workload executed on a four-processor Pentium
Pro-based server. Both explore the performance effects of
architectural modifications. In [2] this is done by
workload characterization, accomplished by source code
instrumentation coupled with simulation methodologies
and in [5] this is accomplished by physically changing the
hardware. Desikan et al., like Barroso et al., also use the
DCPI tool [1] to check the reliability of an Alpha 21264
simulator by sampling certain events that are used to
derive performance measurements for the Compaq DS-
10L workstation.

With respect to the performance of TPC-C, Tsuei et al.
[10] study TPC-C executed on an unidentified Sun
Microsystems 16-processor shared-memory
multiprocessor with 4GB of memory using IBM’s DB2
for Solaris version 2.1.1, while Leutenegger and Dias [6]
study it executed on an unidentified multiple-node
distributed system. Both investigate TPC-C’s buffer hit
rate. Our initial results [7] and those presented in this
paper, which indicate that load accesses are concentrated
in certain memory regions and within those regions
smaller defined areas are heavily accessed, corroborate
the study of Leutenegger and Dias, which also
investigates the memory access characteristics of TPC-C
and show that data access skew, i.e., non-uniform data
memory access, exists at the tuple and page levels.

Unlike the research described above, Itzkowitz, et al.
[4] discuss and demonstrate the use, on a dual 900 MHz
UltraSPARC-III Cu Sun Fire 280R™ system, of
extensions to the Sun ONE Studio™ compilers and
performance tools that provide information related to the
data space of an application. This information, gathered
either by clock or hardware-counter profiling, provides
per-instruction details of memory accesses in the
annotated disassembly and provides data aggregated and
sorted by object structure types and elements. Compiler-

generated padding introduces minor inaccuracies and
collection perturbation can be controlled through
configuration of the processors’ counter overflow rates.
Future work described by Itzkowitz, et al., i.e., analysis of
event data addresses by machine entity, e.g., memory
segment, page, etc., is presented in this paper but, of
course, our performance evaluation framework is used to
perform the analysis.

The major differences between our work and the
related research described above are the scale of the
systems and the methodology used. Itzkowitz, et al. use a
two-processor system, Barroso et al. and Keeton et al.
each use a four-processor system, and Tsuei et al. use a
16-processor system, while we analyze performance data
obtained from both eight- and 32-processor systems. In
addition, our work attempts to extract information about
the dynamic behavior of a large, complex application with
a considerably simpler, more powerful, faster, and, in
some cases, more precise methodology. Our methodology
does not require source code instrumentation and it is not
restricted to memory access behavior analysis.
Additionally, our performance evaluation framework
provides a myriad of ways to analyze sampled event
traces.

4. Data Collection

This section provides information on the data collected
for this study. First, we describe the workload, TPC-C,
and the platform on which TPC-C was executed and
monitored. Next, we discuss the events of interest and the
methodology used to collect the sampled event traces of
the data access streams produced by L2-cache data-load
misses generated by the TPC-C benchmark.

4.1. Workload: TPC-C

To collect the data used in this study, a fully-implemented
TPC-C benchmark drives a commercially-available
relational database, which was compiled using the IBM C
for AIX version 5 compiler. The TPC-C (Transaction
Processing Performance Council Benchmark C)
workload [11] is a well-known benchmark that emulates
read-only and update-intensive transactions found in
complex on-line transaction processing (OLTP)
application environments [10]. It has been used widely in
the database server industry as a basis of server
performance analysis and platform comparison.

4.2. Compute platform: IBM eServer pSeries 690

IBM’s eServer pSeries 690 family of symmetric
multiprocessor (SMP) architectures includes eight- and
32-processor configurations [12,13]. The operating
system for these configurations is AIX version 5.2. The

MultiChip Module (MCM), the building block of the
architecture, contains four chips. Each chip is comprised
of two 1.3 GHz POWER4 processors and, thus, in
general, each MCM contains eight processors.
Accordingly, the eight- and 32-processor configurations
normally are comprised of one and four MCMs,
respectively. In contrast, the eight-processor configuration
used in this study is comprised of two MCMs – each
MCM contains four “single core good” chips, each of
which has only one functional processor.

For the p690s under study,

• each CPU is accompanied by a 64KB L1
instruction cache and a 32KB L1 data cache;

• a 1.44MB L2 unified cache is associated with
each chip, i.e., it is shared by the two processors
on a chip;

• a 128MB L3 unified cache is shared by the chips/
processors on an MCM; and

• main memory is 128GB for the eight-processor
p690 and 256GB for the 32-processor system.

The L1 and L2 caches have 128B lines, while the L3

cache has 512B lines. Data private to and shared by
processes are managed via the p690 cache coherence
protocol. An L2-cache miss for either type of data
generated by a processor in an MCM can be serviced at
five different levels of the memory hierarchy:

1. another L2 cache within the same MCM, the L2.5

level;
2. an L2 cache in another MCM, the L2.75 level;
3. the MCM’s L3 cache, the L3 level;
4. an L3 cache in another MCM, the L3.5 level; and
5. main memory.

4.3. L2-cache miss events

L2-cache miss events are classified according to the level
at which they are resolved and the state (with respect to
the cache coherency protocol) of the block at the
resolution site. Misses serviced at the L2.5 level generate
one of two types of events: an L2.5-shared (L25_SHR) or
L2.5-modified (L25_MOD) hit event. An L25_SHR
denotes that, although the requested block may reside
simultaneously in more than one L2 cache, it is resolved
by a local L2 cache, i.e., one associated with the MCM
containing the processor that generated the miss. An
L25_MOD denotes that the requested modified block is
exclusively owned by and, thus, resides in only one L2
cache, a local L2 cache; this L2 cache contains a more
recent version of the block than is in the backing physical
memory.

Similarly, L2-cache misses serviced at the L2.75
level of the memory hierarchy generate either an L2.75-

shared (L275_SHR) or L2.75-modified (L275_MOD) hit
event. The former denotes that the requested block resides
in more than one L2 cache but not in a local L2 cache,
rather in an L2 cache on another MCM, i.e., a remote L2
cache. The latter denotes that the requested block resides
in only one L2 cache, a remote L2 cache.

At the L3 level, the cache-hit events are called L3-
shared, L3-modified, L3.5-shared, and L3.5-modified. An
L3-shared hit event denotes that the requested block may
reside in more than one L3 cache and is resident in the
local L3 cache, i.e., the one associated with the MCM of
the processor that generated the miss. An L3.5-shared hit
event denotes that the requested block resides in more
than one L3 cache but not in the local L3 cache. An L3-
modified hit event denotes that the requested block resides
in only one L3 cache, the local L3 cache. An L3.5-
modified hit event denotes that the requested block resides
in only one L3 cache, a remote L3 cache.

For this study we monitored cache hit events as well
as main memory hit events (MEM). However, instead of
monitoring the four events associated with the L3 level of
the memory hierarchy, only two events were monitored:
L3 and L3.5 hits (L3 and L35). Additionally, only the
L25_MOD and the L275_MOD hit events are analyzed
due to issues with the event traces associated with the
L25_SHR and L275_SHR hit events.

4.4. Event trace sampling methodology: PMU,
eprof, and trcrpt

On selected pSeries hardware models, through the use of
tools such as eprof and trcrpt, described in this section,
trace information for specified events can be collected.
These tools were used in this study to collect one event
trace from the eight-processor p690 and one from the 32-
processor system. The trace information for the events
described in Section 4.3 was gathered during a 10-minute
interval of the steady-state execution of TPC-C. As
described below, sample information was recorded upon
the periodic occurrence of the event being monitored. The
information collected during each sample includes the
timestamp which indicates when the event occurred, the
effective instruction and data addresses associated with
the event, and the CPU, process, and thread IDs of the
entity that triggered the event.

To collect data on various events that occur within
the processor, such as the completion of a load instruction
or an L2 instruction cache miss, and, thus, provide
valuable performance information, the POWER4
microprocessor includes performance monitoring
facilities. The performance monitor unit (PMU) includes
eight counters that permit up to eight concurrent events to
be monitored. In addition to recording aggregate counts
for either a section of code or an entire program, the PMU
is capable of capturing instruction and data addresses

associated with events. This is of particular value when
event-based sampling is desired.

Special-purpose registers, only accessible via the
operating system through a programming interface that
accesses the registers through a kernel extension, control
the state of the counters. This interface permits, among
other things, the specification of the events to be
monitored and execution points at which to start and stop
counters and at which software is to retrieve results.

Event-based sampling, which is important for long-
running programs with extremely large numbers of
events, like TPC-C, is provided by the PMU and
associated software via user-selected trigger events and
Performance Monitor (PM) interrupts. As is exemplified
below, the former can be used to trigger the increment of
a counter and the latter can be used to write PMU data to
a file. The AIX operating system contains a time-based
profiling tool called tprof. In addition to tprof, there exists
an in-house IBM tool, eprof, which uses tprof
functionality for data collection and reduction, and is tied
to the PMU on selected pSeries hardware models. eprof
is used to program the PMU to sample hardware
countable events at a defined rate.

Table 1. Event sample counts

For this research, we employed eprof and event-

based sampling, using eprof’s default sampling rate of
approximately 100 events per second per CPU. In this
way, using the default sampling rate, if the event sampled
is processor cycles, time-based sampling is accomplished
and a sample is collected every 10 milliseconds. In
contrast, if the event is one that occurs at a variable rate,
e.g., cache misses, and if the rate of event occurrence is
greater than the default sampling rate, then eprof adjusts
the rate at which samples are collected so that the 100
samples per CPU per second collection rate is
approximated. Accordingly, the interval between PM
interrupts can be variable, and because some events occur
more often than others, it follows that a different number
of samples are collected for different types of events
despite the adoption of the default sampling rate and a 10-
minute workload. The size of the collected data set for
each event of interest is given in Table 1.

When an event is sampled, i.e., at each increment of
the performance counter, the instruction address and data
address (if applicable) are captured by the PMU, and a
PM interrupt is delivered. The interrupt causes the sample
information to be extracted from the PMU and an AIX
trace hook to be generated and added to the trace. The
AIX trace hook describes the associated trace record.
Using the AIX trace allows samples to be either written to
disk or collected via a daemon that can summarize the
data. The profiling also enables selected AIX trace hooks,
such as those related to dispatching, so that the sampled
events can be correlated with the processes/threads. If
AIX trace is used to collect events in a file, the file can be
formatted with the trcrpt utility to create a time-stamped
text file of events. For this study, we used trcrpt as well
as a program that reads the formatted trace and extracts
summary information.

5. Data Analysis

This section describes the tools used to perform the data
analysis, the partitioning of the address space, and the
results of the data analysis.

5.1. Methodology

As mentioned in Section 4.4, the IBM tool trcrpt was used
to post-process the sampled AIX event trace generated by
eprof. The specified output of trcrpt includes for each
sampled event the effective instruction and data
addresses, the CPU, process, and thread IDs, and the
timestamp. As part of our performance evaluation
framework, a set of Java tools processes each sample and
stores it in a MySQL database according to the workload
being monitored, the number of processors used to
execute the workload, and the event being sampled. For
example, database tpcc_32_g48c1 stores the sampled
event trace for the TPC-C benchmark executed on a 32-
processor system associated with the L2-cache data-load
misses resolved in local L3 caches (g48c1 identifies a
local L3 hit event). Each database consists of 12 tables
that store information related to the experiment itself, e.g.,
a description of the workload and compute platform, and
data contained within the samples themselves. Once the
sampled events are loaded into their corresponding
databases, a second set of tools in our framework is used
to query the databases and produce results of the queries,
i.e., default and customized reports, in the form of
formatted text files. These text files are transformed into
graphs via a spreadsheet application with built-in
graphing capabilities.

Event Sample Count
 8-way 32-way
L2 312,252 259,716
L25_MOD 313,431 197,592
L25_SHR 748,064 n/a
L275_MOD 126,376 167,485
L275_SHR 835,339 n/a
L3 301,791 170,910
L35 121,274 172,008
MEM 272,835 262,941

Storing the sampled performance monitor event
traces in databases facilitates data analysis and provides a
myriad of ways to easily examine and explore the data.
Accordingly, the analysis and results presented in this

paper is only a sample of the kind of information that can
be obtained using this methodology.

5.2. Data Partitioning

The address space for TPC-C ranges from
0x0000000000000000 to 0xF10000B6FFFFFFFF and is
partitioned as illustrated in Table 3, which appears at the
end of the paper. The segment size is 256MB, while each
page in a segment is 4096KB. As can be seen from the
table, the different memory regions are identified by
address ranges, e.g., the range used for lock
instrumentation begins at 0xF100009E00000000 and ends
at 0xF100009E0fffffff.

The TPC-C application used in this study is based on
a process model. The process model allows for a private
memory region per process, as well as a shared memory
region that stores global database information, i.e., the
database's state information and buffer pool. The buffer
pool is the largest consumer of physical memory; it
contains unmodified data, currently on disk, as well as
data that has been modified by transactions and is not yet
updated on disk. Since the size of the database is much
larger than physical memory and the pattern of access to
disk data is unpredictable, disk I/O is continuous.
Incoming database transactions are passed off to idle
processes for service. The number of processes available
for processing transactions is based on the number needed
to achieve nearly 100% CPU utilization. Because most
transactions experience some number of disk I/Os, many
transactions must be executing concurrently to maximize
CPU utilization.

5.3. Results

The goal of this analysis is to pinpoint the application-
specific sources of performance degradation associated
with data references. This is done in three phases.

Phase 1. The platform-specific causes of performance
degradation are identified. For example, as is true in
this study, it may be the case that a high number of L2-
cache misses are satisfied by local L3 caches or main
memory, rather than by other L2 caches.

Phase 2. The concentrated areas of locality of
reference are identified. For example, references may
be concentrated in the buffer pool.

Phase 3. The subroutines, instructions, and/or data
structures associated with these areas of locality of
reference are identified. For example, a lock variable
may be the target of a significant number of these
references. (Note that Phase 3 is in progress.)

5.3.1. Phase 1. Figure 2 presents, for both the eight-
processor, i.e., 8-way, and 32-processor, i.e., 32-way,
p690, sampled performance monitor event counts that are
associated with L2-cache data-load misses. These hit
event counts show the distribution of L2-cache data-load
misses across the resolution sites of the p690 memory
hierarchy. Recall that in this architecture, L2-cache
misses can be resolved by a local (on-MCM) L2 cache
(L2.5 hit), a remote (off-MCM) L2 cache (L2.75 hit), the
local L3 cache (L3 hit), a remote L3 cache (L3.5 hit), or
main memory (MEM hit). This data, which is similar for
the eight-way, two-MCM p690 and 32-way, four-MCM
system, identifies the platform-specific causes of
performance degradation associated with L2-cache data-
load misses, i.e., local L3 caches and main memory
dominate as the levels of the p690 memory hierarchy
where L2-cache data-load misses are resolved.

Figure 2. Distribution of sampled hit events

.3.2. Phase 2. During Phase 2, the analysis hones in on

egions of the Address Space – Local L3 Caches: As

nd 4 depict, for the eight- and 32-way
syst

Resolution of L2 Data Load Misses

0 0.1 0.2 0.3 0.4 0.5 0.6

L2.5 Shared

L2.5 Modified

L2.75 Shared

L2.75 Modified

L3

L3.5

Memory

Ev
en

ts

Fraction of loads satisfied

32-way
8-way

among TPC-C L2-cache data-load miss
resolution sites of the p690 memory hierarchy

5
the concentrated areas of locality of reference. The
analysis progresses from a level of the memory hierarchy
to a region of the address space, then to segments, pages,
and, finally, cache blocks. From cache blocks, the
analysis can continue to instructions, data structures,
processes, CPUs, etc.

R
shown in Figure 2, data-load hits in local L3 caches,
rather than hits in either local or remote L2 caches, appear
to be one of the main factors affecting the performance of
TPC-C running on the p690. Thus, we first explore the
reason for this.

Figures 3 a
ems, respectively, the L3-cache hit percentages for the

eight most-referenced regions of the TPC-C address
space; note that the eight regions are the same for both
regions (even though the 32-way data is based on 19,
rather than 32, event traces).

 The light-colored Hit_% bar for a region is
calculated by dividing the number of references to the
region by the total number of references to the level of the
memory hierarchy under study, in this case, local L3
caches. By examining the region Hit_% bars, we see that
for both the eight- and 32-way systems the
Data,BSS,Heap and buffer pool regions clearly are the
hardest hit at this level of the hierarchy.

A region’s dark-colored bar, the Unique_cache_line
bar, indicates the number of unique cache lines
referenced in the region; it gives an idea of the density of
the data loads, i.e., the locality of reference, for the
region. In order to determine the cache block that is
accessed by a particular data address, the address is
partitioned into a tag, index, and offset using the L3 cache
configuration, i.e., a 128MB eight-way associative cache
with 512B blocks/lines, i.e., four 128B sectors. (Note that
the L2-cache line size is 128B.)

Figure 3. Distribution of TPC-C local L3-cache
data-load hits across address regions of the
eight-processor p690

Figure 4. Distribution of TPC-C local L3-cache
data-load hits across address regions of the 32-
processor p690 (traces of only 19 CPUs are
represented)

With respect to locality of reference, four of the eight
regions, M-BUF, Buffer Pool, Text, and Kernel exhibit
the same behavior in both systems and all exhibit good
locality of reference. For example, for both systems the

Unique_cache_line bar for the buffer pool region is a
relatively small portion (less than one-third) of the size of
its corresponding Hit_% bar. This indicates that a
majority of the local L3-cache hits associated with the
buffer pool reference a relatively small number of cache
lines and, thus, exhibit relatively good locality of
reference.

In general, for the other four regions, the eight-way
system exhibits better locality of reference than the 32-
way system. In fact, the eight-way system exhibits this
behavior for the entire address space comprised of the
eight regions depicted in Figure 3. That is, if the
Unique_cache_line bars for the eight regions are
aggregated and compared to an aggregated Hit_% bar, the
aggregated Unique_cache_line bar is less than one-third
the size of the aggregated Hit_% bar. This indicates that
in the eight-way system the majority of L2-cache data-
load misses resolved in local L3 caches are to data that
has been previously referenced and pre-maturely evicted
from L2 caches. If the evictions are due to false sharing or
process sharing that can be localized to an MCM, then
this behavior would be considered a mismatch between
the application and the architecture and would present a
target for potential performance improvement.

Distribution of L3 Data Load Hits

0 0.1 0.2 0.3 0.4 0.5

Kernel
Text

Data,BSS,Heap
BufferPool

Stack
Ublock&KernelStack

M_BUF
KERN_HEAP

Ad
dr

es
s

re
gi

on

Fraction of data loads

Unique cache line
Hit % In contrast, in the 32-way system, data-load hits to

the “other” four regions, i.e., KERN_HEAP, Ublock &
Kernel Stack, Stack, and Data,BSS,Heap, are more
dispersed. This is illustrated by the large overlap of their
Unique_cache_line bars and Hit_% bars, which indicates
that a relatively large number of the referenced cache
lines are only referenced once or twice. Thus, as is
exemplified by the Data,BSS,Heap region, references to
this region in the local L3 caches of the 32-way system
display worse locality of reference than in the eight-way
system.
 Distribution of L3 Data Load Hits

0 0.1 0.2 0.3 0.4 0.5

Kernel
Text

Data,BSS,Heap
BufferPool

Stack
Ublock&KernelStack

M_BUF
KERN_HEAP

Ad
dr

es
s

re
gi

on

Fraction of data loads

Unique cache line
Hit %

Regions of the Address Space – Main Memory: Since
data-load hits in main memory also appear to be a main
factor affecting the performance of the TPC-C benchmark
running on the p690, next we compare the distribution of
memory data-load hits among the eight most-referenced
regions with that of L3-cache data-load hits. Figures 5 and
6 depict the distribution of memory data-load hits in the
eight-and 32-way systems, respectively. Comparing the
distributions of memory and L3-cache data-load hits, we
see contrasts in locality of reference for most of the
regions of the address space. For example, the data loads
that are targeted at the buffer pool and miss the local and
remote L3 caches no longer exhibit the same tight
reference pattern exhibited by the data loads that hit in
local L3 caches, i.e., the memory hits exhibit a larger
footprint than the local L3-cache hits. This is illustrated in
Figures 5 and 6 by the Buffer Pool Unique_cache_line bar
being a large percentage of its Hit_% bar, meaning the
data-load hits to the buffer pool are distributed across a

relatively large number of cache lines. The same behavior
is exhibited by most of the other address regions of both
the eight- and 32-way systems. If the memory hits are the
result of compulsory misses, then this indicates that the
application is well matched to the architecture.

Distribution of Memory Data Load Hits

0 0.1 0.2 0.3 0.4 0.5

Kernel
Text

Data,BSS,Heap
BufferPool

Stack
Ublock&KernelStack

M_BUF
KERN_HEAP

Ad
dr

es
s

re
gi

on

Fraction of data loads

Unique cache line
Hit %

Figure 5. Distribution of TPC-C main memory
data-load hits across memory regions of the
eight-processor p690

Figure 6. Distribution of TPC-C main memory
data-load hits across memory regions of the 32-
processor p690

Because the data-load hits in local L3 caches display
better locality of reference when compared to those that
hit in main memory, we now refine the analysis and study
the references associated with L2-cache data-load misses
that are resolved in local L3 caches, i.e., L3 hit events.
Considering that Buffer Pool and Data,BSS,Heap are the
two most frequently referenced address regions in the L3
caches and the buffer pool region displays a more
concentrated locality of reference than Data,BSS,Heap,
the analysis now focuses on it.

Regions of the Address Space – Segments: For the 10-
minute duration during which samples were collected,
302 and 570 unique segments in the buffer pool region
were touched in the eight- and 32-way p690s,
respectively. Of the 302 (570) segments, four (six)
account for over 90% of the buffer pool data-load activity
in local L3 caches. Figure 7 (8) shows the four (six)
segments and their respective Hit_% and
Unique_cache_line bars.

In these figures, we see that the majority of the hits
reference a relatively small number of cache lines. In
contrast, in the eight-way system segment 0x070000005
and in the 32-way system segments 0x07000039C,
0x070000336, and 0x070000009 appear to have been
referenced in a much more uniform manner, i.e., the
Unique_cache_line bar is a larger percentage of the
corresponding Hit_% bar.

Figure 7. Distribution of TPC-C local L3-cache
data-load hits across segments of Buffer Pool of
the eight-processor p690

Distribution of L3 Data Load Hits
in Buffer Pool by Segment

0 0.1 0.2 0.3 0.4

070000000

070000001

070000004

070000005

S
eg

m
en

t

Fraction of data loads

Unique cache line
Hit %

Distribution of Memory Data Load Hits

0 0.1 0.2 0.3 0.4 0.5

Kernel
Text

Data,BSS,Heap
BufferPool

Stack
Ublock&KernelStack

M_BUF
KERN_HEAP

Ad
dr

es
s

re
gi

on

Fraction of data loads

Unique cache li
Hit %

ne

Distribution of L3 Data Load Hits
 in Buffer Pool by Segment

0 0.1 0.2 0.3 0.4 0.5

070000000

070000001

070000002

070000009

070000336

07000039C

Se
gm

en
t

Fraction of data loads

Unique cache line
Hit %

Figure 8. Distribution of TPC-C local L3-cache
data-load hits across segments of Buffer Pool of
the 32-processor p690

Note that because the 32-way p690 consists of four
MCMs, while the eight-way system consists of two
MCMs, the amount of physical memory available in the
memory hierarchy of the 32-way system is larger than
that of the eight-way system. As such, the amount of
physical memory allocated to the buffer pool address
region differs. Consequently, the number of segments
touched, as well as those accounting for the majority of
data-load references, during the 10-minute observation
period is significantly larger in the 32-way system.

Regions of the Address Space – Pages: Continuing to
hone in on the suspect causes of performance degradation,

we next take a closer look at a Buffer Pool segment
frequently referenced in the local L3 caches of both the
eight-and 32-way p690s. Examining Figures 9 and 10,
which plot the distribution of local L3-cache data-load
hits across the pages of a TPC-C buffer pool segment for
the eight- and 32-way systems, respectively, we see very
dense reference patterns. The dark-colored Total_Loads
bar for a page represents the number of references to the
page, while the Unique_Cache_Line bar indicates the
number of unique cache lines referenced within the page.

F
d
s

F
d
s

w
t
2
h
s
p

R
p
w

would see heavily-referenced cache lines. Figures 11 and
12, which illustrate the distribution of Buffer Pool data-
load hits across cache lines of a hard hit page of the
studied segment in the eight- and 32-way p690s,
respectively, show just that. Referring to Figures 11 and
12, it is quite clear that in both the eight- and 32-way
systems only a handful of cache lines are the target of a
majority (greater than 70%) of the local L3-cache data-
load hits recorded during the 10-minute monitoring
interval. In this way, using our performance evaluation
framework, we can identify down to the cache-line level,
sources of performance degradation in p690 systems.

 800

 900
Total Loads

Unique Cache Lines

igure 9. Distribution of TPC-C local L3-cache
ata-load hits across pages of a Buffer Pool
egment of the eight-processor p690

Distribution of L3 Data Load Hits Across
Pages of a Buffer Pool Segment

0
50

100
150
200
250
300
350
400

100 1600 3100 4600 6100 7600

Page [0-65536]

Hi
t/C

ac
he

 li
ne

 c
ou

nt

Total loads
Unique cache line

32-way L3 Data Load Hits by Cache Line

0

5

10

15

20

25

30

0 100 200 300 400 500

Time

C
ac

he
 L

in
e

600

igure 10. Distribution of TPC-C local L3-cache
ata-load hits across pages of a Buffer Pool
egment of the 32-processor p690

Figures 9 and 10 show that for both the eight- and 32-
ay p690s, respectively, greater than 70% of the hits for

he depicted segment are located within approximately
00, out of 65,536, pages. In addition to this clustering of
ot pages, we see that each page exhibits, as did the
egments in the buffer pool region, a very dense reference
attern.

egions of the Address Space - L3 Caches: From the
age-related data just presented, one would expect that
ithin a page of the studied Buffer Pool segment we

 0

 100

 200

 300

 400

 500

 600

 700

 45800 45850 45900 45950 46000 46050 46100 46150 46200

Hit/Cache Line
Count

Page [0-65536]

8-way L3 Data Load Hits by Cache Line

0

5

10

15

20

25

30

0 100 200 300 400 500 600

Time
Ca

ch
e

Li
ne

Figure 11. Distribution of TPC-C local L3-cache
data-load hits across the cache lines of a hard-
hit Buffer Pool page of the eight-processor p690

Figure 12. Distribution of TPC-C local L3-cache
data-load hits across the cache lines of a hard-
hit Buffer Pool page of the 32-processor p690

Regions of the Address Space – Instructions:
Additionally, our performance evaluation framework
allows a user to specify a list of routines and obtain a
report that displays data-load hit percentages and the
amount of memory touched for regions of the address
space referenced by the routines. For this study, the lock
routines and atomic operations of Table 2 were specified
since they were potentially responsible for data loads
resolved in the lower levels of the memory hierarchy.

The data retrieved from analyzing the event traces
indicate that only two routines from the ones listed above
had any notable impact on performance: disable_lock and

simple_lock. The data referenced by these routines was
retrieved from a remote cache (via an L3.5 hit) and make
up the biggest portion of data-load hits that are associated
with lock and atomic operations. However, these
percentages are insignificant, 1.1% and 2.2%,
respectively, and, therefore, do not contribute greatly to
performance degradation with respect to L2-cache misses.

Lock routines Atomic operations
simple_lock fetch_and_add
simple_lock_ppc fetch_and_add_h
simple_unlock fetch_and_add_h
disable_lock fetch_and_or
unlock_enable fetch_and_orlp
simple_unlock_mem fetch_and_and
unlock_enable_mem fetch_and_andlp
Table 2. List of routines under analysis

6. Conclusions and Future Work

The work presented in this paper demonstrates the power
and flexibility of the performance evaluation framework
that we developed to analyze p690 sampled performance
monitor event traces. Since the traces are stored in
databases, they can be analyzed easily via queries to the
database management system. In this way, an unlimited
amount of information can be gleaned from the traces.

Sampled event traces collected from eight- and 32-
processor configurations of IBM’s p690 executing TPC-C
are analyzed to identify targets for performance
improvement. The analysis focuses on memory subsystem
performance, in particular, high-penalty L2-cache data-
load misses, and shows how the framework can be used to
ascertain reasons why a majority of these misses are
resolved in p690 local L3 caches and main memory,
which carry high load-hit latencies in comparison to L2-
cache load latencies. The analysis is continually refined,
identifying first the address regions most heavily
referenced by L2-cache data-load misses, and then the
most heavily referenced segments, pages, and cache lines.
However, the analysis falls short of actually identifying
the sources of the performance degradation.

Ongoing research endeavors to do this and attain
performance improvements by (1) using the effective
instruction and data addresses associated with each
sample to uncover the application- and operating-system
specific causes for the L2-cache data-load misses that are
resolved in local L3 caches and main memory and (2)
applying appropriate remedies, i.e. modifications to the
application, operating system, architecture, or a
combination of these, that shift the resolution site of these
expensive data-load misses to the L2 level of the memory
hierarchy.

Specifically, the analysis presented in the paper
shows that the eight- and 32-way data is very similar.
Both indicate that the buffer pool and Data,BSS,Heap
regions of the TPC-C address space dominate as the
effective data address regions for data loads satisfied in
local L3 caches and main memory. Furthermore, for
those data loads satisfied in local L3 caches, the
segments, pages, and cache blocks that comprise the
buffer pool exhibit a rather dense distribution. In addition,
using our framework, we are able to confirm that routines
associated with lock variables and atomic operations do
not play a dominant role in the cause of L2-cache data-
load misses. In fact, the percentage of these functions that
are attributed to L2-cache data-load misses is so small
that we did not even present the distribution of these
misses across the address space.

Ongoing research continues analysis of TPC-C with
respect to process characterization and explores the
performance of other workloads executed on the p690.
Future research will attempt to quantify the accuracy of
sampled event traces and will enhance the performance
evaluation framework.

Acknowledgements

We want to thank Robert Acosta, Robert Amezcua,
Carole Gottlieb, Cathy Nunez, and Bret Olszewski, IBM-
Austin, for their help in defining a research area of mutual
interest and establishing a research partnership that has
proven to be very effective. In addition, we want to thank
The Austin Center for Advanced Studies (ACAS), Carole
Gottlieb, and Bret Olszewski for the faculty research
award that made this research possible, Cathy Nunez for
arranging Trevor Morgan’s summer 2002 internship,
which kicked-off this research, and Carole Gottlieb for
arranging Diana Villa’s summer 2003 internship.

References

[1] J. Anderson, L. Berg, J. Dean, S. Ghermawat, M. Henzinger,
S-T. Leung, R. Sites, M. Vandevoorde, C. Waldspurger, and W.
Weihl, “Continuous profiling: Where have all the cycles gone?,"
ACM Transaction on Computer Systems, Vol 15, No. 4,
November 1997, pp. 357-390.

[2] L. Barroso, K. Gharachorloo, and E. Bugnion., “Memory
System Characterization of Commercial Workloads,”
Proceedings of the 25th International Symposium on Computer
Architecture, pp. 3-14, June 1998.

[3] R. Desikan, D. Burger, and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation”, Proceedings
of the 28th Annual International Symposium on Computer
Architecture, Goteborg, Sweden, July
2001, pp. 266-277.

[4] M. Itzkowitz, B. Wylie, C. Aoki, and N. Kosche, “Memory
Profiling Using Hardware Counters,” CD Proceedings of SC
2003, Phoenix, AZ, November 2004

[5] K. Keeton, D. Patterson, et al., “Performance
Characterization of a Quad Pentium Pro SMP Using OLTP
Workloads,” Proceedings of the 25th Annual International
Symposium on Computer Architecture, pp. 15-26, June 1998.

[6] S. Leutenegger and D. Dias, “A Modeling Study of the TPC-
C Benchmark”, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington,
DC, USA, June 1993, pp. 22-31.

[7] T. Morgan, D. Villa, P. Teller, B. Olszewski, and J. Acosta,
"L2 Miss Profiling on the p690 for a Large-scale Database
Application," Proceedings of the 4th Annual Austin CAS
Conference, February 2003.

[8] A. Nanda, K. Mak, K. Sugavanam, R. Sahoo, V.
Soundararajan, and T. Smith, “MemorIES: a Programmable,
Real-time Hardware Emulation Tool for Multiprocessor Server
Design”, Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, November 2000, pp. 37-
48.

[9] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.,
“Complete Computer Simulation: The SimOS Approach”, IEEE
Parallel and Distributed Technology: Systems and Applications,
Winter 1995, pp. 34-43.

[10] T-F Tsuei, A. Packer, and K-T Ko, “Database Buffer Size
Investigation for OLTP Workloads”, Proceedings of the 1997
ACM SIGMOD International Conference on Management of
Data, Tucson, AZ, June 1997, pp. 112-122.

[11] TPC Benchmark C Standard Specification Revision 3.0,
Transaction Processing Performance Council, February 15,
1995.

[12] The POWER4 Processor Introduction and Tuning Guide,
IBM, ibm.com/redbooks

[13]http://www.ibm.com/servers/eserver/pseries/hardware/white
papers/power4_4.html#hier

Address Space Range
Kernel 0x000000000 - 0x000000001
Proc. Priv., shmat/mmap & Loader Use 0x000000002 - 0x00000000F
Text 0x000000010 - 0x000000010
Data,BSS,Heap 0x000000011 - 0x06FFFFFFF
Buffer Pool 0x070000000 - 0x07FFFFFFF
Private Load 0x080000000 - 0x08FFFFFFF
Shared Library Text 0x090000000 - 0x090010009
Shared Data 0x09001000A - 0x09001000A
Reserved 0x0A0000000 - 0xEFFFFFFFF
Stack 0x0F0000000 - 0x0FFFFFFFF
U-Block and Kernel Stack 0xF00000002 - 0xF00000002
DATA 0xF10000004 - 0xF10000004
PTA 0xF10000005 - 0xF10000005
DMAP 0xF10000006 - 0xF10000006
AME 0xF10000007 - 0xF1000000A
SCB 0xF1000000B - 0xF100000BA
SWHAT 0xF100000BB - 0xF1000013A
SWPFT 0xF1000013B - 0xF1000083B
Reserved 0xF1000083C - 0xF10000877
PROC_THRD 0xF10000878 - 0xF1000089B
M_BUF 0xF1000089C - 0xF1000099F
LDR_LIB 0xF100009A0 - 0xF100009BF
JFS_SEG 0xF100009C0 - 0xF100009C0
JFS_LKW 0xF100009C1 - 0xF100009CF
LFS_SEG 0xF100009D0 - 0xF100009DF
LOCK_INSTR 0xF100009E0 - 0xF100009E0
KERN_HEAP 0xF100009E1 - 0xF10000AE0
MP_DATA 0xF10000AE1 - 0xF10000AF0
GLOB_EXTREG 0xF10000AF1 - 0xF10000B6F

Table 3. TPC-C address space

http://www.-.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4_4.html
http://www.-.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4_4.html

	IBM Corporation-Austin Exxon/Mobil
	Abstract
	1. Introduction
	2. Motivation
	3. Related Research
	4.1. Workload: TPC-C
	4.2. Compute platform: IBM eServer pSeries 690
	4.3. L2-cache miss events
	4.4. Event trace sampling methodology: PMU, eprof, and trcrpt

	5. Data Analysis
	5.1. Methodology
	5.2. Data Partitioning
	5.3. Results

	6. Conclusions and Future Work
	Acknowledgements
	References
	
	
	
	
	
	Address Space

