
Mining Performance Data from Sampled Event Traces 
 
 

Ricardo Portillo, Diana Villa, and Patricia J. Teller  
University of Texas at El Paso, Department of Computer Science 

{raportil,pteller}@cs.utep.edu; demarquez@utep.edu 
 

Bret Olszewski  
IBM Corporation 

breto@us.ibm.com 
 

 
Abstract 

 
The prominent role of the memory hierarchy as one 

of the major bottlenecks in achieving good program 
performance has motivated the search for ways of 
capturing the memory performance of an 
application/machine pair that is both practical in 
terms of time and space, yet detailed enough to gain 
useful and relevant information. The strategy that we 
endorse periodically samples events during program 
execution, producing an event trace that is both 
manageable and informative. As demonstrated, 
adopting this strategy, a diverse set of performance 
issues can be studied using the same set of traces. For 
example, using one set of traces and our performance 
evaluation framework, memory access performance, 
process migration, compulsory and conflict misses, 
and false sharing can be characterized. 

 
 
1. Introduction 
 

As the gap between the speeds of processors and 
Dynamic Random Access Memory (DRAM) continues 
to increase [4], the memory subsystem continues to be 
a major computer design consideration. For many 
computer systems, in particular future, symmetric 
multiprocessor (SMP) systems, the performance of the 
memory subsystem governs that of the system as a 
whole [15].  

Although the performance evaluation of SMP 
systems, in particular their memory subsystems, is of 
great import, it is becoming increasingly more 
challenging. For example, although address traces 
generated by the hardware or by software architecture 
simulation, as is the case with SimOS [10], have been 
used to analyze cache performance, as systems become 
faster and caches become increasingly larger, it is more 

difficult to collect traces that are long enough to 
accurately model the memory hierarchy of even a 
single processor. Furthermore, system simulation of 
large, complex workloads executed on multiprocessors 
requires as much disk space as the workload, typically 
multiple terabytes by today’s standards, and usually 
more memory. In addition, the effort to simulate a 
large multiprocessor system is intimidating. An 
alternative is a cache simulator built in hardware and 
connected to a running system [9] or, as we suggest, 
sampled performance monitor event traces, i.e., 
sampled event traces.     

Sampled event traces are collected in real time via 
on-chip performance counters that recognize events of 
interest. Most state-of-the-art processors have on-chip 
performance counters. For example, the Performance 
Monitor Unit (PMU) of the Power4 has eight that 
support the capture of over 200 events [6]. Supported 
events include, among others, different types of cache 
misses, TLB misses, memory operations, and fixed and 
floating-point operations.  

Event traces can provide information that can be 
used to understand when the workload and architecture 
complement one another in terms of performance and 
to identify performance bottlenecks. This information 
can be attained by mining the traces and analyzing the 
resultant data, both of which are facilitated by our 
performance evaluation framework [14], described 
briefly herein. As demonstrated in this paper, one set of 
sampled event traces for a large, complex application, 
i.e., the TPC-C benchmark, executed on eight- and 32-
processor IBM eServer pSeries 690 systems, can be 
used to study, among other things, the performance of 
the memory hierarchy, to analyze the performance 
implications of process migration and L2-cache 
sharing, and to identify false sharing. This paper 
presents insights regarding the performance issues 
mentioned above and, more importantly, demonstrates 



that a large amount of information can be gleaned from 
one set of small and manageable sampled event traces.  

The remainder of the paper is organized as follows: 
Section 2 presents related research. Section 3 describes 
the subject event traces, including the platform from 
which the data was collected, compute platform, 
workload under study, events of interest, and tools 
used to collect the data. Section 4 targets data analysis, 
describing the tools and methodology used, and 
presents a sample of our results. Finally, Section 5 
presents a summary, conclusions, and future work. 

 
2. Related Research 
 

 Several researchers have used event traces to 
characterize application behavior. For example, to 
explore the performance effects of architectural 
modifications, Barroso, et al. [2] use tools such as 
IPROBE and DCPI (Digital Continuous Profiling 
Infrastructure) [1,3] to capture event traces of 
applications executed on a four-processor AlphaServer 
4100 using Oracle 7.3.2 and Keeton, et al. [8] use 
performance monitors on a four-processor Pentium 
Pro-based server. In [2] workload characterization, 
accomplished by source code instrumentation, is 
coupled with simulation methodologies; in [8] the 
hardware was physically modified. Desikan, et al. [3], 
like Barroso, et al., use the DCPI tool to check the 
reliability of an Alpha 21264 simulator by sampling 
events that are used to derive performance 
measurements for the Compaq DS-10L workstation. 

Unlike the research described above, Itzkowitz, et 
al. [7] discuss and demonstrate the use, on a dual 900 
MHz UltraSPARC-III Cu Sun Fire 280R™ system, of 
extensions to the Sun ONE Studio™ compilers and 
performance tools that provide information related to 
the data space of an application. This information, 
which can be gathered either by clock or hardware-
counter profiling, provides per-instruction details of 
memory accesses in the annotated disassembly and 
data aggregated and sorted by object structure types 
and elements. Compiler-generated padding introduces 
minor inaccuracies and collection perturbation can be 
controlled through configuration of the processors’ 
counter overflow rates. Future work described by 
Itzkowitz, et al., i.e., analysis of event data addresses 
by machine entity, e.g., memory segment, page, etc., is 
presented in [13], in which the analysis is facilitated by 
our performance evaluation framework. 

Our work is differentiated from the related research 
described above by the scale of the systems and the 
methodology used. We analyze performance data 
obtained from both eight- and 32-processor systems, 
and our work attempts to extract information about the 

dynamic behavior of a large, complex application with 
a considerably simpler, more powerful, faster, and, in 
some cases, more precise methodology. In addition, as 
described in Section 4, our methodology does not 
require source code instrumentation and it is not 
restricted to memory access behavior analysis.  

 
3. Studied Sampled Event Traces 
 

The sampled event traces studied in this paper were 
generated via the Performance Monitoring Units of 
POWER4 microprocessors of eight- and 32-processor 
IBM eServer pSeries 690s (p690s) executing TPC-C 
(Transaction Processing Performance Council). The 
PMUs were programmed to monitor events triggered 
by L2-cache data-load misses. Below we describe the 
compute platform, workload, monitored events, and 
methodology used to collect the sampled traces. 
 
3.1. Compute Platform 
 

 The eServer pSeries 690 family of SMP 
architectures includes the eight- and 32-processor 
configurations used in this study [5], which run AIX 
version 5.2. The MultiChip Module (MCM), the 
building block of the architecture, contains four chips, 
each of which is comprised of two 1.3 GHz POWER4 
processors. Usually an eight-processor system contains 
one MCM but the one used in this study contains two, 
each with four “single core good” chips, i.e., only one 
functional processor per chip.  

For the configurations under study,  
• each CPU has a 64KB L1 instruction cache 

(Icache) and a 32KB L1 data cache (Dcache) 
with 128B lines each;  

• each chip has a 1.44MB L2 unified cache, with 
128B lines;  

• the four chips on an MCM share a 128MB L3 
unified cache with 512B lines; and 

• main memory is 128GB (256GB) for the 
eight(32)- processor p690. 

 
Data private to and shared by processes are 

managed by a cache coherence protocol. As illustrated 
in Figure 1, an L2-cache miss for either type of data 
generated by a processor in an MCM can be serviced at 
five different levels of the memory hierarchy: 

 
1. local, intra-MCM L2 cache, the L2.5 level;  
2. remote, inter-MCM L2 cache, the L2.75 level; 
3. local intra-MCM L3 cache, the L3 level; 
4. remote inter-MCM L3 cache, the L3.5 level; 

and 
5. main memory. 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Two (double-core good) MCMs of the 
32-processor p690 

 
The segment and page sizes are 256MB and 4KB, 

respectively. 
 
3.2. Workload 
 

 A fully implemented TPC-C benchmark drives a 
commercially available relational database compiled 
by the IBM C for AIX version 5 compiler. TPC-C is a 
well-known benchmark [11] that emulates read-only 
and update-intensive transactions found in complex 
OLTP application environments [12]. It has been used 
widely in the database server industry as a basis of 
server performance analysis and platform comparison. 

Based on a process model, TPC-C allows for per-
process, private data address regions and a shared data 
address region that contains database state information 
and the database buffer pool, which is the largest 
consumer of physical memory containing unmodified 
data, currently on disk, and data modified by 
transactions but not yet updated on disk. Since the size 
of the database is much larger than physical memory 
and the pattern of access to disk data is unpredictable, 
disk I/O is continuous. Incoming database transactions 
are passed off to idle processes for service. The 
number of processes available for processing 
transactions is based on the number needed to achieve 
nearly 100% processor utilization. Because most 
transactions experience some number of disk I/Os, 
many transactions must be executing concurrently to 
maximize processor utilization.  
 
 
 
 

3.3. Monitored Events  
 
The sampled event traces used in this study are 

generated by the occurrence of events related to L2-
cache data-load misses. As explained in [14], these 
events were chosen because, for the experimental 
platform and workload, L2-cache misses have a much 
higher performance impact than events such as 
instruction cache misses, translation-lookaside buffer 
misses, address-only coherence operations, and 
uncached memory accesses for I/O. In addition, as 
illustrated in Figure 2, from a CPI viewpoint, TPC-C’s 
most dominant memory subsystem operation is L2-
cache miss service. Figure 2 indicates where in the 
memory hierarchy level-one (L1) cache misses are 
satisfied. L1 data-cache misses that miss in the L2 
cache are satisfied by either a level-three cache (L3 D 
hit) or main memory (Memory D hit). As described 
below, these are high-penalty misses, which if 
decreased, could have a positive impact on 
performance. 
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Figure 2:  TPC-C instruction and data access 

sites for the 32-processor p690 
 

The events related to an L2-cache data-load miss 
are classified according to the levels at which they are 
serviced and the state of the referenced cache lines. An 
L2-cache data-load miss serviced by the L2.5 level (at 
a cost of approximately 73 vs. 12 cycles for an L2 hit), 
generates either an L2.5-shared hit (L25_SHR) or 
L2.5-modified (L25_MOD) hit event. If the cache line 
is in the shared state, it resides simultaneously in more 
than one L2 cache. In this case, if one of the caches is a 
local, intra-MCM cache, it services the miss and an 
L25_SHR event occurs. If the line is in the modified 
state, it is exclusively owned by one L2 cache and 
contains more recent data than is in the backing 
physical memory. In this case, if it is a local, intra-
MCM cache, an L25_MOD event occurs.  

Similarly, L2-cache misses serviced by the L2.75 
level (at a cost of approximately 96 cycles) generate 
either an L2.75-shared hit (L275_SHR) or L2.75-
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modified hit (L275_MOD) event. In both cases the 
referenced cache line, whether in the shared or 
modified state, does not reside in any of the intra-
MCM L2 caches and, thus, is serviced by a remote L2 
cache.   

At the L3 level, the cache-hit events are called L3-
shared (L3_SHR), L3-modified (L3_MOD), L3.5-
shared (L35_SHR), and L3.5-modified (L3_MOD). 
For both L3-shared and L3.5-shared hit events, the 
requested cache line resides in more than one L3 
cache. In the former case, the line resides in the local 
L3 cache, which services the miss (at a cost of 
approximately 112 cycles). In the latter case, the line 
does not reside in the local L3 cache and, thus, is 
serviced by a remote L3 cache (at a cost of 
approximately 143 cycles). For both the L3-modified 
and L3.5-modified hit events, the line resides in only 
one L3 cache. In the former case, it is the local L3 
cache; otherwise, it is a remote L3 cache.  

For this study we consider all of these events, in 
addition to main memory hit events (MEM); L2 cache 
misses serviced by memory cost approximately 320 
cycles. However, instead of monitoring the four events 
associated with the L3 level of the memory hierarchy, 
only two events are monitored: L3 and L3.5 hits (L3 
and L35).  
 
3.4. Methodology 
 

 Valuable performance information for a section of 
code or an entire program can be collected, through the 
use of the POWER4 performance-monitoring facilities 
and tools, in the form of aggregate counts of and, for 
selected models of pSeries hardware, sampled traces of 
information associated with user-specified events. Up 
to eight events can be monitored concurrently by the 
eight PMU counters. The state of the counters is 
controlled by special-purpose registers that are 
accessible only via the operating system, through a 
programming interface that accesses them through a 
kernel extension. This interface permits, among other 
things, the specification of the events to be monitored, 
the execution points at which to start and stop counters, 
and the points at which software is to retrieve results.  

Three tools were used to collect the sampled 
performance monitor event traces used in this paper:  

 
1. tprof, a time-based profiling tool that is part of 

the AIX operating system, 
2. eprof, an in-house IBM tool that uses tprof 

functionality for data collection and reduction 
and is tied to the PMU on selected pSeries 
hardware models, and 

3. trcrpt, a utility that formats the file of events 
collected by an AIX trace and creates a time-
stamped text file of events.  

 
eprof is used to program the PMU to sample 

hardware countable events at a defined rate, the 
default, which is used in this study, being 
approximately 100 events per second per processor. 
When an event is sampled, the instruction address and 
data address (if applicable) are captured by the PMU 
and a PM interrupt is delivered. The interrupt causes 
the sample information to be extracted from the PMU 
and appended, as a trace record, to the AIX trace, along 
with an AIX trace hook, which describes the record. 
Using the AIX trace, samples can be written to disk or 
collected and summarized by a daemon. In order to 
correlate sampled events with processes/threads, the 
profiling also enables selected AIX trace hooks, such 
as those related to dispatching. 

Some sampled events occur at a fixed rate, e.g., 
processor cycles; others, e.g., cache misses, occur at a 
variable rate. Time-based sampling is appropriate for 
the former, a sample is collected every 10 
milliseconds. For the latter, if the rate of event 
occurrence is greater than the default, then eprof 
adjusts the sampling rate to approximate the default 
rate. Accordingly, the interval between PM interrupts 
can be variable. Because some events occur more often 
than others, it follows that a different number of 
samples are collected for different types of events. 
Despite the adoption of the default sampling rate and a 
10-minute workload, as shown in Table 1, this is the 
case for the studied events. Event-based sampling is 
important for long-running programs, like TPC-C, with 
extremely large numbers of events. Even using event-
based sampling, the amount of samples collected for 
the L25_SHR and L275_SHR events was so large that 
reduced eight-processor sample counts are used and the 
32-processor events are not analyzed.  

 
Table 1: Event sample counts 

 

 

Event Sample Count 
 8-processor 32-processor 
L2 312,252 259,716 
L25_MOD 313,431 197,592 
L25_SHR 748,064 n/a 
L275_MOD 126,376 167,485 
L275_SHR 835,339 n/a 
L3 301,791 170,910 
L35 121,274 172,008 
MEM 272,835 262,941 

 



4. Data Analysis 
 

Through the use of a set of tools implemented in 
Java, each sampled event is processed and stored in a 
MySQL database according to the workload being 
monitored, the number of processors used to execute 
the workload, and the event being sampled, e.g., 
database tpcc_32_g48c1 stores the sampled event 
traces associated with the L2-cache data-load misses 
resolved in the L3 caches (event g48c1) for the TPC-C 
benchmark executed on a 32-processor system. Each 
database consists of 12 tables that store information 
related to the experiment itself, e.g., a description of 
the workload and machine being used, as well as the 
effective instruction and data addresses, process and 
thread ids, and timestamp of each sample. Once the 
sampled event traces are loaded into their 
corresponding databases, a second set of tools, also 
implemented in Java, is used to query the databases 
and process the results, producing as output default and 
customized reports in the form of formatted text files, 
which are transformed into graphs via a spreadsheet 
application with built-in graphing capabilities.  
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Storing the sampled performance monitor event 
traces in databases facilitates the analyses of the data, 
providing countless ways to easily examine and 
explore the data. Accordingly, the analysis and results 
presented in the next five subsections is only a sample 
of the kind of information that can be obtained using 
this methodology.  
 
4.1. Identifying Concentrated Areas of Locality 
of Reference 
 

 The goal of identifying concentrated areas of 
locality of reference is to pinpoint application-specific 
sources of memory performance degradation 
associated with data references, and to identify 
application, operating system, or architectural changes 
that could enhance performance. The analysis is done 
using a process of refinement. First, L2-cache data load 
misses are studied with respect to their resolution sites 
across the p690 memory hierarchy. Analysis of the 
traces of the monitored events, via queries to the 
associated databases that count the number of hits to 
the different levels of the memory hierarchy, shows 
that the majority of L2-cache data-load misses are 
resolved in L3 caches and main memory, both of 
which carry high load-hit latencies when compared to 
L2-cache load latencies.  

Next the analysis focuses on these heavily hit 
resolution sites, querying the databases containing the 
L3, L35, and MEM event traces to identify 
concentrated areas of locality of reference within 

regions of the application address space. These queries 
report the number of hits to all regions, number of hits 
to each region, and number of unique cache lines 
referenced in each region (Unique_cache_line bar in 
Figure 3). Computing the percentage of hits to each 
region (Hit_% bar of Figure 3) and comparing it to the 
number of unique cache lines referenced in the region 
gives a measure of locality of reference. For TPC-C, 
this shows that the Buffer Pool and Data,BSS,Heap 
regions dominate as the effective address regions for 
data loads satisfied by local L3 caches (see Figure 3) 
and main memory. In addition, as shown in Figure 3, 
the analyses indicate that even though the 
Data,BSS,Heap region contains a higher Hit_% bar, 
i.e., accounts for a higher number of data references to 
local L3 caches, the Buffer Pool contains a smaller 
Unique_cache_line bar, i.e., data loads to the Buffer 
Pool reference a smaller set of unique cache lines and, 
therefore, exhibits greater locality of reference.  

Figure 3: Distribution of TPC-C local L3-cache 
data-load hits across address regions of the 

32-processor p690 
 

Given this information, analysis of L3-cache and 
memory data-load hits to the Buffer Pool is refined to 
study the most heavily referenced segments, pages, and 
cache lines in this region. Querying the L3 database, 
we find that of the 570 unique Buffer Pool segments 
that are touched via local L3 caches, references to only 
six of the segments accounts for over 90% of the 
Buffer Pool activity in the L3 caches. Further querying 
of the database indicates that this concentrated locality 
of reference exists down to the cache line level, i.e., the 
L2-cache data load misses resolved in local L3 caches 
generally reference the same data within the Buffer 
Pool region of the TPC-C address space.  

In [13] the analysis continues to endeavor to 
pinpoint instructions and data structures that are 
sources of performance degradation. Although the 
reported analysis falls short of identifying application 
sources of performance degradation, this analysis 
prompted modifications to the operating system’s 



(AIX’s) management of the Buffer Pool region, which 
yielded observable performance improvements. 
 
4.2. Characterizing Memory Behavior 
 

 The same set of sampled event traces can be used 
to study the effectiveness of design aspects and 
policies associated with the memory hierarchy with 
respect to workload demands. This is demonstrated in 
[14], which describes an analysis (via database queries) 
that characterizes the behavior of TPC-C shared and 
private data loads with respect to the p690 memory 
hierarchy. Since shared data, e.g., global variables and 
application code, are accessible by every TPC-C and 
database process in the system, for better performance 
this data should remain in the higher levels of the p690 
memory hierarchy until it is no longer referenced. On 
the other hand, private data, e.g., a process’s return 
stack and local variables, can be accessed only by the 
process that owns them and, therefore, for performance 
reasons should remain as close as possible to the 
executing processor.   

The analysis focuses on the Buffer Pool and 
Data,BSS,Heap regions of the TPC-C address space 
because queries to the event trace databases indicate 
that the Buffer Pool is the most frequently accessed 
shared address region, Data,BSS,Heap is the most 
frequently accessed private region, and together these 
regions are referenced by 90% of the L2-cache data-
load misses. Given the regions of interest, the next step 
in the analysis computes Data_Loads_Hits bars and 
Unique_Cache_Line bars for each address region 
across the levels of the p690 memory hierarchy. The 
distribution of the Buffer Pool (shared) data-load hits is 
depicted in Figure 4.  

This analysis identifies one of the key differences 
between TPC-C shared and private data loads: in 
general, shared data references are more costly since 
they are satisfied outside an MCM, while private data 
references are satisfied within an MCM. This and the 
fact that shared data-load hits display a more 
concentrated locality of reference than references to 
private data presents a possible source of performance 
degradation. Concentrated locality of reference is best 
illustrated by the L2.75 hit event in Figure 4. Note that 
this event has a Unique_cache_line bar that is only a 
very small portion of its Data_load_hits bar. This 
indicates significant sharing of a relatively small 
number of unique cache lines. This behavior may have 
resulted in premature L2-cache line evictions and could 
indicate a mismatch between the application and the 
architecture if the evictions were due to false sharing or 
process sharing that could be localized to an MCM.  

In contrast, an application/architecture match that is 
common to both shared and private data is 

demonstrated by TPC-C main memory accesses.  
Although accesses to main memory carry the highest 
penalty, the data shows that they are primarily 
associated with compulsory misses, i.e., the majority of 
references are to unique data.  In Figure 4, this is 
illustrated by the MEM bar having a 
Unique_cache_line bar that is a very large portion of 
its corresponding Data_load_hits bar. 
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Figure 4: Distribution of Buffer Pool data-load 

hits across 32-processor p690 memory 
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This type of analysis identifies both good and 

possibly bad matches between design aspects of the 
architecture and the workload’s memory access 
behavior, and presents targets for potential 
performance improvement via modifications to the 
application, the operating system, the architecture, or a 
combination of these. 

 
4.3. Compulsory Misses 
 

 Potential sources of performance degradation, such 
as L2-cache misses that are satisfied by main memory, 
are targets of further analysis. In the p690, when main 
memory is accessed to satisfy an L2-cache miss, the 
referenced block is placed in the L1 and L2 caches of 
the processor that generated the miss as well as in its 
MCM’s L3 cache. The first miss to the referenced 
block is compulsory, i.e., it cannot be avoided. 
Accordingly, our assumption is that the first recorded 
L2-cache miss on a block that hits in main memory is 
compulsory. This is an assumption because we are 
using sampled event traces that do not contain all L2-
cache miss events. But, since analysis of the traces 
indicates 80% of the sampled L2-cache miss events hit 
in memory only once, it is highly likely that the first hit 
in main memory is, indeed, a compulsory miss. Thus, 
at least with these sampled event traces, compulsory 
misses can be identified with a fairly high degree of 
probability.  



Using the above-stated assumption, 80% (93%) of 
the recorded main memory hits of the eight(32)-
processor p690 are due to L2-cache compulsory 
misses. This indicates that the majority of the main 
memory accesses on both systems are compulsory, 
which means that the application and architecture are 
well matched--the system is maintaining most of the 
workload in the upper levels of the memory hierarchy. 

 
4.4. Process Migration 
 

 Since a sampled event trace record includes when 
and on which processor an event occurred, as well as 
the address of the requested data reference, intra- and 
inter-MCM process migration can be identified easily 
and, as described below, its overhead can be computed. 
This is of interest because process migration from one 
chip to another can degrade performance when all or 
part of the process' working set must follow, via L2-
cache misses, the migrating process.  

 In terms of the p690, intra- and inter-MCM process 
migration, overhead can be identified in the following 
way. For intra-MCM process migration, the associated 
data migration overhead is quantified by the L2.5 hit 
events that occur after the time of process migration. 
For inter-MCM process migration, it is the L2.75 and 
L3.5 hit events that occur after process migration that 
quantify the overhead. In this paper we focus on intra-
MCM migration effects on memory performance, but 
our methodology can be applied in the same way to 
quantify inter-MCM migration effects.  

One way that sampled event traces can be used to 
observe if intra-MCM process migration is a source of 
memory performance degradation is to correlate, for 
each thread, the number of intra-MCM migrations and 
the number of L2.5 hit events. This is based on two 
assumptions: (1) the more a thread migrates the more it 
has to access the L2.5 level of the memory hierarchy to 
migrate its workload and (2) the workload for each 
thread is more or less static, i.e., the same addresses are 
referenced throughout the run.  

Using the 32-processor data and concentrating on 
intra-MCM migration, 885 unique threads are 
identified. For each of these 885 threads, the number of 
intra-MCM migrations and L2.5 hit events are 
computed. The next step in the analysis is to correlate 
these two sets of numbers, thus, identifying the threads 
that are potential sources of performance degradation. 
Figure 5 shows the correlation of intra-MCM 
migrations with only L2.5 modified cache hits (i.e., 
L2.5 cache hits where the data resides in only one 
cache); the sampled event traces for L2.5 shared cache 
hits were not collected.  

Figure 5 shows that the eight threads in the circled 
cluster are the only ones that show any correlation 

between number of migrations between chips on an 
MCM and the number of L2.5 modified cache hits 
(L2.5mod hits). The other threads, in the lower left 
corner of the graph, either migrate and do not generate 
L2.5mod hits or do not migrate within their MCMs. 
This observation, itself, is very useful since it allows 
877 of the 885 threads to be ignored and the analysis 
narrowed to the cluster of eight threads.  

 
32-Way L2.5 Modified Hts VS. Intra-MCM Migrations

0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000 5000 6000

Intra-MCM Migrations

L2
.5

 M
od

ifi
ed

 H
its

 
Figure 5: Correlation between L2.5 modified 

cache hits and intra-MCM migrations 
 

  A caveat to this correlation is that a very large 
percentage of the data references associated with the 
L2.5mod hits hit only once at the L2.5 level of the 
memory hierarchy. Thus, if a process migrates a lot 
and generates a large number of L2.5mod hits, it is 
possible that the associated accesses to the L2.5 level 
of the memory hierarchy are not associated with 
process migration. It may mean that a large portion of 
the “first time hits” are caused by single specific 
migrations and do not correlate with the total number 
of migrations. Therefore, for thoroughness, the analysis 
is redone without the L2.5mod hits that occur only 
once. Although this does not completely filter out all 
data references that may not have a correlation with the 
total number of migrations (e.g., data references that 
generate two L2.5mod hits) and since a very large 
percentage of L2.5mod hits are “first time hits,” this 
may be sufficient to show whether the above-
mentioned caveat affects the correlation analysis. 
Although not included due to space restrictions, the 
correlation analysis and associated graph are 
essentially the same, i.e., the same pattern is observed.   

Since it may be coincidental that the eight threads 
clustered in Figure 5 have high values for both metrics, 
the sampled event traces are used to analyze the data 
for each of the threads to understand how migration 
affects L2.5mod hits across time. Visualizing the 
threads in this manner allows us to see if the frequency 
of L2.5mod hits increases directly after intra-MCM 
migration. This type of behavior would imply that 



migration is, in fact, playing a role in the remote cache 
access activity and, therefore, is causing memory 
performance degradation. Note that this analysis would 
have been cumbersome without the correlation analysis 
presented above, which allowed this analysis to focus 
on eight, rather than 885, threads.  

As can be seen in Figure 6, all eight threads, at 
around 50 seconds into the trace, generate L2.5mod 
hits only when they reside on specific processors. For 
example, although thread 3 migrates constantly to 
several processors throughout the run, as do all the 
other threads, it only hits in L2.5mod when executing 
on processor 5. This indicates that, in general, 
migration does not affect L2.5mod hits. However, the 
demonstrated behavior may imply that these threads 
should not be scheduled on specific processors. This 
could reduce L2.5 accesses and, consequently, may 
reduce L2 misses.   
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Figure 6: 32-processor L2.5 modified cache 

hits by processor across time 
 
4.5. Resource Contention 
 

 Contention for available resources, such as 
memory, is another potential source of performance 
degradation. However, in large-scale systems in 
particular, it is often difficult to efficiently identify 
instances of resource contention and quantify their 
impact on performance.   

Sampled event traces can facilitate this process. For 
example, in this section we show how they can be used 
to identify contention in L2-caches shared by pairs of 
processors, an architectural characteristic of the 32-
processor system used in this study, and false sharing. 
These events are of interest since contention for cache 
resources increases the number of conflict misses and 

may cause thrashing. False sharing, which also can 
result in an increase in cache misses and thrashing, 
occurs when two processors share a cache line but 
access different data words within the line.  

The cache configuration and data addresses that are 
captured in the sampled traces permit mapping to L2-
cache sets, lines, and words within lines. The caveat, 
however, is that the L2 cache is physically addressed 
and the data addresses are virtual addresses. Thus, in 
general, the investigation of L2-cache contention and 
false sharing requires dynamic load map information, 
which was not captured during data collection. 
However, since the (database) Buffer Pool as well as 
the Kernel, Text, and Shared Library regions are 
shared address spaces, and threads access them with 
the same virtual addresses, these performance issues 
can be explored in a limited fashion and, in doing so, 
demonstrate the methodology. 
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Figure 7: Distribution of TPC-C L2-cache data-

load hits across L2-cache sets 
 

The analysis begins with cache sets and is refined to 
examine lines and then the words within lines. First, as 
depicted in Figure 7, the distribution of Buffer Pool 
data-load hits across the 2048 sets in the L2-cache is 
visualized. As can be seen, the more frequently 
accessed sets, e.g., those in the 27-124 range, stand out 
and, thus, are the target of further analysis.  

In an effort to identify L2-cache line contention, as 
depicted in Figure 8, for each of these “hot” cache 
lines, we study the access pattern of co-resident 
processor pairs, which share an L2 cache, over time. 
Although the sampled event traces correspond to a 10-
minute observation interval of the execution of TPC-C, 
for readability the pictured data represents a 100-
second snapshot. The data suggests that there are 
alternating intervals of references to this “hot” cache 
line by each of the chip co-resident processors.  Thus, 
it appears that this processor pair is contending for this 
cache line.  
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Figure 8: References to a “hot” cache line 

by a chip co-resident processor pair 
 
In an effort to identify L2-cache line contention, as 

depicted in Figure 8, for each of these “hot” cache 
lines, we study the access pattern of co-resident 
processor pairs, which share an L2 cache, over time. 
Although the sampled event traces correspond to a 10-
minute observation interval of the execution of TPC-C, 
for readability the pictured data represents a 100-
second snapshot. The data suggests that there are 
alternating intervals of references to this “hot” cache 
line by each of the chip co-resident processors.  Thus, 
it appears that this processor pair is contending for this 
cache line.  

To understand if false sharing is occurring, the 
traces can be used to study the references to words 
within the cache line. Figure 9 is the product of such a 
study–it depicts the accesses to words within the “hot” 
L2-cache line by the chip co-resident processor pair for 
the same 100-second interval.  As shown, each 
processor uses the cache line to access different data; 
this supports the hypothesis that false sharing exists 
between these two processors.    
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Figure 9: References to individual data words 
within a “hot” cache line by a chip co-resident 

processor pair  
 
 

5. Conclusions and Future Work 
 

This paper shows the potential of small and 
manageable sampled event traces by using them to 
analyze, with the help of our performance evaluation 
framework, a disparate set of performance issues for a 
large, complex application running on a multiprocessor 
system. It should be noted that these performance 
issues were investigated using one set of sampled event 
traces. 

Future work will study the degree to which sampled 
event traces represent the actual dynamic application 
behavior and will use sampled event traces to explore 
performance issues related to other applications. In 
addition, the framework will continue to be enhanced; 
in particular, user-friendly graphical user interfaces 
(GUIs) and automatic graph creation will be added. 
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