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Abstract

The prominent role of the memory hierarchy as one
of the major bottlenecks in achieving good program
performance has motivated the search for ways of
capturing  the memory  performance of an
application/machine pair that is both practical in
terms of time and space, yet detailed enough to gain
useful and relevant information. The strategy that we
endorse periodically samples events during program
execution, producing an event trace that is both
manageable and informative. As demonstrated,
adopting this strategy, a diverse set of performance
issues can be studied using the same set of traces. For
example, using one set of traces and our performance
evaluation framework, memory access performance,
process migration, compulsory and conflict misses,
and false sharing can be characterized.

1. Introduction

As the gap between the speeds of processors and
Dynamic Random Access Memory (DRAM) continues
to increase [4], the memory subsystem continues to be
a major computer design consideration. For many
computer systems, in particular future, symmetric
multiprocessor (SMP) systems, the performance of the
memory subsystem governs that of the system as a
whole [15].

Although the performance evaluation of SMP
systems, in particular their memory subsystems, is of
great import, it is becoming increasingly more
challenging. For example, although address traces
generated by the hardware or by software architecture
simulation, as is the case with SimOS [10], have been
used to analyze cache performance, as systems become
faster and caches become increasingly larger, it is more

difficult to collect traces that are long enough to
accurately model the memory hierarchy of even a
single processor. Furthermore, system simulation of
large, complex workloads executed on multiprocessors
requires as much disk space as the workload, typically
multiple terabytes by today’s standards, and usually
more memory. In addition, the effort to simulate a
large multiprocessor system is intimidating. An
alternative is a cache simulator built in hardware and
connected to a running system [9] or, as we suggest,
sampled performance monitor event traces, i.e.,
sampled event traces.

Sampled event traces are collected in real time via
on-chip performance counters that recognize events of
interest. Most state-of-the-art processors have on-chip
performance counters. For example, the Performance
Monitor Unit (PMU) of the Power4 has eight that
support the capture of over 200 events [6]. Supported
events include, among others, different types of cache
misses, TLB misses, memory operations, and fixed and
floating-point operations.

Event traces can provide information that can be
used to understand when the workload and architecture
complement one another in terms of performance and
to identify performance bottlenecks. This information
can be attained by mining the traces and analyzing the
resultant data, both of which are facilitated by our
performance evaluation framework [14], described
briefly herein. As demonstrated in this paper, one set of
sampled event traces for a large, complex application,
i.e., the TPC-C benchmark, executed on eight- and 32-
processor IBM eServer pSeries 690 systems, can be
used to study, among other things, the performance of
the memory hierarchy, to analyze the performance
implications of process migration and L2-cache
sharing, and to identify false sharing. This paper
presents insights regarding the performance issues
mentioned above and, more importantly, demonstrates



that a large amount of information can be gleaned from
one set of small and manageable sampled event traces.
The remainder of the paper is organized as follows:
Section 2 presents related research. Section 3 describes
the subject event traces, including the platform from
which the data was collected, compute platform,
workload under study, events of interest, and tools
used to collect the data. Section 4 targets data analysis,
describing the tools and methodology used, and
presents a sample of our results. Finally, Section 5
presents a summary, conclusions, and future work.

2. Related Research

Several researchers have used event traces to
characterize application behavior. For example, to
explore the performance effects of architectural
modifications, Barroso, et al. [2] use tools such as
IPROBE and DCPI (Digital Continuous Profiling
Infrastructure) [1,3] to capture event traces of
applications executed on a four-processor AlphaServer
4100 using Oracle 7.3.2 and Keeton, et al. [8] use
performance monitors on a four-processor Pentium
Pro-based server. In [2] workload characterization,
accomplished by source code instrumentation, is
coupled with simulation methodologies; in [8] the
hardware was physically modified. Desikan, et al. [3],
like Barroso, et al., use the DCPI tool to check the
reliability of an Alpha 21264 simulator by sampling
events that are used to derive performance
measurements for the Compaq DS-10L workstation.

Unlike the research described above, Itzkowitz, et
al. [7] discuss and demonstrate the use, on a dual 900
MHz UltraSPARC-III Cu Sun Fire 280R™ system, of
extensions to the Sun ONE Studio™ compilers and
performance tools that provide information related to
the data space of an application. This information,
which can be gathered either by clock or hardware-
counter profiling, provides per-instruction details of
memory accesses in the annotated disassembly and
data aggregated and sorted by object structure types
and elements. Compiler-generated padding introduces
minor inaccuracies and collection perturbation can be
controlled through configuration of the processors’
counter overflow rates. Future work described by
Itzkowitz, et al., i.e., analysis of event data addresses
by machine entity, e.g., memory segment, page, etc., is
presented in [13], in which the analysis is facilitated by
our performance evaluation framework.

Our work is differentiated from the related research
described above by the scale of the systems and the
methodology used. We analyze performance data
obtained from both eight- and 32-processor systems,
and our work attempts to extract information about the

dynamic behavior of a large, complex application with
a considerably simpler, more powerful, faster, and, in
some cases, more precise methodology. In addition, as
described in Section 4, our methodology does not
require source code instrumentation and it is not
restricted to memory access behavior analysis.

3. Studied Sampled Event Traces

The sampled event traces studied in this paper were
generated via the Performance Monitoring Units of
POWER4 microprocessors of eight- and 32-processor
IBM eServer pSeries 690s (p690s) executing TPC-C
(Transaction Processing Performance Council). The
PMUs were programmed to monitor events triggered
by L2-cache data-load misses. Below we describe the
compute platform, workload, monitored events, and
methodology used to collect the sampled traces.

3.1. Compute Platform

The eServer pSeries 690 family of SMP
architectures includes the eight- and 32-processor
configurations used in this study [5], which run AIX
version 5.2. The MultiChip Module (MCM), the
building block of the architecture, contains four chips,
each of which is comprised of two 1.3 GHz POWER4
processors. Usually an eight-processor system contains
one MCM but the one used in this study contains two,
each with four “single core good” chips, i.e., only one
functional processor per chip.

For the configurations under study,

e cach CPU has a 64KB L1 instruction cache
(Icache) and a 32KB L1 data cache (Dcache)
with 128B lines each;

e cach chip has a 1.44MB L2 unified cache, with
128B lines;

e the four chips on an MCM share a 128MB L3
unified cache with 512B lines; and

e main memory is 128GB (256GB) for the
eight(32)- processor p690.

Data private to and shared by processes are
managed by a cache coherence protocol. As illustrated
in Figure 1, an L2-cache miss for either type of data
generated by a processor in an MCM can be serviced at
five different levels of the memory hierarchy:

local, intra-MCM L2 cache, the L2.5 level,
remote, inter-MCM L2 cache, the L2.75 level;
local intra-MCM L3 cache, the L3 level;
remote inter-MCM L3 cache, the L3.5 level;
and

5. main memory.
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Figure 1: Two (double-core good) MCMs of the
32-processor p690

The segment and page sizes are 256MB and 4KB,
respectively.

3.2. Workload

A fully implemented TPC-C benchmark drives a
commercially available relational database compiled
by the IBM C for AIX version 5 compiler. TPC-C is a
well-known benchmark [11] that emulates read-only
and update-intensive transactions found in complex
OLTP application environments [12]. It has been used
widely in the database server industry as a basis of
server performance analysis and platform comparison.

Based on a process model, TPC-C allows for per-
process, private data address regions and a shared data
address region that contains database state information
and the database buffer pool, which is the largest
consumer of physical memory containing unmodified
data, currently on disk, and data modified by
transactions but not yet updated on disk. Since the size
of the database is much larger than physical memory
and the pattern of access to disk data is unpredictable,
disk I/O is continuous. Incoming database transactions
are passed off to idle processes for service. The
number of processes available for processing
transactions is based on the number needed to achieve
nearly 100% processor utilization. Because most
transactions experience some number of disk I/Os,
many transactions must be executing concurrently to
maximize processor utilization.

3.3. Monitored Events

The sampled event traces used in this study are
generated by the occurrence of events related to L2-
cache data-load misses. As explained in [14], these
events were chosen because, for the experimental
platform and workload, L2-cache misses have a much
higher performance impact than events such as
instruction cache misses, translation-lookaside buffer
misses, address-only coherence operations, and
uncached memory accesses for I/0. In addition, as
illustrated in Figure 2, from a CPI viewpoint, TPC-C’s
most dominant memory subsystem operation is L2-
cache miss service. Figure 2 indicates where in the
memory hierarchy level-one (L1) cache misses are
satisfied. L1 data-cache misses that miss in the L2
cache are satisfied by either a level-three cache (L3 D
hit) or main memory (Memory D hit). As described
below, these are high-penalty misses, which if
decreased, could have a positive impact on
performance.
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Figure 2: TPC-C instruction and data access
sites for the 32-processor p690

The events related to an L2-cache data-load miss
are classified according to the levels at which they are
serviced and the state of the referenced cache lines. An
L2-cache data-load miss serviced by the L2.5 level (at
a cost of approximately 73 vs. 12 cycles for an L2 hit),
generates either an L2.5-shared hit (L25 SHR) or
L2.5-modified (L25_MOD) hit event. If the cache line
is in the shared state, it resides simultaneously in more
than one L2 cache. In this case, if one of the caches is a
local, intra-MCM cache, it services the miss and an
L25 SHR event occurs. If the line is in the modified
state, it is exclusively owned by one L2 cache and
contains more recent data than is in the backing
physical memory. In this case, if it is a local, intra-
MCM cache, an L.25 MOD event occurs.

Similarly, L2-cache misses serviced by the L2.75
level (at a cost of approximately 96 cycles) generate
either an L2.75-shared hit (L275 SHR) or L2.75-



modified hit (L275 MOD) event. In both cases the
referenced cache line, whether in the shared or
modified state, does not reside in any of the intra-
MCM L2 caches and, thus, is serviced by a remote L2
cache.

At the L3 level, the cache-hit events are called L3-
shared (L3_SHR), L3-modified (L3 _MOD), L3.5-
shared (L35 SHR), and L3.5-modified (L3 _MOD).
For both L3-shared and L3.5-shared hit events, the
requested cache line resides in more than one L3
cache. In the former case, the line resides in the local
L3 cache, which services the miss (at a cost of
approximately 112 cycles). In the latter case, the line
does not reside in the local L3 cache and, thus, is
serviced by a remote L3 cache (at a cost of
approximately 143 cycles). For both the L3-modified
and L3.5-modified hit events, the line resides in only
one L3 cache. In the former case, it is the local L3
cache; otherwise, it is a remote L3 cache.

For this study we consider all of these events, in
addition to main memory hit events (MEM); L2 cache
misses serviced by memory cost approximately 320
cycles. However, instead of monitoring the four events
associated with the L3 level of the memory hierarchy,
only two events are monitored: L3 and L3.5 hits (L3
and L35).

3.4. Methodology

Valuable performance information for a section of
code or an entire program can be collected, through the
use of the POWER4 performance-monitoring facilities
and tools, in the form of aggregate counts of and, for
selected models of pSeries hardware, sampled traces of
information associated with user-specified events. Up
to eight events can be monitored concurrently by the
eight PMU counters. The state of the counters is
controlled by special-purpose registers that are
accessible only via the operating system, through a
programming interface that accesses them through a
kernel extension. This interface permits, among other
things, the specification of the events to be monitored,
the execution points at which to start and stop counters,
and the points at which software is to retrieve results.

Three tools were used to collect the sampled
performance monitor event traces used in this paper:

1. tprof, a time-based profiling tool that is part of
the AIX operating system,

2. eprof, an in-house IBM tool that uses tprof
functionality for data collection and reduction
and is tied to the PMU on selected pSeries
hardware models, and

3. trerpt, a utility that formats the file of events
collected by an AIX trace and creates a time-
stamped text file of events.

eprof is used to program the PMU to sample
hardware countable events at a defined rate, the
default, which is wused in this study, being
approximately 100 events per second per processor.
When an event is sampled, the instruction address and
data address (if applicable) are captured by the PMU
and a PM interrupt is delivered. The interrupt causes
the sample information to be extracted from the PMU
and appended, as a trace record, to the AIX trace, along
with an AIX trace hook, which describes the record.
Using the AIX trace, samples can be written to disk or
collected and summarized by a daemon. In order to
correlate sampled events with processes/threads, the
profiling also enables selected AIX trace hooks, such
as those related to dispatching.

Some sampled events occur at a fixed rate, e.g.,
processor cycles; others, e.g., cache misses, occur at a
variable rate. Time-based sampling is appropriate for
the former, a sample is collected every 10
milliseconds. For the latter, if the rate of event
occurrence is greater than the default, then eprof
adjusts the sampling rate to approximate the default
rate. Accordingly, the interval between PM interrupts
can be variable. Because some events occur more often
than others, it follows that a different number of
samples are collected for different types of events.
Despite the adoption of the default sampling rate and a
10-minute workload, as shown in Table 1, this is the
case for the studied events. Event-based sampling is
important for long-running programs, like TPC-C, with
extremely large numbers of events. Even using event-
based sampling, the amount of samples collected for
the L25 SHR and L275 SHR events was so large that
reduced eight-processor sample counts are used and the
32-processor events are not analyzed.

Table 1: Event sample counts

Event Sample Count
8-processor 32-processor

L2 312,252 259,716
L25 MOD 313,431 197,592
L25 SHR 748,064 n/a

L275 MOD 126,376 167,485
L275 SHR 835,339 n/a

L3 301,791 170,910
L35 121,274 172,008
MEM 272,835 262,941




4. Data Analysis

Through the use of a set of tools implemented in
Java, each sampled event is processed and stored in a
MySQL database according to the workload being
monitored, the number of processors used to execute
the workload, and the event being sampled, e.g.,
database tpcc 32 g48cl stores the sampled event
traces associated with the L2-cache data-load misses
resolved in the L3 caches (event g48cl) for the TPC-C
benchmark executed on a 32-processor system. Each
database consists of 12 tables that store information
related to the experiment itself, e.g., a description of
the workload and machine being used, as well as the
effective instruction and data addresses, process and
thread ids, and timestamp of each sample. Once the
sampled event traces are loaded into their
corresponding databases, a second set of tools, also
implemented in Java, is used to query the databases
and process the results, producing as output default and
customized reports in the form of formatted text files,
which are transformed into graphs via a spreadsheet
application with built-in graphing capabilities.

Storing the sampled performance monitor event
traces in databases facilitates the analyses of the data,
providing countless ways to easily examine and
explore the data. Accordingly, the analysis and results
presented in the next five subsections is only a sample
of the kind of information that can be obtained using
this methodology.

4.1. Identifying Concentrated Areas of Locality
of Reference

The goal of identifying concentrated areas of
locality of reference is to pinpoint application-specific
sources of memory performance degradation
associated with data references, and to identify
application, operating system, or architectural changes
that could enhance performance. The analysis is done
using a process of refinement. First, L2-cache data load
misses are studied with respect to their resolution sites
across the p690 memory hierarchy. Analysis of the
traces of the monitored events, via queries to the
associated databases that count the number of hits to
the different levels of the memory hierarchy, shows
that the majority of L2-cache data-load misses are
resolved in L3 caches and main memory, both of
which carry high load-hit latencies when compared to
L2-cache load latencies.

Next the analysis focuses on these heavily hit
resolution sites, querying the databases containing the
L3, L35, and MEM event traces to identify
concentrated areas of locality of reference within

regions of the application address space. These queries
report the number of hits to all regions, number of hits
to each region, and number of unique cache lines
referenced in each region (Unique cache line bar in
Figure 3). Computing the percentage of hits to each
region (Hit % bar of Figure 3) and comparing it to the
number of unique cache lines referenced in the region
gives a measure of locality of reference. For TPC-C,
this shows that the Buffer Pool and Data,BSS,Heap
regions dominate as the effective address regions for
data loads satisfied by local L3 caches (see Figure 3)
and main memory. In addition, as shown in Figure 3,
the analyses indicate that even though the
Data,BSS,Heap region contains a higher Hit % bar,
i.e., accounts for a higher number of data references to
local L3 caches, the Buffer Pool contains a smaller
Unique_cache_line bar, i.e., data loads to the Buffer
Pool reference a smaller set of unique cache lines and,
therefore, exhibits greater locality of reference.

Distribution of L3 Data Load Hits
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Figure 3: Distribution of TPC-C local L3-cache
data-load hits across address regions of the
32-processor p690

Given this information, analysis of L3-cache and
memory data-load hits to the Buffer Pool is refined to
study the most heavily referenced segments, pages, and
cache lines in this region. Querying the L3 database,
we find that of the 570 unique Buffer Pool segments
that are touched via local L3 caches, references to only
six of the segments accounts for over 90% of the
Buffer Pool activity in the L3 caches. Further querying
of the database indicates that this concentrated locality
of reference exists down to the cache line level, i.e., the
L2-cache data load misses resolved in local L3 caches
generally reference the same data within the Buffer
Pool region of the TPC-C address space.

In [13] the analysis continues to endeavor to
pinpoint instructions and data structures that are
sources of performance degradation. Although the
reported analysis falls short of identifying application
sources of performance degradation, this analysis
prompted modifications to the operating system’s




(AIX’s) management of the Buffer Pool region, which
yielded observable performance improvements.

4.2. Characterizing Memory Behavior

The same set of sampled event traces can be used
to study the effectiveness of design aspects and
policies associated with the memory hierarchy with
respect to workload demands. This is demonstrated in
[14], which describes an analysis (via database queries)
that characterizes the behavior of TPC-C shared and
private data loads with respect to the p690 memory
hierarchy. Since shared data, e.g., global variables and
application code, are accessible by every TPC-C and
database process in the system, for better performance
this data should remain in the higher levels of the p690
memory hierarchy until it is no longer referenced. On
the other hand, private data, e.g., a process’s return
stack and local variables, can be accessed only by the
process that owns them and, therefore, for performance
reasons should remain as close as possible to the
executing processor.

The analysis focuses on the Buffer Pool and
Data,BSS,Heap regions of the TPC-C address space
because queries to the event trace databases indicate
that the Buffer Pool is the most frequently accessed
shared address region, Data,BSS,Heap is the most
frequently accessed private region, and together these
regions are referenced by 90% of the L2-cache data-
load misses. Given the regions of interest, the next step
in the analysis computes Data Loads Hits bars and
Unique Cache Line bars for each address region
across the levels of the p690 memory hierarchy. The
distribution of the Buffer Pool (shared) data-load hits is
depicted in Figure 4.

This analysis identifies one of the key differences
between TPC-C shared and private data loads: in
general, shared data references are more costly since
they are satisfied outside an MCM, while private data
references are satisfied within an MCM. This and the
fact that shared data-load hits display a more
concentrated locality of reference than references to
private data presents a possible source of performance
degradation. Concentrated locality of reference is best
illustrated by the L2.75 hit event in Figure 4. Note that
this event has a Unique cache line bar that is only a
very small portion of its Data load hits bar. This
indicates significant sharing of a relatively small
number of unique cache lines. This behavior may have
resulted in premature L2-cache line evictions and could
indicate a mismatch between the application and the
architecture if the evictions were due to false sharing or
process sharing that could be localized to an MCM.

In contrast, an application/architecture match that is
common to both shared and private data is

demonstrated by TPC-C main memory accesses.
Although accesses to main memory carry the highest
penalty, the data shows that they are primarily
associated with compulsory misses, i.e., the majority of
references are to unique data. In Figure 4, this is
illustrated by the MEM bar having a
Unique_cache line bar that is a very large portion of
its corresponding Data_load_hits bar.

Distribution of Data Load Hits: BUFFER_POOL
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Figure 4: Distribution of Buffer Pool data-load
hits across 32-processor p690 memory
hierarchy

This type of analysis identifies both good and
possibly bad matches between design aspects of the
architecture and the workload’s memory access
behavior, and presents targets for potential
performance improvement via modifications to the
application, the operating system, the architecture, or a
combination of these.

4.3. Compulsory Misses

Potential sources of performance degradation, such
as L2-cache misses that are satisfied by main memory,
are targets of further analysis. In the p690, when main
memory is accessed to satisfy an L2-cache miss, the
referenced block is placed in the L1 and L2 caches of
the processor that generated the miss as well as in its
MCM’s L3 cache. The first miss to the referenced
block is compulsory, i.e., it cannot be avoided.
Accordingly, our assumption is that the first recorded
L2-cache miss on a block that hits in main memory is
compulsory. This is an assumption because we are
using sampled event traces that do not contain all L2-
cache miss events. But, since analysis of the traces
indicates 80% of the sampled L2-cache miss events hit
in memory only once, it is highly likely that the first hit
in main memory is, indeed, a compulsory miss. Thus,
at least with these sampled event traces, compulsory
misses can be identified with a fairly high degree of
probability.



Using the above-stated assumption, 80% (93%) of
the recorded main memory hits of the eight(32)-
processor p690 are due to L2-cache compulsory
misses. This indicates that the majority of the main
memory accesses on both systems are compulsory,
which means that the application and architecture are
well matched--the system is maintaining most of the
workload in the upper levels of the memory hierarchy.

4.4. Process Migration

Since a sampled event trace record includes when
and on which processor an event occurred, as well as
the address of the requested data reference, intra- and
inter-MCM process migration can be identified easily
and, as described below, its overhead can be computed.
This is of interest because process migration from one
chip to another can degrade performance when all or
part of the process' working set must follow, via L2-
cache misses, the migrating process.

In terms of the p690, intra- and inter-MCM process
migration, overhead can be identified in the following
way. For intra-MCM process migration, the associated
data migration overhead is quantified by the L2.5 hit
events that occur after the time of process migration.
For inter-MCM process migration, it is the L2.75 and
L3.5 hit events that occur after process migration that
quantify the overhead. In this paper we focus on intra-
MCM migration effects on memory performance, but
our methodology can be applied in the same way to
quantify inter-MCM migration effects.

One way that sampled event traces can be used to
observe if intra-MCM process migration is a source of
memory performance degradation is to correlate, for
each thread, the number of intra-MCM migrations and
the number of L2.5 hit events. This is based on two
assumptions: (1) the more a thread migrates the more it
has to access the L2.5 level of the memory hierarchy to
migrate its workload and (2) the workload for each
thread is more or less static, i.e., the same addresses are
referenced throughout the run.

Using the 32-processor data and concentrating on
intra-MCM  migration, 885 unique threads are
identified. For each of these 885 threads, the number of
intra-MCM migrations and L2.5 hit events are
computed. The next step in the analysis is to correlate
these two sets of numbers, thus, identifying the threads
that are potential sources of performance degradation.
Figure 5 shows the correlation of intra-MCM
migrations with only L2.5 modified cache hits (i.e.,
L2.5 cache hits where the data resides in only one
cache); the sampled event traces for L2.5 shared cache
hits were not collected.

Figure 5 shows that the eight threads in the circled
cluster are the only ones that show any correlation

between number of migrations between chips on an
MCM and the number of L2.5 modified cache hits
(L2.5mod hits). The other threads, in the lower left
corner of the graph, either migrate and do not generate
L2.5mod hits or do not migrate within their MCMs.
This observation, itself, is very useful since it allows
877 of the 885 threads to be ignored and the analysis
narrowed to the cluster of eight threads.

32-Way L2.5 Modified Hts VS. Intra-MCM Migrations

25000

m
.
20000 +

15000

10000

L2.5 Modified Hits

5000

0 .
0 1000 2000 3000 4000 5000 6000

Intra-MCM Migrations

Figure 5: Correlation between L2.5 modified
cache hits and intra-MCM migrations

A caveat to this correlation is that a very large
percentage of the data references associated with the
L2.5mod hits hit only once at the L2.5 level of the
memory hierarchy. Thus, if a process migrates a lot
and generates a large number of L2.5mod hits, it is
possible that the associated accesses to the L2.5 level
of the memory hierarchy are not associated with
process migration. It may mean that a large portion of
the “first time hits” are caused by single specific
migrations and do not correlate with the total number
of migrations. Therefore, for thoroughness, the analysis
is redone without the L2.5mod hits that occur only
once. Although this does not completely filter out all
data references that may not have a correlation with the
total number of migrations (e.g., data references that
generate two L2.5mod hits) and since a very large
percentage of L.2.5mod hits are “first time hits,” this
may be sufficient to show whether the above-
mentioned caveat affects the correlation analysis.
Although not included due to space restrictions, the
correlation analysis and associated graph are
essentially the same, i.e., the same pattern is observed.

Since it may be coincidental that the eight threads
clustered in Figure 5 have high values for both metrics,
the sampled event traces are used to analyze the data
for each of the threads to understand how migration
affects L2.5mod hits across time. Visualizing the
threads in this manner allows us to see if the frequency
of L2.5mod hits increases directly after intra-MCM
migration. This type of behavior would imply that



migration is, in fact, playing a role in the remote cache
access activity and, therefore, is causing memory
performance degradation. Note that this analysis would
have been cumbersome without the correlation analysis
presented above, which allowed this analysis to focus
on eight, rather than 885, threads.

As can be seen in Figure 6, all eight threads, at
around 50 seconds into the trace, generate L2.5mod
hits only when they reside on specific processors. For
example, although thread 3 migrates constantly to
several processors throughout the run, as do all the
other threads, it only hits in L2.5mod when executing
on processor 5. This indicates that, in general,
migration does not affect L2.5mod hits. However, the
demonstrated behavior may imply that these threads
should not be scheduled on specific processors. This
could reduce L2.5 accesses and, consequently, may
reduce L2 misses.

may cause thrashing. False sharing, which also can
result in an increase in cache misses and thrashing,
occurs when two processors share a cache line but
access different data words within the line.

The cache configuration and data addresses that are
captured in the sampled traces permit mapping to L2-
cache sets, lines, and words within lines. The caveat,
however, is that the L2 cache is physically addressed
and the data addresses are virtual addresses. Thus, in
general, the investigation of L2-cache contention and
false sharing requires dynamic load map information,
which was not captured during data collection.
However, since the (database) Buffer Pool as well as
the Kernel, Text, and Shared Library regions are
shared address spaces, and threads access them with
the same virtual addresses, these performance issues
can be explored in a limited fashion and, in doing so,
demonstrate the methodology.

32-Way L2.5 Modified Hits By Processor Across Time
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Figure 6: 32-processor L2.5 modified cache
hits by processor across time

4.5. Resource Contention

Contention for available resources, such as
memory, is another potential source of performance
degradation. However, in large-scale systems in
particular, it is often difficult to efficiently identify
instances of resource contention and quantify their
impact on performance.

Sampled event traces can facilitate this process. For
example, in this section we show how they can be used
to identify contention in L2-caches shared by pairs of
processors, an architectural characteristic of the 32-
processor system used in this study, and false sharing.
These events are of interest since contention for cache
resources increases the number of conflict misses and

L2 Data-Load Hits by Cache Set
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Figure 7: Distribution of TPC-C L2-cache data-
load hits across L2-cache sets

The analysis begins with cache sets and is refined to
examine lines and then the words within lines. First, as
depicted in Figure 7, the distribution of Buffer Pool
data-load hits across the 2048 sets in the L2-cache is
visualized. As can be seen, the more frequently
accessed sets, e.g., those in the 27-124 range, stand out
and, thus, are the target of further analysis.

In an effort to identify L2-cache line contention, as
depicted in Figure 8, for each of these “hot” cache
lines, we study the access pattern of co-resident
processor pairs, which share an L2 cache, over time.
Although the sampled event traces correspond to a 10-
minute observation interval of the execution of TPC-C,
for readability the pictured data represents a 100-
second snapshot. The data suggests that there are
alternating intervals of references to this “hot” cache
line by each of the chip co-resident processors. Thus,
it appears that this processor pair is contending for this
cache line.
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Figure 8: References to a “hot” cache line
by a chip co-resident processor pair

In an effort to identify L2-cache line contention, as
depicted in Figure 8, for each of these “hot” cache
lines, we study the access pattern of co-resident
processor pairs, which share an L2 cache, over time.
Although the sampled event traces correspond to a 10-
minute observation interval of the execution of TPC-C,
for readability the pictured data represents a 100-
second snapshot. The data suggests that there are
alternating intervals of references to this “hot” cache
line by each of the chip co-resident processors. Thus,
it appears that this processor pair is contending for this
cache line.

To understand if false sharing is occurring, the
traces can be used to study the references to words
within the cache line. Figure 9 is the product of such a
study—it depicts the accesses to words within the “hot”
L2-cache line by the chip co-resident processor pair for
the same 100-second interval. @ As shown, each
processor uses the cache line to access different data;
this supports the hypothesis that false sharing exists
between these two processors.

Distribution of L2-Cache Data-Load
Hits by Words Within a Memory Block
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Figure 9: References to individual data words
within a “hot” cache line by a chip co-resident
processor pair

5. Conclusions and Future Work

This paper shows the potential of small and
manageable sampled event traces by using them to
analyze, with the help of our performance evaluation
framework, a disparate set of performance issues for a
large, complex application running on a multiprocessor
system. It should be noted that these performance
issues were investigated using one set of sampled event
traces.

Future work will study the degree to which sampled
event traces represent the actual dynamic application
behavior and will use sampled event traces to explore
performance issues related to other applications. In
addition, the framework will continue to be enhanced;
in particular, user-friendly graphical user interfaces
(GUISs) and automatic graph creation will be added.
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