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Abstract

Processor  virtualization  allows  concurrent
operating system execution environments to co-exist
and share a fixed set of hardware resources. This
allows higher system utilizations than possible by
dedicating resources to particular environments. One
of its many advantages is that this technology
facilitates server consolidation, reducing both
operating costs and power consumption. However,
virtualization incurs a performance penalty due to
added complexity and the conflicts arising from
sharing a fixed set of hardware resources. It is
important to identify and understand the sources of the
overheads in order to guide tuning/optimization efforts
to reduce these performance costs. In this research, we
outline and use a performance evaluation framework
and methodology that uses sampled event traces to
identify and understand the virtualization overheads
with respect to the memory subsystem performance.

1. Introduction

Processor virtualization facilitates the time-sharing
of a fixed set of hardware resources by a number of
different operating system execution environments.
Virtualization technology dates back to the 1970s when
virtual machine monitors (VMM), a.k.a hypervisors,
became popular as part of the IBM 370 mainframe
series of servers [4]. Since that time, the perceived
value of virtualization declined with the introduction of
low-cost mini- and personal computers. Currently,
virtualization technology is re-emerging in new
environments, such as UNIX-based systems, as a
response to the challenge of reducing data center costs.

In this work, we study the POWER virtualization
environment and the POWER hypervisor [12]. The
POWER hypervisor resides in flash memory and

provides the resource isolation that allows the physical
hardware to be shared by independent execution
environments. It supports up to 254 concurrent
partitions, each of which can be running any of the
supported operating systems [5]. This allows multiple,
concurrent execution environments to co-exist and
multiplex on the same set of hardware resources.

The POWER hypervisor supports two different
kinds of partitioning: dedicated partitioning and micro-
partitioning. The former assigns physical processors to
a partition and does not allow the sharing of processors
across partitions. It is supported by POWERA4-based
servers, while POWERb5-based servers additionally
support micro-partitioning, which assigns virtual
processors (VPs) to a partition and are mapped to
physical processors by the POWER hypervisor.
Micro-partitioning supports the sharing of processing
units across partitions and, therefore, allows more
active micro-partitions than physical processors. On
POWERS5-based servers, 1/O virtualization is possible
using either type of partitioning.

One of the major benefits of virtualization is server
consolidation. Consolidating multiple execution
environments on a single hardware resource cuts down
operating costs and reduces power consumption. This
consolidation also allows increased security and higher
availability [4].

Although beneficial in many ways, virtualization has
an inherent performance penalty associated with it.
This is largely due to contention for a fixed set of
hardware resources, such as system caches, by the
concurrent environments. Furthermore, the addition of
a hypervisor layer to the system architecture increases
complexity in that the hypervisor runs below each
operating system and must provide isolation among the
partitions. Though many aspects of virtualization have



direct hardware support, such as requiring that certain
instructions can only be executed by the hypervisor,
other resources such as interrupt management require
direct participation of the hypervisor.

It is well documented that the memory subsystem is
the major bottleneck in application performance [6].
For symmetric multiprocessor systems (SMPs), it often
governs the performance of the whole system.
Accordingly, this research looks at identifying and
understanding the memory performance overhead
incurred due to executing an application in a
virtualized environment.

2. Related Research

Event tracing is a well known approach for
obtaining detailed data about application execution. Lu
and Reed [9] use a methodology based on curve fitting
to obtain application signatures from event traces. This
approach allows comparison of performance metrics
across different hardware and software platforms.
Performance effects of architectural modifications are
studied by Barroso, et al. [2] using tools like IPROBE
and DPClI (Dynamic  Continuous  Profiling
Infrastructure) [1, 3] to capture event traces of
applications executed on a four-processor AlphaServer
4100 using Oracle 7.3.2. Behavior of an OLTP
workload is studied by Keaton et al. [8] using
performance monitors on a four-processor Pentium
Pro-based server. Barroso et al. use source code
instrumentation and simulation methodologies to
characterize workloads, whereas, Keeton, et al.
characterize workloads by physically changing the
hardware. Desikan, et al. [3] also use DPCI tool to
quantify the reliability of an Alpha 21264 simulator by
sampling certain events that are used to derive
performance measurements for a Compaq DS-10L
workstation.

To the best of our knowledge, event tracing has not
yet been used to study the performance of virtualized
environments. And, virtualization in its present form is
a new area of research and its emergence is discussed
by Figueiredo, et al. [4]. This paper describes our
work in this area, i.e., the use of event tracing to study
the performance of virtualized environments. This
endeavor builds upon our previous work [10, 11],
which explores the use of sampled event traces for
profiling memory subsystem performance of workloads
executed on IBM eServer pSeries p690 systems.

3. Data Collection

The performance data collected in this study are
traces of sampled events associated with data-load hits
generated by TRADE3 while executing on two

different configurations of a four-processor 1BM
eServer pSeriers 570 (p570) systems. Below, in
addition to discussing the TRADE3 workload and the
experimental platforms, we describe the monitored
events and the methodology used to collect and analyze
the event traces.

3.1 Experimental Platform: IBM eServer

pSeries 570

The research and data collection in this study were
performed on a four-processor p570 [7], a symmetric
multiprocessor (SMP) architecture. The basic building
block of the p570 is a Dual Chip Module (DCM),
which contains one POWERS5 chip and an L3 cache
chip. Each POWERS chip is comprised of two 1.65
GHz CPUs. Each CPU has a 32KB level-one (L1)
instruction cache and a 64KB L1 data cache; the two
CPUs on a chip share a 1.9MB unified level-two (L2)
cache. Each DCM has a 36MB unified level-three (L3)
cache and 8GB of memory, giving a total of 16GB for
the machine. The p570 system used in this study has
four processors and two DCMs; it runs the AIX version
5.3 operating system. The conceptual layout of a p570
is given in Figure 1.

The POWERS storage structure is distributed
memory architecture. Each processor can address all
memory and sees a single shared-memory resource. As
such, a single DCM and its L3 cache and memory are
packaged on a single card. Access to memory
associated with another DCM is accomplished through
the fabric buses.
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Figure 1. Two-DCM p570 configuration

The experiments discussed in this paper were
carried out in the two different machine configurations
described below:

= One Partition (1P) Configuration: In this case,

the application has a dedicated partition with all
four processors allocated to this partition. This
is the non-virtualized environment.

=  Five Partition (5P) Configuration: In this case,

the p570 is micro-partitioned into five
partitions; each partition is assigned two virtual
CPUs and runs one copy of the TRADE3
benchmark.

3.2 Workload: TRADE3

TRADES3 is the third generation of the WebSphere
end-to-end benchmark and performance sample




application. It models an online stock brokerage
application and uses a real world workload that drives
WebSphere's implementation of J2EE 1.3, Web
Services, and other key Web Application Server
components. TRADE3 execution involves three
components: a client application that generates the
workload, a database (in this case DB2), and a Web
Application Server (in this case WebSphere). In this
research the database and Web Application Server run
concurrently in each partition, and the client
application drivers are independent external systems
and not part of the measured environment.

3.3 Monitored Events

The p570 has three levels of cache and a shared
main memory. A data-load miss in an L2 cache can be
serviced by the L2 cache of another DCM (L2.75 hit),
the L3 cache on its (the miss-generating) DCM (L3
hit), the L3 cache on another DCM (L3.75 hit), or main
memory. Memory hits can be further classified as
either local memory (LMEM) hits or remote memory
(RMEM) hits, depending upon the location of the
memory module where the referenced data was found.

Cache hits can be further classified by the state of
the cache line. Accordingly, a cache hit is either a
shared hit or a modified hit.

The data collected for this study includes the
following events:

e L2 data-load hits

L2.75 shared data-load hits (L275_SHR)

L3 data-load hits

L3.75 shared data-load hits (L375_SHR)

L.3.75 modified data—load hits (L375_MOD)

Local memory data-load hits (LMEM)

Remote memory data-load hits (RMEM)
The approximate latencies associated with each
event are found in Table 1 below.

Event Load Latency
L2 14 cycles
L275 121 cycles

L3 91 cycles
L375 205 cycles
LMEM 281 cycles
RMEM 307 cycles

Table 1. Approximate Data-load Latencies

3.4 Sampled Event Traces

The POWERS5 microprocessor includes
Performance Monitoring Unit (PMU) counters that
permit up to six concurrent events to be monitored. The
PMU is capable of storing aggregate counts and
capturing event records, which include instruction and
data addresses associated with events.

In this work, an in-house IBM tool called eprof,
which uses the AIX operating system’s time-based
profiling tool, tprof, is used to program the PMU to
sample hardware countable events at a defined target
rate. The performance monitor allows samples to be
collected using a time-based approach, or based on
counts of specific events.

Sample information is recorded upon the periodic
occurrence of the monitored event. The information
gathered indicates the timestamp of the event, the
effective instruction address and for load/store
operations, the data address of the instruction, the
process and thread IDs of the software entity that
triggered the event.

Time based profiling is accomplished if the event
being monitored is processor cycles. In contrast, if the
event is a variable event, such as cache misses, and if
the rate of occurrence is greater than the sampling rate,
then eprof adjusts the sampling rate to approximate the
specified sampling rate. Accordingly, a different
number of samples may be collected for different types
of events.

When an event is sampled, the sample information
and an AIX trace hook, which identifies the trace
record, is used to generate a trace record and write the
record to a file. A trace formatting tool, called trcrpt,
creates a time-stamped text file of events.

For this research, 100 events per second per CPU
were collected for a 120-second interval of the steady-
state execution of TRADE3. The size of the data set
collected for the monitored events given in Table 2.

Event Sample Count
1 Partition 5 Partitions

L2 64139 30301
L275 SHR 21774 3486
L3 60772 28114
L375_MOD 23653 7280
L375_SHR 7843 10987
LMEM 7221 13427
RMEM 7888 13580

Table 2. Event Sample Counts

3.5 Performance Analysis Toolkit

Figure 2 depicts our Performance Evaluation
Framework, which includes a toolkit implemented in
Java that is used to process sampled events and store
them in a MySQL database according to the workload
being monitored, the number of processors, and the
event being sampled. Each database has 12 tables that
store information related to an experiment. Once an
experiment’s events are loaded into a database, a
second set of Java tools is used to query the database
and generate reports in text format. Text reports are



imported into a spreadsheet application, and graphs are
generated.

Storing an experiment’s events in a database
facilitates data analysis and provides an easy-to-use
interface to explore the data. The results presented in
this paper are just a sample of the information that can
be obtained using this toolkit. The potential of our
performance evaluation framework is exemplified in
[10] and [11].
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Figure 2. Performance Evaluation Framework
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4. Results

The analyses and results presented in this section
compare two different sets of sampled event traces,
which were collected using the two different machine
configurations described in Section 3.1. The first set,
called 1P, is the set of event records captured during
the execution of TRADE3 on one dedicated p570
partition. This data set represents our baseline data in
that TRADE3 is executing exclusively on the 4-
processor p570, i.e., hardware is not being shared with
any other application or execution environment. In
contrast, the second set, 5P, captures the execution of
TRADE3 in a micro-partitioned environment; it
consists of traces captured while monitoring one of the
active micro-partitions. In this case, there are five
active micro-partitions executing concurrently on the
p570. Each is assigned two virtual processors (\VPs)
and is executing its own copy of the TRADE3
application.

The overall goal of our analysis is to observe
differences between the 1P and 5P data sets in terms of
the TRADE3 data-load behavior across levels of the
p570 memory hierarchy.  Such differences could
represent the performance overhead incurred when
executing an application in a virtualized environment.

Because our data sets are sampled event traces, we
do not capture every occurrence of a monitored event.
Previous work, [10] and [11], demonstrates the
capability of sampled event traces to capture

representative application behavior; however, the event
sample counts in that work are substantially larger than
those associated with this work. Therefore, to ensure
the representativeness of our data sets, we compare the
aggregate event counts obtained with performance
counters to those obtained in our sampled event traces.
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Figure 3. Aggregate Event Counts from
Performance Counters

Figure 3 presents the aggregate event counts
obtained from performance counters for both the 1P
and 5P executions of TRADE3. As shown, for both the
1P and 5P cases L2-cache data-load misses are
resolved predominantly in the L3 cache associated with
the miss-generating DCM, i.e., approximately 50% of
data-load hits are associated with the L3 event.
Additionally, the 5P data set, as compared to the 1P
data set, shows a notable increase in the number of L2-
cache data-load misses resolved in local and remote
memories, i.e., memories associated with the miss-
generating DCM (LMEM event) and memory
associated with a different DCM (RMEM event).
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Figure 4. Event Sample Counts from Sampled
Event Traces

Figure 4 presents the event sample counts associated
with the 1P and 5P sampled event traces. Comparing
Figures 3 and 4, the same trends can be seen, i.e.,
Figure 4 shows that the fraction of samples associated
with each event is similar to the related performance
event counts; again, the majority of data-load hits are
associated with the L3 event and for the 5P cases, as
compared to the 1P case, there is a noticeable increase
in the fraction of data-load hits associated with the
LMEM and RMEM events. This comparison indicates
that the sampled event traces do capture representative



application data-load behavior. Recall that the 5P data
set is comprised of fewer samples than the 1P data set
(see Table 2) due to the fact that the 5P data set is
comprised of events captured on two VPs running on
one physical processor, while the 1P data set is
comprised of events captured on four physical
processors. This could explain the larger deviation of
the 5P sampled event counts from the aggregate event
counts obtained from performance counters.

The sampled event traces capture data-load behavior
for seven different events in two separate data sets. In
order to attempt to identify the performance overhead
associated with virtualization, the first target of the
analysis is the identification of events with behavior
that significantly differs between the 1P and 5P cases.
As previously mentioned, the LMEM and RMEM
events experience a noticeable increase in the 5P case
and given their associated latencies (281 cycles for
LMEM and 307 cycles for RMEM), this translates into
an average 331% increase in latency per instruction.
Furthermore, the DB2 and WebSphere components
account for over 90% of the execution time captured in
the sampled event traces. Therefore, the remainder of
our analysis will focus on L2-cache data-load misses
associated with DB2 and WebSphere that are resolved
in both LMEM and RMEM. Note that, in the interest
of space, the LMEM and RMEM events are combined
to form a single MEM event.
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Figure 5. Data-Load Hits in Memory by
Address Region for Websphere

Figure 5 profiles the distribution of the WebSphere
component’s data-load hits in MEM across regions of
the application address space. For both the 1P and 5P
data sets, each address region contains an associated
data-load hits bar (DLH) and unique cache line (UCL)
bar. The DLH bar corresponds to the fraction of data-
load hits associated with the address region, while the
UCL is an indication of the unique data that is
accessed, i.e., locality of reference for the associated
data-load hits. As shown, for both the 1P and 5P cases,
over 80% of the L2-cache data-load misses resolved in

MEM are associated with the Data region. However,
there is a radical difference in the locality of reference
for these data-load hits. In the 1P case, the UCL is a
large percentage of the DLH indicating that a majority
of data-load hits access unique data. This demonstrates
good application data-load behavior; i.e., in general,
data is accessed from memory only once, rather than
repeatedly. In contrast, for the 5P data, the UCL is a
smaller percentage of the DLH, indicating an increased
locality of reference for the data-load hits associated
with the Data region. This indicates that data is being
prematurely evicted from the higher levels of the
memory hierarchy, causing repeated data references to
memory. Capacity and/or conflict misses due to
contention for cache space could be the cause of this
increased locality of reference, which is an indication
of the memory performance overhead associated with
virtualization.

Using the performance evaluation framework, we
further profiled data-load hits in MEM by the
individual processes that triggered each event. In the
interest of space, the complete results of this study are
not presented here. However, note that the increase in
data-load hits at MEM for the 5P case is not
attributable to any particular process group (i.e., kernel,
DB2, WebSphere, or other processes); instead, there is
a uniform increase across process groups.
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Figure 6. Overall Page Density

In an effort to understand the cause of the
performance overhead described above, the page
density associated with each data set is analyzed.
Figure 6 represents the unique page count (UPC) per
process group for both the 1P and 5P data sets. The
UPC indicates the number of unique pages touched
throughout the monitoring interval; it gives an
indication of the memory footprint per process group.
Notice that the 5P data set accesses a smaller number
of unique pages than the 1P case. However, as
described above, the 1P data exhibits better
performance in terms of L2-cache data-load hits
resolved in MEM. A possible reason for this
discrepancy could be that the 5P data set represents the



data-load activity for only one of five active partitions,
each of which accesses a similar number of unique
pages. In this case, the hardware is actually managing
a much higher UPC than is recorded in the 5P data set.

Additionally, note that the UPC associated with
Kernel processes is the same for both the 1P and 5P
cases. Therefore, regardless of the execution
environment, the memory footprint for the operating
system remains unchanged. This helps focus
optimization efforts in that the performance overhead is
associated with the components of the application
rather than the operating system itself.

5. Conclusions

The goal of the work presented in this paper is to
demonstrate the potential of the performance
evaluation methodology to identify and understand the
performance overhead associated with virtualization.
Sampled event traces were collected for TRADE3
executed in non-virtualized (1P) and virtualized (5P)
environments on an IBM eServer pSeries 570. By
comparing event sample counts associated with the
traces to the event counts captured by performance
counters, the sampled event traces are shown to be
representative of actual application data-load behavior.
Comparing the 1P and 5P data sets, performance
overhead associated with virtualization is identified in
terms of the distribution of resolution sites for L2-
cache data-load misses across levels of the memory
hierarchy. Beginning with a profile, by address space
region, of data-load hits in MEM for one of TRADE3’s
three components, WebSphere, it is shown that the 5P
case has an increased locality of reference in MEM.
This indicates a possible increase in capacity and/or
conflict misses for the 5P case, supporting an expected
performance overhead associated with virtualization
arising from contention for hardware resources, such as
caches. Additionally, the page density for each data set
is studied in an effort to identify the source of the
performance overhead. This analysis shows that the
components of the application are the source of the
performance overhead, rather than the operating
system. This helps target optimization efforts by
eliminating the operating system as a significant
contributor to performance degradation.

6. Future Work

One of the major goals of future work is to
concurrently trace the data-load behavior of all active
partitions. Recall that the 5P data set is the sampled
event trace of only one of the five active micro-
partitions. Having sampled event traces for all active
micro-partitions will facilitate performance analysis of

application data-load behavior across individual
partitions. Additionally, the performance evaluation
framework will be improved to assist in the study of
data-load behavior in terms of hypervisor dispatching.
When a partition is activated by the hypervisor, a spike
in the number of cache misses is expected as the
working set is brought into the memory subsystem.
Ideally, the number of cache misses is expected to
stabilize once the working set has been loaded.
Deviations to this expected behavior could indicate
additional performance issues. The study of application
data-load behavior also will be expanded to different
applications and execution environments.

Acknowledgements

This work was supported by the IBM Corporation
through IBM Faculty awards, an NPSC/IBM Ph.D.
Fellowship, and an IBM SUR grant. It also was
supported by The University of Texas — El Paso.

REFERENCES

[1] J. Anderson, et al., “Continuous Profiling: Where have all the
cycles gone?" ACM Transactions on Computer Systems, 15:4,
November 1997, pp. 357-390.

[2] L. Barroso, et al., “Memory System Characterization of
Commercial Workloads,” Proceedings of the 25th ISCA, Spain, June
1998, pp. 3-14.

[3] R. Desikan, et al., “Measuring Experimental Error in
Microprocessor Simulation”, Proceedings of the 28" ISCA,
Goteborg, Sweden, July 2001, pp. 266-277.

[4] R. Figueiredo, et al., “Guest Editors' Introduction: Resource
Virtualization Renaissance,” IEEE Computer, 38:5, May 2005, pp.
28 -31.

[5] B. Gibbs, et. al., “Advanced POWER Virtualization on IBM
eserver p5 Servers: Architecture and Performance Considerations”,
IBM Redbook, March 2005.

[6] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufman, CA, 1996.

[7] R. Kalla, et al., “IBM Power5 Chip: A Dual-Core Multithreaded
Processor,” IEEE Micro, vol. 24, no. 2, March/April 2004, pp. 40-
47.

[8] K. Keeton, et al., “Performance Characterization of a Quad
Pentium Pro SMP Using OLTP Workloads,” Proceedings of the 25th
ISCA, June 1998, pp. 15-26.

[9] C. Lu and D.A. Reed, “Compact Application Signatures for
Parallel and Distributed Scientific Codes,” Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, Baltimore, MD,
November 2002, pp. 1-10.

[10] R. Portillo, et al., “Mining Performance Data from Sampled
Event Traces,” Proceedings of the 12th MASCOTS, Volendam, The
Netherlands, October 2004.

[11] D. Villa, et al., "A Framework for Profiling Multiprocessor
Memory Performance,” Proceedings of the 10th ICPADSs, Newport
Beach, CA, July, 2004, pp. 530-538.

[12] IBM Corp. (July 2004), IBM eServer p5 - AIX 5L Support for
Micro-Partitioning and Simultaneous Multi-threading, http://www-
1.ibm.com/servers/aix/whitepapers/aix_support.pdf




