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Abstract
Processor virtualization allows concurrent

operating system execution environments to co-exist 
and share a fixed set of hardware resources. This 
allows higher system utilizations than possible by
dedicating resources to particular environments.  One 
of its many advantages is that this technology 
facilitates server consolidation, reducing both 
operating costs and power consumption. However, 
virtualization incurs a performance penalty due to 
added complexity and the conflicts arising from 
sharing a fixed set of hardware resources. It is 
important to identify and understand the sources of the 
overheads in order to guide tuning/optimization efforts 
to reduce these performance costs. In this research, we 
outline and use a performance evaluation framework 
and methodology that uses sampled event traces to
identify and understand the virtualization overheads
with respect to the memory subsystem performance. 

1. Introduction
Processor virtualization facilitates the time-sharing 

of a fixed set of hardware resources by a number of 
different operating system execution environments.  
Virtualization technology dates back to the 1970s when 
virtual machine monitors (VMM), a.k.a hypervisors, 
became popular as part of the IBM 370 mainframe 
series of servers [4].  Since that time, the perceived 
value of virtualization declined with the introduction of 
low-cost mini- and personal computers.  Currently, 
virtualization technology is re-emerging in new 
environments, such as UNIX-based systems, as a 
response to the challenge of reducing data center costs.

In this work, we study the POWER virtualization 
environment and the POWER hypervisor [12].  The 
POWER hypervisor resides in flash memory and 

provides the resource isolation that allows the physical 
hardware to be shared by independent execution 
environments. It supports up to 254 concurrent 
partitions, each of which can be running any of the 
supported operating systems [5].  This allows multiple, 
concurrent execution environments to co-exist and 
multiplex on the same set of hardware resources. 

The POWER hypervisor supports two different 
kinds of partitioning: dedicated partitioning and micro-
partitioning. The former assigns physical processors to 
a partition and does not allow the sharing of processors
across partitions.  It is supported by POWER4-based 
servers, while POWER5-based servers additionally 
support micro-partitioning, which assigns virtual 
processors (VPs) to a partition and are mapped to 
physical processors by the POWER hypervisor.  
Micro-partitioning supports the sharing of processing 
units across partitions and, therefore, allows more 
active micro-partitions than physical processors.  On 
POWER5-based servers, I/O virtualization is possible 
using either type of partitioning.

One of the major benefits of virtualization is server 
consolidation.  Consolidating multiple execution 
environments on a single hardware resource cuts down 
operating costs and reduces power consumption. This 
consolidation also allows increased security and higher 
availability [4]. 

Although beneficial in many ways, virtualization has 
an inherent performance penalty associated with it. 
This is largely due to contention for a fixed set of 
hardware resources, such as system caches, by the 
concurrent environments.  Furthermore, the addition of 
a hypervisor layer to the system architecture increases
complexity in that the hypervisor runs below each 
operating system and must provide isolation among the 
partitions.  Though many aspects of virtualization have 



direct hardware support, such as requiring that certain 
instructions can only be executed by the hypervisor, 
other resources such as interrupt management require 
direct participation of the hypervisor.

It is well documented that the memory subsystem is 
the major bottleneck in application performance [6].  
For symmetric multiprocessor systems (SMPs), it often 
governs the performance of the whole system.  
Accordingly, this research looks at identifying and 
understanding the memory performance overhead
incurred due to executing an application in a 
virtualized environment.  

2. Related Research
Event tracing is a well known approach for

obtaining detailed data about application execution.  Lu 
and Reed [9] use a methodology based on curve fitting 
to obtain application signatures from event traces. This 
approach allows comparison of performance metrics 
across different hardware and software platforms. 
Performance effects of architectural modifications are
studied by Barroso, et al. [2] using tools like IPROBE 
and DPCI (Dynamic Continuous Profiling 
Infrastructure) [1, 3] to capture event traces of 
applications executed on a four-processor AlphaServer 
4100 using Oracle 7.3.2. Behavior of an OLTP 
workload is studied by Keaton et al. [8] using 
performance monitors on a four-processor Pentium 
Pro-based server.  Barroso et al. use source code 
instrumentation and simulation methodologies to 
characterize workloads, whereas, Keeton, et al. 
characterize workloads by physically changing the 
hardware.  Desikan, et al. [3] also use DPCI tool to 
quantify the reliability of an Alpha 21264 simulator by 
sampling certain events that are used to derive 
performance measurements for a Compaq DS-10L 
workstation.

To the best of our knowledge, event tracing has not 
yet been used to study the performance of virtualized 
environments.  And, virtualization in its present form is 
a new area of research and its emergence is discussed 
by Figueiredo, et al. [4].  This paper describes our 
work in this area, i.e., the use of event tracing to study 
the performance of virtualized environments.  This 
endeavor builds upon our previous work [10, 11], 
which explores the use of sampled event traces for 
profiling memory subsystem performance of workloads 
executed on IBM eServer pSeries p690 systems.

3. Data Collection
The performance data collected in this study are

traces of sampled events associated with data-load hits 
generated by TRADE3 while executing on two 

different configurations of a four-processor IBM 
eServer pSeriers 570 (p570) systems.  Below, in 
addition to discussing the TRADE3 workload and the 
experimental platforms, we describe the monitored 
events and the methodology used to collect and analyze 
the event traces. 

3.1 Experimental Platform: IBM eServer 
pSeries 570

The research and data collection in this study were
performed on a four-processor p570 [7], a symmetric 
multiprocessor (SMP) architecture. The basic building 
block of the p570 is a Dual Chip Module (DCM), 
which contains one POWER5 chip and an L3 cache 
chip. Each POWER5 chip is comprised of two 1.65
GHz CPUs. Each CPU has a 32KB level-one (L1) 
instruction cache and a 64KB L1 data cache; the two 
CPUs on a chip share a 1.9MB unified level-two (L2) 
cache.  Each DCM has a 36MB unified level-three (L3) 
cache and 8GB of memory, giving a total of 16GB for 
the machine.  The p570 system used in this study has 
four processors and two DCMs; it runs the AIX version 
5.3 operating system. The conceptual layout of a p570 
is given in Figure 1.

The POWER5 storage structure is distributed
memory architecture. Each processor can address all 
memory and sees a single shared-memory resource. As 
such, a single DCM and its L3 cache and memory are
packaged on a single card. Access to memory 
associated with another DCM is accomplished through 
the fabric buses.

Figure 1. Two-DCM p570 configuration

The experiments discussed in this paper were 
carried out in the two different machine configurations
described below: 
 One Partition (1P) Configuration: In this case,

the application has a dedicated partition with all 
four processors allocated to this partition. This 
is the non-virtualized environment. 

 Five Partition (5P) Configuration: In this case,
the p570 is micro-partitioned into five 
partitions; each partition is assigned two virtual 
CPUs and runs one copy of the TRADE3 
benchmark. 

3.2 Workload: TRADE3 
TRADE3 is the third generation of the WebSphere 

end-to-end benchmark and performance sample 
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application. It models an online stock brokerage 
application and uses a real world workload that drives 
WebSphere's implementation of J2EE 1.3, Web 
Services, and other key Web Application Server 
components. TRADE3 execution involves three 
components: a client application that generates the 
workload, a database (in this case DB2), and a Web 
Application Server (in this case WebSphere).  In this 
research the database and Web Application Server run 
concurrently in each partition, and the client 
application drivers are independent external systems 
and not part of the measured environment. 

3.3 Monitored Events
The p570 has three levels of cache and a shared 

main memory. A data-load miss in an L2 cache can be 
serviced by the L2 cache of another DCM (L2.75 hit), 
the L3 cache on its (the miss-generating) DCM (L3 
hit), the L3 cache on another DCM (L3.75 hit), or main 
memory. Memory hits can be further classified as 
either local memory (LMEM) hits or remote memory
(RMEM) hits, depending upon the location of the
memory module where the referenced data was found.

Cache hits can be further classified by the state of 
the cache line. Accordingly, a cache hit is either a 
shared hit or a modified hit.

 The data collected for this study includes the 
following events:
 L2 data-load hits
 L2.75 shared data-load hits (L275_SHR)
 L3 data-load hits
 L3.75 shared data-load hits (L375_SHR)
 L3.75 modified data–load hits (L375_MOD)
 Local memory data-load hits (LMEM)
 Remote memory data-load hits (RMEM)

The approximate latencies associated with each 
event are found in Table 1 below.

Event Load Latency
L2 14 cycles
L275 121 cycles
L3 91 cycles
L375 205 cycles
LMEM 281 cycles
RMEM 307 cycles

Table 1. Approximate Data-load Latencies

3.4 Sampled Event Traces
The POWER5 microprocessor includes 

Performance Monitoring Unit (PMU) counters that 
permit up to six concurrent events to be monitored. The 
PMU is capable of storing aggregate counts and 
capturing event records, which include instruction and 
data addresses associated with events. 

In this work, an in-house IBM tool called eprof,
which uses the AIX operating system’s time-based 
profiling tool, tprof, is used to program the PMU to 
sample hardware countable events at a defined target 
rate.  The performance monitor allows samples to be
collected using a time-based approach, or based on 
counts of specific events. 

Sample information is recorded upon the periodic 
occurrence of the monitored event. The information 
gathered indicates the timestamp of the event, the 
effective instruction address and for load/store 
operations, the data address of the instruction, the 
process and thread IDs of the software entity that 
triggered the event. 

Time based profiling is accomplished if the event 
being monitored is processor cycles. In contrast, if the 
event is a variable event, such as cache misses, and if 
the rate of occurrence is greater than the sampling rate,
then eprof adjusts the sampling rate to approximate the 
specified sampling rate. Accordingly, a different 
number of samples may be collected for different types 
of events. 

When an event is sampled, the sample information 
and an AIX trace hook, which identifies the trace 
record, is used to generate a trace record and write the 
record to a file.  A trace formatting tool, called trcrpt, 
creates a time-stamped text file of events.

For this research, 100 events per second per CPU 
were collected for a 120-second interval of the steady-
state execution of TRADE3.  The size of the data set 
collected for the monitored events given in Table 2.

Table 2. Event Sample Counts

3.5 Performance Analysis Toolkit
Figure 2 depicts our Performance Evaluation 

Framework, which includes a toolkit implemented in 
Java that is used to process sampled events and store 
them in a MySQL database according to the workload 
being monitored, the number of processors, and the 
event being sampled. Each database has 12 tables that 
store information related to an experiment.  Once an 
experiment’s events are loaded into a database, a 
second set of Java tools is used to query the database 
and generate reports in text format. Text reports are

Event Sample Count
1 Partition 5 Partitions

L2 64139 30301
L275_SHR 21774 3486
L3 60772 28114
L375_MOD 23653 7280
L375_SHR 7843 10987
LMEM 7221 13427
RMEM 7888 13580
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imported into a spreadsheet application, and graphs are 
generated. 

Storing an experiment’s events in a database 
facilitates data analysis and provides an easy-to-use 
interface to explore the data. The results presented in 
this paper are just a sample of the information that can 
be obtained using this toolkit. The potential of our 
performance evaluation framework is exemplified in 
[10] and [11].

Figure 2. Performance Evaluation Framework

4. Results
The analyses and results presented in this section 

compare two different sets of sampled event traces, 
which were collected using the two different machine 
configurations described in Section 3.1.  The first set, 
called 1P, is the set of event records captured during 
the execution of TRADE3 on one dedicated p570 
partition.  This data set represents our baseline data in 
that TRADE3 is executing exclusively on the 4-
processor p570, i.e., hardware is not being shared with 
any other application or execution environment.  In 
contrast, the second set, 5P, captures the execution of 
TRADE3 in a micro-partitioned environment; it 
consists of traces captured while monitoring one of the 
active micro-partitions.  In this case, there are five 
active micro-partitions executing concurrently on the 
p570.  Each is assigned two virtual processors (VPs) 
and is executing its own copy of the TRADE3 
application.

The overall goal of our analysis is to observe 
differences between the 1P and 5P data sets in terms of 
the TRADE3 data-load behavior across levels of the 
p570 memory hierarchy.  Such differences could 
represent the performance overhead incurred when 
executing an application in a virtualized environment. 

Because our data sets are sampled event traces, we 
do not capture every occurrence of a monitored event. 
Previous work, [10] and [11], demonstrates the 
capability of sampled event traces to capture 

representative application behavior; however, the event 
sample counts in that work are substantially larger than 
those associated with this work.  Therefore, to ensure 
the representativeness of our data sets, we compare the
aggregate event counts obtained with performance 
counters to those obtained in our sampled event traces.

Figure 3. Aggregate Event Counts from 
Performance Counters

Figure 3 presents the aggregate event counts 
obtained from performance counters for both the 1P 
and 5P executions of TRADE3.  As shown, for both the 
1P and 5P cases L2-cache data-load misses are 
resolved predominantly in the L3 cache associated with 
the miss-generating DCM, i.e., approximately 50% of 
data-load hits are associated with the L3 event.  
Additionally, the 5P data set, as compared to the 1P 
data set, shows a notable increase in the number of L2-
cache data-load misses resolved in local and remote 
memories, i.e., memories associated with the miss-
generating DCM (LMEM event) and memory 
associated with a different DCM (RMEM event).

Figure 4. Event Sample Counts from Sampled 
Event Traces

Figure 4 presents the event sample counts associated 
with the 1P and 5P sampled event traces. Comparing 
Figures 3 and 4, the same trends can be seen, i.e., 
Figure 4 shows that the fraction of samples associated 
with each event is similar to the related performance 
event counts; again, the majority of data-load hits are 
associated with the L3 event and for the 5P cases, as 
compared to the 1P case, there is a noticeable increase 
in the fraction of data-load hits associated with the 
LMEM and RMEM events.  This comparison indicates 
that the sampled event traces do capture representative 
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application data-load behavior.  Recall that the 5P data 
set is comprised of fewer samples than the 1P data set 
(see Table 2) due to the fact that the 5P data set is 
comprised of events captured on two VPs running on 
one physical processor, while the 1P data set is 
comprised of events captured on four physical 
processors. This could explain the larger deviation of 
the 5P sampled event counts from the aggregate event 
counts obtained from performance counters.

The sampled event traces capture data-load behavior 
for seven different events in two separate data sets. In 
order to attempt to identify the performance overhead 
associated with virtualization, the first target of the 
analysis is the identification of events with behavior 
that significantly differs between the 1P and 5P cases.  
As previously mentioned, the LMEM and RMEM 
events experience a noticeable increase in the 5P case 
and given their associated latencies (281 cycles for 
LMEM and 307 cycles for RMEM), this translates into 
an average 331% increase in latency per instruction.  
Furthermore, the DB2 and WebSphere components 
account for over 90% of the execution time captured in 
the sampled event traces.  Therefore, the remainder of 
our analysis will focus on L2-cache data-load misses 
associated with DB2 and WebSphere that are resolved 
in both LMEM and RMEM.  Note that, in the interest 
of space, the LMEM and RMEM events are combined 
to form a single MEM event.

TRADE3 - Websphere Group 
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Figure 5. Data-Load Hits in Memory by 
Address Region for Websphere

Figure 5 profiles the distribution of the WebSphere 
component’s data-load hits in MEM across regions of 
the application address space.  For both the 1P and 5P 
data sets, each address region contains an associated 
data-load hits bar (DLH) and unique cache line (UCL) 
bar.  The DLH bar corresponds to the fraction of data-
load hits associated with the address region, while the 
UCL is an indication of the unique data that is 
accessed, i.e., locality of reference for the associated 
data-load hits. As shown, for both the 1P and 5P cases, 
over 80% of the L2-cache data-load misses resolved in 

MEM are associated with the Data region.  However, 
there is a radical difference in the locality of reference 
for these data-load hits.  In the 1P case, the UCL is a 
large percentage of the DLH indicating that a majority 
of data-load hits access unique data.  This demonstrates 
good application data-load behavior; i.e., in general, 
data is accessed from memory only once, rather than 
repeatedly. In contrast, for the 5P data, the UCL is a 
smaller percentage of the DLH, indicating an increased 
locality of reference for the data-load hits associated 
with the Data region. This indicates that data is being 
prematurely evicted from the higher levels of the 
memory hierarchy, causing repeated data references to 
memory. Capacity and/or conflict misses due to 
contention for cache space could be the cause of this 
increased locality of reference, which is an indication 
of the memory performance overhead associated with 
virtualization.

Using the performance evaluation framework, we 
further profiled data-load hits in MEM by the 
individual processes that triggered each event. In the 
interest of space, the complete results of this study are 
not presented here. However, note that the increase in 
data-load hits at MEM for the 5P case is not 
attributable to any particular process group (i.e., kernel, 
DB2, WebSphere, or other processes); instead, there is 
a uniform increase across process groups.   

Figure 6. Overall Page Density

In an effort to understand the cause of the 
performance overhead described above, the page 
density associated with each data set is analyzed. 
Figure 6 represents the unique page count (UPC) per 
process group for both the 1P and 5P data sets. The 
UPC indicates the number of unique pages touched 
throughout the monitoring interval; it gives an 
indication of the memory footprint per process group.  
Notice that the 5P data set accesses a smaller number 
of unique pages than the 1P case. However, as 
described above, the 1P data exhibits better 
performance in terms of L2-cache data-load hits 
resolved in MEM. A possible reason for this 
discrepancy could be that the 5P data set represents the 
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data-load activity for only one of five active partitions, 
each of which accesses a similar number of unique 
pages.  In this case, the hardware is actually managing 
a much higher UPC than is recorded in the 5P data set. 

Additionally, note that the UPC associated with 
Kernel processes is the same for both the 1P and 5P 
cases. Therefore, regardless of the execution 
environment, the memory footprint for the operating 
system remains unchanged. This helps focus 
optimization efforts in that the performance overhead is 
associated with the components of the application 
rather than the operating system itself.

5. Conclusions
The goal of the work presented in this paper is to 

demonstrate the potential of the performance 
evaluation methodology to identify and understand the 
performance overhead associated with virtualization. 
Sampled event traces were collected for TRADE3 
executed in non-virtualized (1P) and virtualized (5P) 
environments on an IBM eServer pSeries 570. By 
comparing event sample counts associated with the 
traces to the event counts captured by performance 
counters, the sampled event traces are shown to be 
representative of actual application data-load behavior.  
Comparing the 1P and 5P data sets, performance 
overhead associated with virtualization is identified in 
terms of the distribution of resolution sites for L2-
cache data-load misses across levels of the memory 
hierarchy. Beginning with a profile, by address space 
region, of data-load hits in MEM for one of TRADE3’s 
three components, WebSphere, it is shown that the 5P 
case has an increased locality of reference in MEM. 
This indicates a possible increase in capacity and/or 
conflict misses for the 5P case, supporting an expected 
performance overhead associated with virtualization 
arising from contention for hardware resources, such as 
caches.  Additionally, the page density for each data set 
is studied in an effort to identify the source of the 
performance overhead. This analysis shows that the 
components of the application are the source of the 
performance overhead, rather than the operating 
system. This helps target optimization efforts by 
eliminating the operating system as a significant 
contributor to performance degradation.         

        

6. Future Work
One of the major goals of future work is to 
concurrently trace the data-load behavior of all active 
partitions. Recall that the 5P data set is the sampled 
event trace of only one of the five active micro-
partitions. Having sampled event traces for all active 
micro-partitions will facilitate performance analysis of 

application data-load behavior across individual 
partitions. Additionally, the performance evaluation 
framework will be improved to assist in the study of 
data-load behavior in terms of hypervisor dispatching.  
When a partition is activated by the hypervisor, a spike 
in the number of cache misses is expected as the 
working set is brought into the memory subsystem.  
Ideally, the number of cache misses is expected to 
stabilize once the working set has been loaded.  
Deviations to this expected behavior could indicate 
additional performance issues. The study of application 
data-load behavior also will be expanded to different 
applications and execution environments.
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