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ABSTRACT

The TAC Supply Chain Management (TAC/SCM) game presents a
challenging dynamic environment for autonomous decision-making
in a salient application domain. Strategic interactions complicate
the analysis of games such as TAC/SCM, since the effectiveness of
a given strategy depends on the strategies played by other agents
on the supply chain. The TAC tournament generates results from
one particular path of combinations, and success in the tournament
is rightly regarded as evidence for agent quality. Such results along
with post-competition controlled experiments provide useful eval-
uations of novel techniques employed in the game. We argue that
a broader game-theoretic analysis framework can provide a firmer
foundation for choice of experimental contexts. Exploiting a repos-
itory of agents from the 2005 and 2006 TAC/SCM tournaments,
we demonstrate an empirical game-theoretic methodology based
on extensive simulation and careful measurement. Our analysis of
agents from TAC-05 reveals interesting interactions not seen in the
tournament. Extending the analysis to TAC-06 enables us to mea-
sure progress from year-to-year, and generates a candidate empiri-
cal equilibrium among the best known strategies. We use this equi-
librium as a stable background population for comparing relative
performance of the 2006 agents, yielding insights complementing
the tournament results.
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1. INTRODUCTION

Many if not most multiagent systems (MAS) research projects
that produce new strategies for agent behavior evaluate their pro-
posals through some experimental regimen comprising simulation
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of alternative behaviors in a chosen environment. The typical ob-
jective of such experimentation is to establish that the proposed
strategy possesses some advantageous characteristic(s) compared
to alternatives in a given setting, or to develop a model of per-
formance as a function of environment features. Methodologies
employed in experimental analyses are various, and dependent of
course on the issues at hand. A key issue distinguishing MAS set-
tings from single-agent applications of computational experiments
is that the effectiveness of an agent’s strategy depends pivotally on
the strategies employed by other agents. Determining the configu-
rations of agent behaviors to simulate is therefore a crucial issue in
MAS experimental design.

Although it appears that much MAS research pursues this deter-
mination in an ad hoc manner, the issue is often recognized, and
several approaches address it directly. In a factorial design, the
combinations of agent strategies are simulated exhaustively. This
is infeasible when there are large numbers of possible strategies,
or a large population of agents. Even when feasible, in interpret-
ing the experiments the analyst must render judgments about the
degree to which the various configurations are relevant in order to
draw conclusions about proposed strategies.

One appealing way to determine a relevant set of agent strate-
gies is to generate a population iteratively through some evolution-
ary process. The evolutionary approach was pioneered in compu-
tational agent research by Axelrod’s famous Prisoner’s Dilemma
tournament [2], and has become a standard method among researchers
in agent-based computational economics [17]. Evolutionary search
techniques provide (at least) two useful functions in MAS experi-
mentation:

1. Generating strategies for exploration given a set of primitive
building blocks, employing stochastic local search from an
initial population. Techniques for generation are typically
based on genetic algorithms or genetic programming [10].

2. Finding stable populations of strategies, for example using
replicator dynamics [16].

Of course, there are alternative means as well to support both of
these functions. Any structured search technique (employing ge-
netic operators or not) is a candidate method for exploring a space
of available strategies. And evolutionary stability is just one crite-
rion that might be employed to evaluate the plausibility of popula-
tions. It is uniquely compelling only to the extent that the evolu-
tionary dynamic employed is itself a plausible model of how agent
strategies might be adopted over time.

Game theory is another source of stability criteria often em-
ployed in MAS research. Although evolutionary and game-theoretic
stability (i.e., equilibrium) concepts sometimes coincide [5], this is
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not always the case. Game theory tends to avoid assuming any
particular dynamic model, which may be viewed as a strength or
weakness depending on one’s perspective and the particular issues
at hand. What game theory does provide is a rigorous mathematical
framework for formalizing interactions among rational agents, and
a rich set of solution concepts and other formal properties useful
for characterizing alternative strategic configurations.

Whereas game theory is now quite commonly employed by MAS
researchers in theoretical investigations, it is less frequently applied
in experimental studies.' The approach we pursue here, called em-
pirical game-theoretic analysis, employs an experimental method-
ology for explicit game-theoretic treatment of MAS simulation stud-
ies.

2. TAC SUPPLY CHAIN MANAGEMENT

The annual Trading Agent Competition (TAC) series of inter-
national research tournaments was initiated to promote research
and education in the technology underlying trading agents.? At the
core of TAC are two games, market-based scenarios where multi-
ple agents compete to exchange goods and services at dynamically
negotiated prices. The first TAC tournament, in July 2000, intro-
duced the TAC Travel game [22]. A second game, in the domain
of supply chain management (TAC/SCM), has been played since
2003 [1, 4].

A key feature of both games is that—like most realistic market
environments—they are sufficiently complicated (severely imper-
fect and incomplete information revealed over time throughout dy-
namic activity) to defy analytic solution. Thus, empirical methods
appear indispensable to progress.

Our current study focuses on TAC/SCM. Although most details
of the game rules are inessential to the analysis here, we establish
some context by providing a capsule description. A complete spec-
ification of the game [3] is available at the web sites referenced,
and further description and discussion is provided in many of the
papers cited herein.

In TAC/SCM, six agents representing PC (personal computer)
manufacturer agents compete to maximize their profits over a sim-
ulated year. There are 220 scenario days, and agents have approxi-
mately 14 seconds to make decisions each day. Agents participate
simultaneously in markets for supplies (components) and finished
PCs. There are 16 different types of PCs (divided into three market
segments), defined by the compatible combinations of 10 differ-
ent component types. Components fall into one of four categories:
CPU, motherboard, memory, and hard disk. There are four types of
CPUs and two types of all other components; one component from
each category is required to produce a PC.

Agents negotiate deals with suppliers and customers through an
RFQ (request-for-quote) mechanism. The suppliers and customers
execute policies defined by the game specification and implemented
in the server. The suppliers have limited production capacity that
varies during the game according to a random walk. They make
offers and set prices based on their ratio of available capacity. The
customer generates requests for PCs each day. The number of re-
quests is driven by a stochastic demand process for each market

"Perhaps it is starting to emerge. Although we do not attempt here
to identify the earliest sources (see [14, Section 3.9] for a survey),
we do acknowledge that many MAS works have included elements
of game-theoretic perspective in experimental studies. One recent
thread along these lines is represented prominently by the work of
[13]. Our claimed contribution is to systematizing and enriching
the methodology, not completely originating it.

2See http://tradingagents.org, and http://www.
sics.se/tac.

segment.

Agents face substantial uncertainty in both markets. The un-
derlying supplier capacities, customer demand parameters, and lo-
cal state of other manufacturer agents are not directly observable,
so agents must estimate these from other sources of information.
There is also strategic uncertainty, since agents do not know the
exact strategies employed by their competitors.

Each manufacturer is endowed with an identical factory that has
limited production capacity, measured in cycles. Each PC type re-
quires a different number of cycles to produce. Agents pay storage
costs for all components and PCs held in inventory each day, and
are charged (or paid) interest on bank balances. At the end of the
game agents are evaluated based on total profit, and any remaining
inventory is worthless.

3. EMPIRICAL ANALYSIS METHOD

A previous application of empirical game-theoretic analysis to
the TAC/SCM domain considered the issue of strategic procure-
ment of components at the beginning (“day 0”) of the simulated
manufacturing period [20]. That study investigated a phenomenon
observed in the 2003 tournament, employing strategies defined by
varying one aspect of the University of Michigan’s agent, Deep
Maize. Controlled experiments varying only the degree to which
agents procure components on day O verified that the aggressive
procurement policies observed (informally) in tournament play ac-
tually represents an equilibrium of sorts—and one that is mutu-
ally destructive to manufacturing profits. The analysis further con-
firmed that Deep Maize’s preemptive strategy of blocking day-
0 procurement neutralized this issue, forming a new equilibrium
where all agents (not just the preempting Deep Maize) were more
profitable.?

The force of day-0 procurement in the game was considered a de-
sign flaw by the TAC/SCM community, and revisions of the game
in 2004 and 2005 attempted to attenuate its influence. The 2004
redesign was unsuccessful from this perspective [8], and empirical
game-theoretic analysis demonstrates that no reasonable settings of
the focal storage-cost parameter would have likely been sufficient
[18]. The 2005 redesign [3] included deeper changes to supplier
behavior, and appears to have dramatically lessened the salience of
day-0 procurement issues.

Most published research on TAC/SCM agents presents evidence
from tournaments, as well as controlled experiments with variants
on the agent strategy under study. These experiments typically in-
clude simulations where some subset of the agents play such vari-
ants, and the remainder play some fixed or background strategies.
What strategies to assume for the background agents is a key ex-
perimental design choice. One option—employed, for example, in
a recent study on SouthamptonSCM [6]—is to use the “dummy”’
agents provided along with the TAC/SCM game server. Another is
to use agent strategies developed by other TAC/SCM participants.
This has been greatly facilitated by the introduction of a TAC agent
repository following TAC-05.* For example, Pardoe & Stone [11]
run simulated games, each with two variants of their agent Tac-
Tex playing with a fixed background of four agents drawn from
the repository (Mertacor, MinneTAC, GoBlueOval, and Ratio-
nalSCM).

3Here we refer to the 2003 version of Deep Maize. Subsequent
discussion applies to the 2005 or 2006 versions of Deep Maize and
all other agents mentioned, as indicated explicitly or by context.
“Designed and implemented by Joakim Eriksson (Swedish In-
stitute of Computer Science) and Kevin O’Malley (University
of Michigan), and available at http://www.sics.se/tac/
showagents.php.
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Playing with real tournament agents lends realism to the simu-
lations, but the question still remains as to what mixtures of back-
ground strategies are most relevant. This is where empirical game-
theoretic analysis can provide some guidance. Our premise is that—
all else equal—profiles of strategies that are more strategically sta-
ble (i.e., closest to game-theoretic equilibrium) are more plausible
as background contexts. Of course, this is at best a starting point,
as introduction of a new strategy may alter the strategic landscape.
Therefore, one must update the analysis to reflect any promising
new strategies identified during experimentation.

We have undertaken an empirical game-theoretic analysis of agent
strategies from TAC/SCM 2005 and 2006. Our approach comprises
the following steps, which we elaborate in turn:

1. Approximate the six-player SCM game by its three-player
reduced version, SCM| 3 [21].

2. Run many simulations covering all distinct strategy profiles.

3. Process the simulation data by checking game validity and
adjusting for stochastic demand variability.

4. Analyze the resulting empirical game by searching for equi-
libria and approximate equilibria.

3.1 Reducing the Game

Given a symmetric game with IV players and S strategies, there
are (NT571) distinct pure-strategy profiles. For TAC/SCM, N =
6, and in our current analysis we consider S = 6 agent strategies.
This induces a total of 462 profiles that would need to be estimated
for a full-granularity analysis. We can significantly decrease this
number by restricting attention to cases where strategies are as-
signed to pairs of agents rather than individuals. Specifically, the
resulting 3-player game, denoted SCM | 3, comprises only 56 pro-
files over the same 6-strategy set. The payoff to a strategy in an
SCM |3 profile is defined as the average payoff to the two agents
playing this strategy in the original 6-player game.

In several contexts, it has been shown experimentally and the-
oretically that this form of hierarchical game reduction produces
results approximating well the original unreduced game, with great
computational savings [14, 21]. Although we have not validated
this specifically in TAC/SCM, intuitively we would expect this game
to share the necessary property of payoffs smoothly varying with
the number of other agents playing a given strategy.

3.2 Running Simulations

We have collected results from well over 12,000 sample games
combined in the TAC-05 and TAC-06 environments. We performed
most of our simulations using a computing cluster operated by the
University of Michigan. The cluster facility provides scalable and
homogeneous processing, supporting parallel simulation with a fair
allocation of computational power to each agent.

Each game simulation reserves seven CPUs for a period of one
hour; one for each agent and one for the TAC SCM server. We
group games into sets of 3-5 to reduce the overhead cost of con-
figuring the simulation on the assigned cluster nodes. Game results
(in the form of server log files) are sent back to central repository.
A central server tracks the results and submits new simulations to
the cluster as each job is completed.

The simulated strategies potentially differ from the actual tour-
nament agents in one important respect. Tournament agents can
maintain state from one game instance to another, and so can adapt
their strategy for later games based on experience in earlier games.
Several agents take advantage of this opportunity, including the top-
scoring agent from both 2005 and 2006 tournaments, TacTex [12].
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Our simulation analysis is based on sampling from a pool of fixed
strategies, so necessarily restricts the agents to versions that adapt
only within a game instance.

3.3 Post-Processing Simulation Results

During a game simulation, much can go wrong, for example net-
work outages or delays, or interference with one or more proces-
sors. We therefore attempt to filter our data set by removing game
instances tainted in this way. We considered various procedures for
identifying tainted games, ultimately settling on a very simple rule.
A game is scratched if, for any agent, there are six or more days
(out of 220) in which the server did not receive a message from
that agent (as indicated by the game log).

Given the expense of generating samples by simulation (over 7
processor-hours per game), we seek to glean the most information
we can from each data point. Toward that end, we employ statistical
techniques to reduce variance. In particular, the method of control
variates [15] improves the estimate of the mean of a random func-
tion by exploiting correlation with observable random variables. In
the case of TAC/SCM, the most significant stochastic factor bear-
ing on payoffs is the level of customer demand for PCs during the
game.

As in the analysis of TAC/SCM-03 by Wellman et al. [20],
we use control variates to derive a payoff measure called demand-
adjusted profit (DAP). This adjustment considers the average level
of demand (measured in total number of PCs requested) for each
of the PC market segments: low, mid, and high.> We collected
the demand and score data from games played in the TAC/SCM
tournaments: quarter-final, semi-final, and final rounds. For TAC-
05, the overall tournament comprised 96 games, of which 71 re-
mained after applying the tainted-game filter described above. Ta-
ble 1 presents summary demand statistics for TAC-05 and TAC-06
games.

Mean | DAP Coeff. | Low High

Segment | (Qseq) (Oseg) (2.5%) | (97.5%)

v  Low 132,498 69.67 31.91 | 139.23
§ Mid 157,481 63.80 28.98 | 98.62
High | 129,641 85.57 29.08 | 110.25

o Low | 127,899 52.82 147 | 107.11
§ Mid 151,590 82.94 41.82 | 124.07
High | 130,372 132.00 85.59 | 178.32

Table 1: TAC/SCM tournament demand statistics with 95%
confidence intervals around the DAP coefficients.

The center column of the table (DAP coefficient) presents the
result of a linear regression of mean agent score on demand in the
respective segments. The DAP regression R? statistics for TAC-
05 and TAC-06 are 0.3469 and 0.4594, respectively, with p-values
of 2.5e-6 and 3.1e-8. We obtain the DAP for agent 7 in game =
by subtracting from its actual profit an adjustment based on the
demand in that game.

DAP;(2) = Profit;(z) — Oseg (Qses (%) = Qseg),
seg€ {low,mid,high}
M

where Qseg () denotes the actual demand for the specified segment
in game x, and Qscg the mean demand as presented in Table 1.

5In the original TAC/SCM-03 rules, one stochastic process gov-
erned demand for all PC types. Thus, the adjustment formula was
necessarily revised from earlier analysis.
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4. SCMj; ANALYSES

‘We apply our empirical analysis methodology to agents released
as binaries after both the 2005 and 2006 TAC SCM competitions.
We first discuss the 2005 and 2006 game results individually, and
then consider the combined set of strategies to make comparisons
across tournaments.

4.1 SCM 2005

Our TAC-05 analysis employs a dataset of 2110 validated game
instances, covering a minimum of 28 samples each of 56 distinct
profiles of six TAC-05 agents: TacTex (Tx) [11, 12], Mertacor
(Mr) [9], Deep Maize (Dm) [7], MinneTAC (Mt), PhantAgent
(Ph), and GoBlueOval (Gb).® As shown in Table 2, the first four
of these made it to the final round of the TAC/SCM-05 tournament
(the other two finalists are not currently available in the repository),
PhantAgent was a semi-finalist, and GoBlueOval was a quarter-
finalist.

Interaction among the strategies is one factor explaining differ-
ences in scores—and even relative rankings—between rounds of
the tournament. Game-theoretic analysis serves to assess the ro-
bustness of tournament rankings to strategic interactions. Another
factor that explains differences between rounds is modifications to
agents made between rounds (developers are allowed to modify
agents between tournament rounds, but not within a round). In one
case both a semi-final and final round version of a single agent has
been released, but we typically do not have access to all versions of
the agent and are thus unable to investigate these variations in our
empirical analysis.

Figure 1 summarizes our stability analysis of the pure strategy
profiles of the game. Each node represents a profile (three strate-
gies). The outgoing edge from a node indicates the best devia-
tion from that profile—that is, the transition providing the greatest
gain in payoff for one agent switching strategies. For example, the
profile with all Deep Maize (DmDmDm, in Level 4 around 10
o’clock) points to profile DmDmMr, which means that switching
from Deep Maize to Mertacor in this context offers the greatest
increase in payoff. That the arrow signifying the edge is solid rather
than dashed means that the benefit is statistically significant in this
case, at the p < 0.05 level.

The magnitude of the potential benefit from deviating is repre-
sented by the node’s placement in the diagram. We denote this
quantity by e, since a profile with maximal benefit to deviation of
€ constitutes an e-Nash equilibrium. The profiles in the innermost
ellipse (Level 1) represent the most stable (closest to equilibrium),
with 0.04M < e < 0.6M. Concentric rings define levels with
increasing values of €. Level 4 (outermost ring) profiles are quite
unstable, as a single agent (in the 3-player game) can benefit by at
least 4.4M by deviating from its designated strategy. Note that the
best deviation links usually, but not necessarily, connect profiles to
more stable alternatives.

Since all profiles in Figure 1 have outgoing edges, we can con-
clude that the empirical game has no pure-strategy Nash equilibria
(PSNE). Indeed, there exists a directed cycle among three relatively
stable profiles, and all paths lead to this cycle.

There are, however, mixed strategy equilibria, and we have iden-
tified one symmetric Nash equilibrium, as well as several approx-
imate equilibria. We found these mixtures using replicator dy-
namics (RD), and present them in Table 3. Specifically, we ran
RD seven times: once with all strategies present, and once for
each subset of five out of six. In all cases the initial population

The versions of these agents in the repository do not maintain
state from game to game, so may differ from the actual tournament
agents as noted above.

is distributed uniformly. The profile generated by RD with all
agents present is a symmetric Nash equilibrium. GoBlueOval is
not played in this equilibrium, and indeed omitting that agent leaves
the RD result unchanged. Two other RD results are approximate
(e < 1.0M) equilibria; not surprisingly these respectively omit the
agents (Deep Maize and Minnetac) with lowest positive probabil-
ity in the known exact equilibrium.

Our analysis reveals several striking observations. First, all agents
perform quite poorly with many copies of themselves. Three out
of the four most unstable profiles (MnMnMn, TxTxGb, TxTxTx,
and MrMrMr, respectively) comprise a single strategy. This fact
can be explained by the multiple copies all competing for the same
“niche”, or exploiting opportunities typically left available by other
agents (but not themselves, of course). In addition, some of the
problem may be simply that the agents are hardwired to procure
components on certain days or with certain lead times, and these
naturally interfere when more than one copy exists. Similarly, mul-
tiple copies may make the same predictions and estimates of prices
and other market conditions, so may be making bidding and other
decisions in an interfering manner.

Second, PhantAgent performs much better in the game-theoretic
sense than might be expected from the TAC/SCM-05 tournament
outcome.” PhantAgent is least sensitive to playing with copies
of itself, and appears with substantial probability in all the profiles
produced by RD in Table 3. In fact it is most probable in all but
two cases: the one where it was excluded, and the one with highest
€ value.

Third, Mertacor appears especially strong in a wide variety of
contexts. Like PhantAgent, Mertacor is present with large prob-
ability in all the symmetric stable profiles identified. Most remark-
able is that of the 35 profiles without Mertacor, 30 of them have a
best deviation where some strategy changes to Mertacor. Of the 21
profiles with Mertacor, the best deviation changes from Mertacor
in only three.

‘We should note that the first observation above raises some ques-
tions about our analysis approach. Presumably TAC entrants design
their agents with tournament play in mind, and so may not be con-
cerned about the performance of their agents with copies of them-
selves in the environment. On the other hand, one might argue that
performance in self-play is important, and the tournament unduly
neglects this aspect of strategy. Our reduced-game analysis is espe-
cially sensitive to this question, since all profiles have at least two
copies of any strategy present. We plan to explore this issue further
in ongoing development of our methodology.

4.2 SCM 2006

The agents that competed in the 2006 TAC SCM finals are listed
in Table 4. Versions of five of these agents were released to the
agent repository: TacTex (Tx), PhantAgent (Ph), DeepMaize
(Ds and Df), Maxon, and MinneTAC (Mt). Two versions of Deep-
Maize were released, corresponding to versions that played in the
final round and semi-final round (significant changes were made to
the agent between rounds, particularly to procurement behavior).
The MinneTAC agent is the version that played in the semi-final
round. This agent was also changed for the final round, but the fi-
nal round version has not been released. Both semi-final and final
round versions of Maxon were released. We analyze five of the
seven agents available, including both versions of Deep Maize but
excluding both Maxon agents®. The full symmetric game for the

"We are unaware of specific problems that may have afflicted the
agent in the semi-final round, but this is a possibility.

8Maxon was the last agent to be released, and we do not have
enough simulation data for these agents to be included in our full
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[ Agent | Affiliation | Finals [ Semi-Finals | Quarter-Finals | Seeding |
TacTex U Texas 4.74 3.57 [1] 17.78 [A] 14.89
SouthamptonSCM | U Southampton 1.60 4.62 [2] 3.50 [B] 10.05
Mertacor Aristotle U Thessaloniki 0.55 2.66 [2] 4.58 [B] 9.30
Deep Maize U Michigan -0.22 3.68 [1] 17.49 [D] 10.23
MinneTAC U Minnesota -0.31 2.27[1] 11.91 [A] 9.86
Maxon Xonar Inc. -1.98 3.80 [2] 5.23 [C] 8.76
PhantAgent Politechnica U Bucharest n/a -6.64 [1] 7.03 [A] 9.87
GoBlueOval Ford Motor Co. and U Michigan n/a n/a -2.60 [B] 12.60

Table 2: TAC/SCM-05 finalists, plus PhantAgent and GoBlueOval, with average scores ($M) from seeding through final rounds

(semi-final and quarter-final groups in brackets).

Dm - DeepMaize
Tx - TacTex

Mn - MinneTAC
Ph - PhantAgent
Mr - Mertacor
Gb - Go Blue Oval

— Significant
77777 # Insignificant

Level 1:0.0-0.6 M
Level 2:0.7 -
Level 3:2.3 -
Level 4:4.4 -

Figure 1: Deviation analysis for pure profiles of 2005 SCM | 5.

five agents we include in our analysis comprises 35 profiles. We
have over 1100 validated game instances, with a minimum of 15
samples for each profile (typically 30 or more).

Stability results for the 2006 agent set are shown in Figure 2.
This game contains a pure strategy Nash equilibrium (DsPhTx) and
an approximate equilibrium (DsDsTx) that has a small, statistically
insignificant, benefit of 0.09M for deviating to the PSNE. We also
applied replicator dynamics to this game to search for symmet-
ric mixed equilibria, starting from mixtures generated uniformly
at random. In all cases, RD converged to a mixture of TacTex,
PhantAgent, and DeepMaize SF. Figure 3 shows the field for
replicator dynamics over the simplex of these three strategies. The
fixed point corresponds to the symmetric Nash equilibrium mixture
(0.254, 0.188, 0.558).

Table 5 presents several statistics about the deviations in 2006
SCM | 3. Percent positive deviations is the fraction of possible de-
viations to the agent that result in a net benefit. Best Deviation is
the number of instances where deviating to the agent was the most
beneficial deviation. Mean Deviation and std. error reflect the aver-
age benefit (§M) for deviating to this agent, which may be negative.

analysis.
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Figure 3: Replicator dynamics field for the top three agent
strategies from the 2006 SCM | 5. The Nash equilibrium (0.254,
0.188, 0.558) is shown as a black dot.
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[ Agent [ all [ (DeepMaize) [ (TacTex) [ MinneTAC) | (PhantAgent) | (Mertacor) | (GoBlueOval) ]
Deep Maize || .055 — .015 .035 219 .326 .055
TacTex 112 137 — .100 210 156 112
MinneTAC .057 .079 .106 — 0 109 .057
PhantAgent 400 418 .533 482 — 271 400
Mertacor 376 .366 .346 384 559 — 376
GoBlueOval 0 0 0 0 .012 138 —

(e [ 0 | 04M | 146M | 042M | 125M | 350M | 0 I

Table 3: Profiles resulting from replicator dynamics. Each column presents probabilities for a mixed profile, with associated ¢ in
SCM |5 specified in the bottom row. The first column presents the result from RD including all agent strategies (initial proportions
uniform). Subsequent columns respectively omit one strategy from the RD process.

Agent | Affiliation | Finals [ Semi-Finals | Quarter-Finals | Seeding
TacTex U Texas 5.85 7.55 (2] 7.48 [B] 13.73
PhantAgent | Politechnica U Bucharest 4.14 5.71 [2] 17.37 [C] 12.56
DeepMaize | U Michigan 3.58 6.46 [1] 9.61 [A] 16.60
Maxon Xonar Inc. 1.75 4.08 [1] 17.74[D] 10.63
Botticelli Brown U 0.48 1.94 1] 0.83 [A] 4.21
MinneTAC | U Minnesota -2.70 2.06 [2] 13.45[C] 9.59

Table 4: TAC/SCM-06 finalists, with average scores ($M) from seeding through final rounds (semi-final and quarter-final groups in
brackets).

Df - DeepMaize Finals
Ds - DeepMaize Semifinals Level 1:0.0-0.1 M
Tx - TacTex Level 2: 1.0-40M
Mt - MinneTAC Level 3:4.1-80M
Ph - PhantAgent Level 4: 8.1 - 14. M

— Significant

77777 > Insignificant

Figure 2: Deviation analysis for pure profiles of 2006 SCM | 5.

Deviations to TacTex, PhantAgent, and DeepMaize SF are ben- did not participate in the finals shows strong performance in our
eficial in a least 60% of the cases. The mean value for deviating game-theoretic analysis. Given these results, the selection of the
is highest for TacTex and DeepMaize SF, and TacTex is the best weaker version of DeepMaize to play in the final round would
deviation most frequently. The three agents comprising the PSNE have been prevented. In our combined analysis we discovered fur-
are nearly indistinguishable in this analysis. ther evidence that given only the 2005 agent strategies and the

Perhaps the most striking result is that the semi-final version of two versions of Deep Maize, the semifinals version is a more
DeepMaize clearly outperforms the finals version in this game- robust choice. This suggests that the type of analysis we present
theoretic environment. This is another instance where an agent that here should have applications to strategy selection as well as post-

The Sixth Intl. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 07) 1193



% Positive Best Mean Std. Background Context Deviation Gain (¢)
Agent Deviations | Deviation | Deviation | Error 05 Agent Mixture Server Rules
TacTex 61.67 18 1.45 501 Deep Maize 0.083 06 Agent 2005 2006
Deep Maize SF 63.33 5 143 4.68 Mertacor 0.431 || PhantAgent 5.33M | 6.57M
PhantAgent 60.00 8 0.89 477 PhantAgent 0.314 || TacTex 5.07M | 4.73M
Deep Maize F 53.33 3 0.88 4.62 TacTex 0.172 || Deep Maize SF | 4.22M | 4.56M
MinneTAC 11.67 0 —4.67 6.41

Table 5: Deviation statistics for agent strategies of 2006 SCM | 5.

tournament analysis. Finally, we note that agents in the 2006 game
show similar difficulties playing against copies of themselves to the
2005 agents; all of the profiles with six identical agents are among
the least stable profiles again. This effect may partially explain why
the profile with the top three agents playing is a PSNE. None of the
agents has enough of an advantage over the others to overcome the
penalty from playing against more copies of itself, so none of the
deviations to these three is beneficial.

4.3 Combined Analysis

Sections 4.1 and 4.2 focused on analyzing sets of agents from a
single year of competition. One of the exciting opportunities af-
forded our empirical analysis methodology is to consider combi-
nations of agents not observed during tournament play, including
agents from different years. To facilitate general comparisons be-
tween agents we introduce an alternative means to rank agents. We
select a particular strategic context based on game-theoretic stabil-
ity and rank agents according to the benefit of deviating to the agent
from this context.

For this analysis we employ data from approximately 10000 sim-
ulations focused on the profiles containing eleven agents from 2005
and 2006 (listed in Table 7). The experiments using the top 2005
agent sets as background context were simulated using both the
2005 and 2006 server rules. The simulations using the top 2006
agents as background context were run using only the 2006 server
rules, which have two modifications from the 2005 rules. Under
2006 rules, the identity of opposing agents is revealed at the start of
the game, and the reputation mechanism for suppliers was slightly
modified. Agents from 2005 are compatible with the 2006 server,
but may be at a disadvantage because they were not designed for
the new rule set.

We begin by testing the hypothesis that the strongest agents from
2006 should show substantial improvements over the strongest agents
from 2005. Our first step is to select a symmetric Nash equilibrium
for the 2005 agent set { DeepMaize, Mertacor, PhantAgent, Tac-
Tex}, which corresponds to the support of the mixed strategy equi-
librium of the full 2005 game less MinneTAC.’ Using this 2005
equilibrium as the background context, we test possible deviations
to three of the top 2006 agents. The results are given in Table 6,
along with the background context. Each of the 2006 agents is a
beneficial deviation from the 2005 equilibrium using both the 2005
and 2006 server rules, offering strong support for the hypothesis of
improvements from 2005 to 2006. In the subgame that includes the
background agents and DeepMaize SF, DeepMaize SF is the
sole survivor of iterated elimination of dominated strategies, pro-
viding even stronger evidence for improvement in this agent.

In Table 7 we present a ranking of eleven agents from 2005 and
2006 in the context of the symmetric mixed Nash equilibrium given
in Figure 3."° This equilibrium is robust to the addition of the 2005

°This omission does not change the context substantially, and re-
quires much less data.

19This is the only symmetric equilibrium we have found after exten-
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Table 6: Deviation gain comparison of top 2006 agents in the
context of a symmetric mixed Nash equilibrium of top 2005
agents for the 2005 and 2006 server rules.

agents into the strategy pool. All agents are ranked based on the
benefit of deviating to the agent from the equilibrium context. This
ranking is interesting particularly because it spans agents that have
never faced one another directly in tournament competition. Ta-
ble 7 also gives the tournament results, where applicable.

Deviation Tournament Scores

Agent Gain Finals 05 ‘ Finals 06
TacTex 06 0 n/a 5.85
PhantAgent 06 0 n/a 4.15
Deep Maize 06 SF 0 n/a n/a
Mertacor 05 -0.57 0.55 n/a
Deep Maize 06 F -0.95 n/a 3.58
Maxon 06 S'! -1.03 n/a n/a
MinneTAC 05" -1.23 -0.31 n/a
PhantAgent 05 -1.51 n/a n/a
Deep Maize 05 -3.18 -0.22 n/a
MinneTAC 06 -3.48 n/a -2.70
TacTex 05 -5.96 4.74 n/a

Table 7: Ranking of eleven TAC SCM agents based on devia-
tions from an equilibrium context, along with tournament re-
sults (in $M).

This ranking supports the case for substantially improved agent
performance in the 2006 competition. Deviating to a 2005 agent
from the 2006 equilibrium typically incurs a large loss. The ex-
ception is Mertacor, which shows a relatively small loss—smaller
than two of the 2006 agents, including DeepMaize F which placed
third overall. This agent continues to show strong performance in
the game-theoretic analysis. We also note that this ranking gener-
ally corresponds to the ranking based on tournament results. The
exception is TacTex-05, which ranks lower than one might expect
based on tournament performance.

5. DISCUSSION AND FUTURE WORK

Our case study of the TAC/SCM market illustrates some of the
methods we have found useful in applying empirical game-theoretic
analysis to scenarios of interest. Through the use of the agent repos-
itory we were able to compare successive years of agent strategies.
The deviation and equilibrium analysis revealed that the 2005 agent
PHOS5 which, by tournament standards, was relatively weak com-
pared to the final’s agents, displayed strong behavior with respect
to the extended strategy pool.

The subsequent year’s analysis again revealed that an agent from
the semi-final rounds of the tournament (DeepMaize SF) had strong
support in the game equilibrium. In this case the Deep Maize team

sive search, but we cannot guarantee that it is unique.
""These strategies had a lower minimum number of samples, 13 &
18, respectively, than the remaining nine strategies.
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had a strategic choice of which agent to play in the final rounds.
Our analysis reveals (with hindsight) that playing DeepMaize F
was the wrong choice given the strategic context.

Finally, we provide a method of ranking agent strategies alter-
native to the traditional tournament rankings. Our method is rela-
tive to a background context, which in our analysis was a sample
Nash equilibrium.'? The resulting NE-response ranking is consis-
tent with the TAC-06 tournament, in that the top two tournament
agents are tied for first in the new ranking, and the ordering of two
other tournament agents is preserved. Our method allows us to ex-
tend the ranking beyond the tournament finals, including one semi-
finals agent (tied with the top two tournament finals for first), and
agent strategies from the prior year. This analysis has also yielded
empirical evidence that agents are increasing in competency, in
particular that they are improving responses to the previous year’s
equilibrium mixture.

Further development of these and other techniques with experi-
ence will lead to a rich set of tools bridging simulation and game-
theoretic approaches to understanding complex multiagent systems.
In particular, given the rate of growth of the profile space, uni-
form exploration over future strategies would be quite infeasible,
so we require some guidance to focus on the parts of the profile
space most relevant to strategic analysis. We suspect that some
existing methods can be employed to improve and automate our
sampling process. For example, the information-theoretic criteria
proposed by Walsh et al. [19], designed to allocate additional sam-
ples given a completely evaluated empirical game, could perhaps
be extended to cases with missing profiles. We intend that future
work be addressed to principled methods for introducing new pro-
files and strategies as well.
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