Assignment 4, solution

1. The string reversal operator s^R reverses the string.

For example, $(0100011)^R = 1100010$, and $(bravo)^R = ovarb$.

The language reversal operator is defined as follows: $L^R = \{w^R \mid w \in L\}$.

Show that regular languages are closed under reversal.

We show how to transform a regular expression for L into (recursively) a regular expression for L^R .

$$\begin{split} &\emptyset^R = \emptyset \\ &\varepsilon^R = \varepsilon \\ &a^R = a \text{ for } a \in \Sigma \\ &(r_1 \cup r_2)^R = r_1^R \cup r_2^R \\ &(r_1 \cdot r_2)^R = r_2^R \cdot r_1^R \\ &(r_1^*)^R = (r_1^R)^* \end{split}$$

Another way is to show how to transform an NFA N for L into an NFA for L^R . Reverse all the arrows in N, create a new state S, make S the new start state, make ε transitions from the new start state to all final states. Then make F contain only the old start state.

2. Use the closure of regular language under reversal to prove that the following language is not regular:

$$L = \{1^n 0^n | n \ge 0\}.$$

Leading to a contradiction, assume L is regular. Since regular languages are closed under reversal, then L^R is also regular. But $L^R = \{0^n 1^n | n \ge 0\}$, which we already proved is not regular.