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Abstract— Construction of a three dimensional face model 
from stereo images is a challenging task. Most of the 
currently available systems for reconstruction of 3D models 
require special hardware for calibration. In this paper, we 
illustrate a mechanism to construct a three dimensional face 
model from two stereo images. The developed mechanism 
does not require any special devices to calibrate the stereo 
images. We used a hand-held inexpensive digital camera to 
take the stereo images of a face. We did not use any camera-
stand to fix and measure the camera system geometry. The 
stereo images were taken holding the camera in hand and 
moving it to two slightly different viewpoints. We 
constructed a depth map from these two stereo images and 
utilized this depth map to reconstruct the three dimensional 
face model. The 3D face model reconstruction process 
described in this paper uses some existing theories and 
combines them to develop a new system to generate the 
depth map. The system requires minimal user interaction 
for the reconstruction.  

Keywords— Image reconstruction, Depth map, Stereo 
images. 

I. INTRODUCTION 
Extraction of three dimensional structures from two 

dimensional images is an important research area for 
scientists working in the field of computer vision 
technology. There has been extensive work in this field 
[1–12] and while most of the existing techniques work 
well with geometric objects, they require training dataset 
images, take advantage of expensive external hardware for 
calibration, or use many expensive cameras for three 
dimensional visualization effects. In this paper, we exploit 
different ideas to extract a depth map of a face from stereo 
images with the aim of reconstructing a 3D face model. 
The approach discussed in this paper involves only two 
handheld stereo images and an inexpensive digital camera. 
Our aims are to employ minimum user interaction for the 
reconstruction process while still creating high quality 3D 
reconstructions. 

 The generation of 3D face models from stereo images 
requires two cameras capturing an image of a scene at the 
same time from two slightly separated viewpoints. The 
images are rectified such that the image rows are aligned 
between the two images. Each pixel is then matched from 
one image to the corresponding pixel in the alternate 
stereo image. Generally matching a single pixel proves 
inadequate and a window of surrounding pixels is used. A 
measure of degree of correspondence between the image 
windows is used to select the best suited region from the 
search space. Some popular techniques are Sum of 
Absolute Differences (SAD), Sum of Squared Differences 
(SSD) and Normalized Cross Correlation (NCC) [13]. In 

our work, we have used a single camera to take 
photographs from two slightly different handheld 
viewpoints. We use window based pixel by pixel 
matching and simple mechanisms to omit expensive 
devices for calibration using the epipolar concept.  

Calibration is the process of determining the camera 
system’s external geometry (e.g., the relative positions and 
orientations of each camera) and internal geometry (e.g., 
focal lengths, optical centers, and lens distortions). 
Accurate estimates of these geometries are necessary in 
order to relate image information to an external world 
coordinate system. Calibrating stereo cameras is usually 
dealt with by calibrating each camera independently and 
then applying geometric transformations of the external 
parameters to find out the geometry of the stereo setting. 
We developed our depth map construction approach, 
keeping the assumption as a constraint of the work that 
only two face stereo images are available, and there is no 
information about relative positions of the camera and 
face objects, angles, focal length and optical centers.  

We used the concept of epipolar geometry (see section 
III of this paper) to find the correspondence between two 
stereo images. Our approach involves a divide and 
conquer strategy to retrieve the correspondence between 
two images and measure the disparity between them. This 
step involves minimal user interaction for the whole 
mechanism. The rest of the system is automatic.  

The organization of the paper is as follows: related 
literature is described in section II, a brief overview of our 
system is in section III, section IV contains the 
implementation details, and we give conclusions in 
section V. 

II. LITERATURE REVIEW 
Computational stereo for the extraction of three 

dimensional scene structures has been an intense area of 
research for decades [13]. Systems have been developed 
over the last decade to fine-tune the three dimensional 
scene. Besides, there are mechanisms to retrieve the depth 
map from a single image. Hassner and Basri [1] propose 
such a novel solution to the problem of depth map 
reconstruction from a single image, but the mechanism 
addresses an example based synthesis approach. Their 
method uses a database of objects from a single class (e.g., 
hands, human figures) containing example patches of 
feasible mappings from the appearance to the depth of 
each object. Given an image of an object, the system 
combines the known depths of patches from similar 
objects to produce a plausible depth estimate. Although 
the approach performs well on structured rigid objects like 
faces, it requires a training data set of predefined depth 
maps. Hoiem et al. [2] propose another solution for 



creating a 3D model from a single photograph. The work 
concentrates on three dimensional structures of the 
outdoor environment, rather than concentrating on fine 
rigid objects. It presents a method for creating virtual 
walkthroughs that is completely automatic and requires 
only a single photograph as input. The approach is similar 
to the creation of a pop-up illustration in a children’s 
book: the image is laid on the ground plane and then the 
regions that are deemed to be vertical are automatically 
“popped up” onto vertical planes. Just like the paper pop-
ups, the resulting 3D model is quite basic, missing many 
details. The reconstruction process is restricted to outdoor 
scenes, and the mechanism requires a training data set to 
label objects in the image. Horry et al., Kang et al. and 
Pollefeys et al. [3–5] describe other similar works. 

Debevec et al. [6] propose a process that requires a lot 
of user interaction, and the system depends more on 
model based geometry, rather than trusting the regular 
image. Cipolla et al. [7] describe a mechanism for 
retrieving three dimensional architecture from 
uncalibrated images that does not need a priori 
information about the cameras being used, but it requires 
user selection of a set of image-edges that are parallel or 
perpendicular in the world. Ziegler et al. [8] describe 
another mechanism where the user has to define a set of 
polygonal regions with corresponding labels in each 
image using familiar 2D photo-editing tools. Their 
reconstruction algorithm computes the 3D model with 
maximum volume that is consistent with the set of regions 
in the input images. Their system works well with 
geometric objects, but it is not suitable for reconstructing a 
3D face model. Liebowitz et al. [9] present methods for 
creating 3D graphical models of scenes from a limited 
number of images, where no scene co-ordinate 
measurements are available. The methods employ 
constraints available from geometric relationships that are 
common in architectural scenes – such as, parallelism and 
orthogonality – together with constraints available from 
the camera. As a result the method works well for outdoor 
scenes, like houses, buildings, buses, cars, etc. It is not 
suitable for the reconstruction of three dimensional face 
models. 

Taeone et al. [10] propose a method for locating the 3D 
position of a soccer ball from a monocular image 
sequence of soccer games which is highly domain 
dependent, and is not suitable for human face model 
reconstruction. With similar aims, Criminisi et al. [11] 
describe how three dimensional affine measurements may 
be computed from a single perspective view of a scene 
given only minimal geometric information determined 
from the image. This minimal information is typically the 
vanishing line of a reference plane, and a vanishing point 
for a direction not parallel to the plane. The work shows 
that affine scene structure may be determined from the 
image, without knowledge of the camera’s internal 
calibration, or the explicit relation between camera and 
world. The system is not suitable for face model 
reconstruction, because it determines perspective view 
from vanishing lines, which is not possible for a face 
image.  

Li-An and Huang [12] propose an approach to the 
automatic construction of 3D human face models using a 
generic face model and several 2D face images. A 
template matching based algorithm is developed to 
automatically extract all necessary facial features from the 

front and side profile face images. Then the generic face 
model is fitted to these feature points by geometric 
transforms. Finally, texture mapping is performed to 
achieve realistic results. The authors show that their 
system generates good quality 3D face models, but the 
system is dependent on the generic face model used as 
background knowledge. As a result, the quality of the 
generated face model depends on the architecture of the 
generic face model that is utilized for 3D face model 
reconstruction. 

There are other papers ([13–14]) that portray surveys on 
computational stereo and face recognition techniques. In 
our paper, we describe a simple method to reconstruct the 
face model from stereo images without using any 
background knowledge, expensive equipment, or 
calibration information about the camera. Our system 
requires minimal user interaction for reconstruction. 

III. SYSTEM OVERVIEW 
In this section, we briefly describe our technique for 3D 

face model reconstruction. We will fill in the details in 
section IV. The technique is illustrated in Fig. 1. The only 
user interaction is at the beginning of the process. The 
user marks four points on a rectangle placed behind the 
face model in each stereo image. The user eliminates 
unnecessary parts from the images and creates two new 
stereo images that contain only the face. Images with 
marked points are used in the next step for the retrieval of 
epipolar lines. Images containing only the face of the 
model (after the elimination of the unnecessary parts) are 
used for the Optimized Block Matching step of Fig. 1. 

Fig. 2 illustrates the concept of epipolar lines in 
computational stereo analysis. P indicates the point object, 
where CL and CR indicate the optical centers of the left and 
right camera. P is projected at x and x' respectively in the 
left and right image. The plane PCLCR is called the 
epipolar plane, and xe and x'e', which are the intersections 
of the epipolar plane with the two image planes, are called 
epipolar lines. xe and x'e' correspond to each other in the 
left and right image. The goal of the Epipolar Line 
Detection step of Fig. 1 is to predict these epipolar lines, 
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Fig. 1. The 3D face model reconstruction process. 



so that they can be used in the Optimized Block Matching 
step, which generates the optimized depth map that is used 
for 3D face model reconstruction. The details of these 
steps are described in the following section. 

IV. IMPLEMENTATION DETAILS 
In this section, we describe the detailed mechanism for 

the 3D face model reconstruction that was shown in Fig. 
1. The section is divided into four subsections describing 
the steps of the reconstruction process – (A) depth map 
calculation, (B). epipolar line detection, (C) optimized 
block matching strategy, and (D) reconstruction of the 3D 
model and texture mapping. 

A. Depth Map Calculation 
There are two types of correspondence methods for 

depth map calculations [13], the local correspondence 
method, and the global correspondence method. We 
conducted experiments with the depth map construction 
strategy for this work. We used local correspondence 
methods, because local correspondence methods are faster 
than those of global correspondence methods. Our 
approach for depth map calculation is called the block-
matching approach [13]. We can define the problem as 
follows: we are given two images, and, from the 
information contained in these images, we must compute 
disparities. The correspondence problem consists of 
determining the locations in each camera image that are 
the projection of the same physical point in space. All 
correspondence methods attempt to match pixels in one 
image with their corresponding pixels in the other image. 
The block matching method seeks to estimate the disparity 
at a point in one image by comparing a small region about 
that point (the template of I1 in Fig. 3) with a series of 
small regions extracted from the other image (the search 
region of I2 in Fig. 3). We used two metrics for block 
matching: intensity difference and rank metrics. We found 
that intensity difference is better in our case. We used the 

two most popular statistical formulas for this purpose: (1) 
Sum of Squared Differences (SSD), and (2) Sum of 
Absolute Differences (SAD). The equations are [15]: 
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( I ( u ,v ) I ( u d ,v ))− +∑  (1)
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| I ( u ,v ) I ( u d ,v ) |− +∑  (2) 

We examined depth maps using these two formulas and 
found that SSD is slightly better than SAD, and so for 
further experiments we used only SSD. 

In practice the disparity measurement formula is not the 
only issue for generating a good depth map. The template 
size is also an important parameter for depth map 
calculation. Fig. 4 shows a comparison of generated depth 
maps between four different template sizes for the block 
matching algorithm. Naturally, the larger the template size 
the better the accuracy of the depth map. Unfortunately, 
these depth maps are not suitable for high quality 3D face 
model reconstructions.  This is because for the depth maps 
of Fig. 4 we did not use any kind of calibration; our 
algorithm just scanned the corresponding pixels of the 
images instead of scanning through the corresponding 
epipolar lines. Epipolar lines between two images are the 
actual physical correspondence between two images [13]. 
The following subsection describes how we measured the 
epipolar lines without using any kind of external 
hardware. 

B. Epipolar Line Detection 
We used a very simple technique for the detection of 

epipolar lines. We placed a rectangular board behind the 
model. The board itself contained a black rectangle in 
such a way that the face height fits in the rectangle. But 
the black lines of the rectangle did not have strong black 
intensity, i.e., RGB(0,0,0), in the digital form of the 
images. So we hand-coded any extreme color on the four 
corners of the rectangles of the input images (Fig. 5). 

Fig. 2. Epipolar plane and epipolar lines. 
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Fig. 3. Block matching approach for depth map calculation. 

Fig. 4. Effect of different template size for the block matching scheme. 
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Fig. 5. Corners are hand-coded by red (RGB(255,0,0)). 
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In our case, for both the stereo images, we hand-coded 

the four corners of the rectangle with extreme red 
(RGB(255,0,0)) because any real image generally does not 
contain any kind of extreme color. The algorithm for the 
detection of epipolar lines between two stereo images first 
looks for extreme red points in the images and uses them 
to generate two epipolar lines per image. These two lines 
are marked 1 and 2 in the stereo images of Fig. 6. The 
algorithm then detects the other epipolar lines using a 
recursive divide and conquer strategy. Every time the 
algorithm detects a line that is at the middle position 
between two input lines. The corresponding epipolar lines 
for the other image are also detected in the same way 
simultaneously. Fig. 6 shows some of the epipolar lines 
with the detection sequence. The algorithm repeats its 
recursion until the difference between any corresponding 
endpoints of the two input lines in the y-direction becomes 
1 pixel height or corresponding endpoints overlap. The 
same number of epipolar lines are selected from two 
images. These epipolar lines are used as scan-lines for the 
block matching algorithm discussed in the previous 
subsection. Before using block matching, we eliminate 
unnecessary parts (parts other than the face) from both the 
images. Such input images and the constructed depth map 
found after using the calibration are given in Fig. 7(a) and 
(b). 

Two images from the reconstructed three dimensional 
model using the discovered depth map are given in Fig. 8. 
The constructed three dimensional face model is not 

satisfactory, especially at the nose, and also since the 
depth map has lots of noise, the three dimensional model 
does not look perfect. So, we apply an optimization for the 
block matching algorithm. The optimization is described 
in the following subsection. 

C. Optimized Block Matching Strategy 
Our optimization approach has some similarity with the 

approach used by Hassner and Basri [1], although they 
generate depth maps from an existing example database. 
In contrary, we apply an optimization technique for stereo 
images using the assumption that the left side and right 
side of a face are relatively symmetrical. 

Our observation is that some of the patches/templates 
from the left side of the face can match with the right side 
of the other image generating a noisy depth map. Let h 
and w be the height and width of the stereo images (both 
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Fig. 7. Input images and constructed depth map. 

Fig. 8. Snapshot of the constructed three dimensional model (without 
optimization). 
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Fig. 9. The optimization process. 
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Fig. 10. Snapshot of the constructed three dimensional model with 
optimization. (b) the corresponding depth map. 
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Fig. 6. Divide and conquer strategy to discover the epipolar lines. 



of our input stereo images have the same size). We add 
the values (w/2, h/2) to every point of two images. While 
comparing against the second stereo image, the template 
does not cross the boundary of the image-frame that 
existed before this addition. Boundary image-frames are 
shown in Fig. 9 with each image for better illustration. 
This imposes some symmetry constraint on the depth map 
construction. As, for example, the left side of the first 
image is compared with only the left side of the second 
image (Fig. 9(a)). A template with center positioned at the 
central vertical line gets the highest priority and conducts 
a full comparison with the biggest search space, i.e., the 
whole width of the image (Fig. 9(b)). The depth map 
found after this optimization is given in Fig. 10(b). Two 
snapshots after the reconstruction of the 3D face using this 
depth map are shown in Fig. 10(a), which shows that the 
3D reconstruction after the optimization we used is far 
better than the scheme we used without the optimization 
given in Fig. 8. 

D. Reconstruction of the 3D Model and Texture 
Mapping 

We use a simple method for the reconstruction of the 
3D model from the depth map. For a 3D point (x, y, z) we 
take x and y from the first stereo image and z from the 
gray level intensity at (x, y). Hence the gray level intensity 
of the depth map becomes the z-value for the 
reconstruction process. We have used texture in a different 
way from traditional texture mapping techniques. As we 
are not working with geometric objects and not 
constructing wireframes, we used our own technique for 
texture mapping. Consider a pixel of the first stereo to be 
P(i,j). Then, z1 is the corresponding depth of P obtained 
from the depth map. Let us denote it as: z1=depth(i, j). 
Now, the corresponding 3D point is P1(i, j, z1). We select 
two other points in the following way: 

(1) Select P2(i–k,  j–k, z2) where z2=depth(i–k, j–k) 
(2) Select P3(i–k,j+k,z3) where z3=depth(i–k, j+k). 
We construct a triangle using these three points P1, P2 

and P3 . The fill color of the triangle is the color of the 
pixel of the first stereo image at P(i, j). In this approach, k 
is a user defined constant. In our case, k=2. For a better 
3D illusion it is better to keep the value of k small. Both 
Fig. 8 and Fig. 10(a) display snapshots after the texture 
map. Fig. 11 shows a snapshot of the 3D reconstruction 
with optimization but without the triangles and texture 
map. 

V. CONCLUSION 
In this work, we construct a 3D face model from two 

stereo images. Our technique does not require any training 
dataset, expensive calibration equipment, or any kind of 
camera geometry information. The system requires 
minimal user interaction. Moreover, snapshots of the 
stereo images are taken by moving the hand-held camera 
to slightly different viewpoints. As a result, this system 
could be used by anyone with a cheap digital camera to 
build 3D face models. The limitation of the technique is 
that it is not suitable for large objects (e.g., buildings, cars, 
aircraft, etc.) because we construct the depth map from the 
RGB color intensity of the stereo images. Consequently, 
our depth maps have only 256 units of depth which is 
sufficient for the 3D model reconstruction of a face or 
similar objects. Although the reconstructed 3D face 
produces good quality visualization, the constructed depth 
map still possesses some noise generating a slightly 
disfigured 3D face. We only concentrated on the depth 
map of the face and ignored left, right, back and top sides 
of the model. As a result, the 3D reconstruction is done 
only for the face, not for the complete head. The task of 
discovery of an automatic system to construct a complete 
head model remains as a topic for future work.  
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