

HOMOGENIZATION FOR DIVISIBLE AND NON-DIVISIBLE PROBLEMS
ACROSS A LOCAL AREA NETWORK

MAHMUD SHAHRIAR HOSSAIN1, M. MUZTABA FUAD2, MD. MAHBUBUL ALAM JOARDER3

1Lecturer, Department of Computer Science and Engineering
Shah Jalal University of Science and Technology, Sylhet-3114, Bangladesh.
E-mail: shahriar-cse@sust.edu
2Department of Computer Science
Montana State University, Bozeman, MT 59717, USA.
E-mail: fuad@cs.montana.edu
3Assistant Professor, Institute Of Information Technology (IIT)
University of Dhaka, Dhaka-1000, Bangladesh.
E-mail: joarder@univdhaka.edu
Fax: +880-2-8615583

Abstract:
A networked environment suffers from unpredictable speedup behavior during distributed processing due to
heterogeneous nature of the hardware and software in the remote machines. It is challenging to get better performance
from a distributed system by distributing task in an intelligent manner such that the heterogeneous nature of the system
do not have any effect on the speedup ratio. This paper illustrates homogenization, a technique that balances and
distributes a divisible workload in such a manner that the user gets the highest possible speedup from a distributed
environment. Besides, homogenization ensures minimum processing time for non-divisible independent jobs.
Homogenization is totally transparent to user and system.

Keywords:
Homogenization, Distributed computing, Triangular Dynamic Architecture (TDA), Load balancing.

1. Introduction and Background

Distributed computing in a LAN environment uses heterogeneous infrastructure where hosts vary in

processing power, hardware architecture, memory, resident operating system and background daemons etc.

Simply allotting equal amount of workload to each machine would cause degradation of speedup for low-

performance machines. Only few of the proposed distributed computing operates efficiently in such

heterogeneous environment. Moreover as speedup is always dependent on actual computation time and the

overhead for communication, a profound relationship between load, computation and data to be transferred is

most essential. By establishing this relationship, homogenization [7] enriches communication abstraction.

Homogenization is applicable not only to linearly divisible jobs, also to non-divisible problems that are

running independently in the remote machines.

System such as AdJava[3, 4] harnesses the computing power of underutilized hosts across a LAN or WAN,

provides load balancing but suffers from penalty of migration time of the object and is useful only for

scientific applications. Nieuwpoort et al.[5] established a divide-and-conquer model for writing distributed

supercomputing applications on hierarchical wide-area systems. But the divide-and-conquer strategy may

result in high round-trip time. Although there are several distributed systems[1, 2, 7, 9], there is hardly any

work on intelligent job distribution and load balancing.

Triangular Dynamic Architecture (TDA)[6] introduces a mechanism of distributed processing and parallel

computation for balancing the workload among the idle machines of a network. An intelligent server divides

the job efficiently so that distribution mechanism properly balances the load across the system. TDA provides

distributed and parallel processing, a dynamic nature with a load-balancing tool called homogenization and

possesses platform independence. Homogenization enables TDA to balance workload across a network in

dynamic and intelligent way. Homogenization considers the heterogeneous parameters of a LAN and allocates

workload to clients based on their capability. Thus, Homogenization avoids degradation in speedup caused by

low-performance machines.

Homogenization can be applied to any kind of linearly divisible distributed processing system and non-

divisible independent parallel processing environment. It can also be used for solving computation intensive

scientific problems. Commercial applications, where faster manipulations are required and thousands of

clients are to be served, homogenization would provide better performance.

2. System Architecture

Homogenization is a mechanism that is established over Triangular Dynamic Architecture (TDA) which

possesses the components TDA server, service provider and clients. Homogenization facilitates TDA in

distribution of workload in a load-balancing manner.

Figure 1 illustrates the homogenization process for TDA. Java Virtual Machine (JVM)[9] brings all the hosts

in TDA to the same platform named homogenization plane. This is the first level of homogenization. In the

homogenization plane all the machines are of same virtual platform but they are of different performance

factors. The TDA server performs the next level of homogenization. It brings the service-providers to the

homogenization line. This level of homogenization is performed by allotment of variable workload depending

on the performance factors of the service-providers.

In the homogenization line, all the service-providers take same amount of time to complete corresponding

sub-requests. Scope length is the length of workload to a service-provider decided by the server. Scope length

varies based on performance factors of service-providers so that they finish their computation at the same

time.

If the requests were divided into equal pieces, slower service providers would take more time than a faster

one. Homogenization overcomes this problem by using intelligent load balancing. The distribution of job

depends on a dynamic collection of performance report from the service providers. The server uses maXAgent

strategy for distribution of non-divisible independent jobs.

Performance
factors

Scope Length

Platform factors

Homogenization
plane

Homogenization
Line

Server

Client 1

 1 n

Service-Providers
(SPs)

Client 2

Service-provider
response to client

Server order to
service-provider

Client request
to server

 2 3 4

Client m

Figure 2: Triangular Dynamic Architecture.
Figure 1: Illustration of homogenization techniques

for TDA.

Homogenization promotes the way of establishing triangular relationships in TDA. The client sends request to

the TDA server, the server thereafter granulizes the request into subparts and sends them to service-providers.

The server maintains several tables in its local database. It calculates the scope-length for a particular service-

provider, using these tables. Most critical knowledge-issues are performance of the service-providers, their

response time, list of services provided by a service-provider, etc. A background process in the service-

provider informs the server about its current load after certain time interval. The server stores these

information and based on these generates a performance number called the homogenized performance value.

Homogenized performance is the outcome of the second level homogenization of Figure 1.

The first level of homogenization, i.e., bringing all the machines to homogenization plane is done by JVM.

TDA server, by generation of homogenized performance value for each machine, does the second level of

homogenization, thus bringing all the service-providers to homogenization line. Figure 2 illustrates a sample

of TDA that shows multiple triangular relationships established against a request from the client. The

relationships are established dynamically based on the homogenized performance of the service-providers.

2.1 Mathematical synopsis for Divisible Problems

Let the time to complete a job in a standalone machine be T; if there exists N computers those have the same

performance along with same homogeneous behavior as the standalone one, then total time to compute the

same job with N computers will be

()1LLLLLLLLLLLLLLL
N
TTN =

In fact, this is the best theoretical case where the distribution mechanism itself does not carry any cost of

distribution. If the cost of distribution is O(L) where L is the amount of load that is to be distributed among N

computers, total time to compute the same job would be

() ()2LLLLLLLLLLLLLO
N
TTN +=

So far, the mathematical synopsis is based on a homogeneous environment. But a real networked environment

is composed of heterogeneous elements. TDA server depends on the performance values of the service-

providers for a balanced distribution. As a result the concept of "number of computers" becomes somewhat

different. The number of computers depends on two parameters. They are: PS, the performance of the

standalone machine and PT , the sum of performance values of all the machines invoked by the distribution.

That is,

()3
1

LLLLLLLLLLLLLL∑
=

=
N

i
iT PP

Hence, although physically the number of computers is N, during homogenization virtually the number of

computers would become,

()41 LLLLLLLLLLL
S

N

i
i

S

T
H P

P

P
P

N
∑
===

Thereafter for homogenization in a heterogeneous infrastructure Eq. (2) would get the following form:

()5)()(

1

LLLLLO

P

P

TLO
N
TT

S

N

i
i

H
NH +=+=

∑
=

Naturally, speedup for a homogenized system can be defined as

()6
)(

1

LLLLLLL
LO

P

P

T
T

T
TS

S

N

i
i

NH
NH

+
==

∑
=

The distribution overhead O(L) would become negligible for high degree of computation where actual

computation time,
HN

T
 plays the most dominating role. In this case,

()7LLLLLLLLLLLLLL
H

NH N
TT =

and

()81 LLLLLLLLLLLLLL
S

N

i
i

NH P

P
S

∑
==

This case would lead to a linear increment of speedup in accordance with NH, the virtual number of

computers.

Overhead O(L) is not only a function of communication time but also it depends on the time to deliver the

information about the network. As the information is stored in the server, the manipulation of the distribution

of objects takes a very low amount of time compared to the communication time. As a result overhead is a

very linear function of only the load i.e., O(L).

() ()9LLLLLLLLLLLLLLMLO ×=

M, the slope of the line depends on the infrastructure of the local are network, to which the system is

established.

2.2 Synopsis for Non-divisible Problems

The goal of this paper is not to harness the computation power with the best possible solution of a problem,

but to derive a distribution mechanism that would result in fast solution in an existing parallel system.

An existing system can be considered as if it is running parallel agents in remote hosts in such a manner that

all the hosts are searching for a solution of a problem with some probability. If a solution is found, TDA

server would stop all the agents accordingly. Let it be considered that each agent is basically a thread pursuing

a search heuristic starting from a random position. More threads on a processor would mean more

computation time for a given number of state evaluations per thread. Counteracting this, multiple threads

increases the number of random explorations, increasing the likelihood that some thread will lead to a

solution. So, there should be some synopsis with the number of agents running in each machine. This type of

system that holds independent agents, which are randomly initialized, but concurrently doing the same job in

the same space should be rearranged by number of agents in each remote machine. The parameter, maXAgent

is a system-performance dependent integer that defines the number of agents in a machine where the solution

is retrieved in the shortest possible time. It should be mentioned that each service provider should hold k

agents where k is an integer that is equal to maXAgent for corresponding machine-performance. From detailed

experiments and analysis it is found that maXAgent varies system to system depending on the performance of

the hosts. The variation follows Equation (10).

)10(
1000

7000 LLLLLLLL
pemaXAgent −=

where p = performance of the machine in hundred thousand keys per second. A machine performance is taken

by key encryption capability of the machine per second. The experiments are described in Section 3.2.

3. Performance Analysis

To verify the potential of homogenization, some problems are implemented in TDA. A linearly divisible

problem and a non-divisible instance are taken for the performance analysis.

3.1 Linearly Divisible Problem

Performance is measured in two types of environment: heterogeneous environment and homogenized

environment. A homogenized environment is one where TDA has applied homogenization, i.e., in reality it is

a heterogeneous one but TDA has homogenized the overall system.

Matrix multiplication is a common scientific computation that is linearly divisible in a distributed computing

system. Considering the simplest algorithm that multiplies two matrices with three loops, the experiment is

performed. All the statistics taken are for the same network, same service-providers and the same thin client,

as well as the same TDA server. For experimental purpose, the test matrices were all square matrices. Every

time two square matrices of same size were requested to the server to distribute.

Only the first matrix is granulized into pieces and sent to different service-providers. Each service-provider

gets a copy of the second matrix from the thin client. Each service-provider then calculates a portion of the

result and sends it directly to the thin client that requested for the job. The thin client combines the result when

all the portions are received.

The experiments are taken with various combinations of Intel machines varying in CPU speed, memory size,

operating system, user processes, background daemons and many other parameters. Pentium II, III, and IV

Intel machines with physical memory ranging from 64 to 128 MB were used. All of them were connected by

Square matrix length = 800
(Homogenization)

 Number of service-providers
(b) Homozenized Behavior of TDA

0 1 2 3 4 5 6 7 8 9 10O
ve

ra
ll

co
m

pu
ta

tio
n

tim
e(

se
c.

)

0

20

40

60

80

100

Square matrix length = 800
(Equal distribution)

 Number of service-providers
(a) Heterogeneous behavior of TDA

0 1 2 3 4 5 6 7 8 9 10

O
ve

ra
ll

co
m

pu
ta

tio
n

tim
e(

se
c.

)

0

20

40

60

80

100
Actual Computation
Time (sec.)
Overhead

 Number of service-providers
(c) Comparison between
Heterogeneous and
homogenized behavior

0 1 2 3 4 5 6 7 8 9 10

Sp
ee

dU
p

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Homogenization
Equal distribution

100 Mbps Ethernet network. All the TDA components were running over the Virtual Machine provided by

SUN's JDK version 1.2.2 or higher.

3.1.1 Heterogeneous behavior of TDA

Figure 3 shows both heterogeneous and homogenized behavior of TDA for square matrix size of 800. The

dark portion of a bar indicates the actual computation time and the gray part represents the overhead due to

communication distance. From Figure 3(a), it is evident that introduction of successive service-providers

reduces the actual computation time. Closer inspection shows that introduction of the sixth and the ninth

service-providers does not reduce the actual computation time, rather computation time is increased. This type

of degradation of performance is found because the sixth and ninth service-providers were comparatively of

low CPU speed. Equal allotment of load results in heterogeneous pattern of speedup. The heterogeneous

pattern of speedup is shown in Figure 3(c) with a gray line. The speedup pattern shows that speedup is

decreased when sixth and ninth service-providers are involved. Overhead affects speedup because overall

computation time is composed of actual computation time and overhead. Overhead is an additive function of

communication time and decision making time of the server.

3.1.2 Homogenized behavior of TDA

The same analysis is taken with the only exception that now allotment of load is not equal. TDA homogenized

the environment. The physical environment is same as the heterogeneous one, but now homogenization is

applied.

Figure 3(b) shows that application of homogenization assures decrease in actual computation time although

the infrastructure is heterogeneous. Corresponding speedup is shown in Figure 3(c) with a black line.

Figure 4 compares the same homogenized behavior of Figure 3 with formulae of section 2.2. The summation

of performances of the machines is taken from a single snapshot. But runtime performance varies during

operation. Moreover the overhead may vary time to time due to congestion in the network. As a result, a

deviation from the formula is found for the speedup. The overhead function is a linear one. M, of Eq. (9) is 20

for our network. It can vary network to network depending on the speed of the network.

Introduction of newer service-providers causes speed-up improvement regardless their configuration. But the

acceleration of speedup is decreased while large amount of service-providers is involved in a distribution.

Figure 3: Performance Analysis for homogeneous and homogenized behavior.

Figure 4: Performance analysis for homogenized behavior of TDA and performance by formula.

This clarifies that the almost constant overhead becomes pronounced when the actual computation time is

reduced. Subsequent involvement of too many service-providers results in slow speedup improvement. In this

experiment, Figure 3(c) shows that homogenization provides a maximum speedup of 3.6 with nine service-

providers but non-homogenized distribution provides maximum speedup of 2.8 with 5 service-providers.

3.1.3 Load and linearity

Speedup also depends on the size of the load. Different sizes of matrices are used to understand the behavior.

Figure 5(a) shows the speedup lines at different size of matrix multiplication. The figure depicts

heterogeneous performance improvement. The matrix sizes are 200, 400, 600, 800 and 1000. For some of the

sizes, speedup is less than unity, which illustrates that TDA could not improve the performance because the

load was too small. In this case, overheads dominate over the actual computation time. Such degradation is

found for the size 200. For all other sizes, speedup is greater than unity. It proves that TDA shows higher

performance at higher degree of load.

Figure 5: Speedup with different loads.

Figure 6: Overhead pattern
for different load.

Comparison between runtime data and formula

Number of computers

0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Runtime Value
Formula

Load size

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00

O
ve

rh
ea

d
(s

ec
.)

0

5

10

15

20

25

Runtime Overhead
Overhead by formula

0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0Equal distribution

 Number of service-providers

 (a) Equal Distribution

0 1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Load = 200
Load = 400
Load = 600
Load = 800
Load = 1000

 Number of service-providers

 (b) Homogenization

Homogenization

The corresponding homogenized performance for the same heterogeneous infrastructure is given in Figure 5 (b),

which shows steady improvement of performance at higher amount of loads. Figure 5 (b) depicts that when the

load size is 1000, the speedup line is almost linear, while at lower sizes speedup is more nonlinear. This proves

that overhead becomes negligible for huge amount of load hence speedup becomes a linear function.

A comparison between Figure 5 (a) and Figure 5 (b) shows that the maximum speedup reached during non-

homogenized situation is around 3.5 where the maximum speedup reached during homogenization is around 5.5

which describe the nobility of homogenization through TDA.

The overhead function is a linear one. M, of Eq. (9) is 20 for our network. Formulas overhead and real overhead

for different load size are sketched in Figure 6.

3.2 Non-divisible Problems

Performance is measured in an existing distributed system that solves Constraint Satisfaction Problems[12] using

parallel computers by a random initialization search based heuristic with the Global Evaluation Function

(GEF)[14]. For an instance, N-queen problem is established. Introduction of agent based Global Evaluation

Function is not the best way of the solution of N-queen problem as already some analytical solutions for the

problem exist[13]. The goal of homogenization is not to find out the best algorithm for a specific problem but to

harness computation power from the maximum utilization of the networked environment.

A machine that runs multiple agents concurrently by different independent threads would result in a system state

that possesses the probable lower evaluation value and the likelihood to be closer to the solution. As the number

of threads increases in this standalone machine, the likelihood that some of the agents are near to the solution is

increased. Figure 7 shows the experimental results. Performances are taken for various numbers of queens, N.

Figure 7: GEF for different number of queens (nAgent vs. time).

For each N, time to find the solution is taken, with different number of agents. A maximum of 20 agents are taken

for each N. The experiment shows that it is better to use two agents rather than using one, again it is better to use

three agents rather than two.

Further inference of the statement is not true i.e., after introduction of the third agent, the search time eventually

increases with the involvement of further agents in the machine. At every level, requests are made several times

and average time is taken to plot the graph of Figure 7. Figure 7 suggests that if the number of agents in this

Number of Agents, nAgent
0 5 10 15 20

tim
e

(s
ec

)

0

20

40

60

80

100

120
N = 4
N = 5
N = 6
N = 7
N = 8
N = 9
N = 10
N = 11
N = 12
N = 13
N = 14
N = 15
N = 17
N = 19
N = 21
N = 23
N = 25
N = 27
N = 29
N = 31

machine is equal to three then the machine would derive the solution in the shortest possible time. So maXAgent

for this machine is equal to three. This number would vary machine-to-machine depending on the performance of

the host.Figure 8 depicts the behaviors at different performance levels where the number of queens is 30 in a

(30X30) chessboard. Performances are taken at 0.5854, 2.7884, 5.9882, 6.9501, 7.9712 and 8.3193 hundred

thousand keys/sec. maXAgents are found to be 7, 7, 7, 5, 4 and 3 respectively. The runtime behavior of maXAgent

follows Equation (10). The runtime behavior and the formula behavior are plotted in Figure 9. Therefore,

homogenization suggests k number of agents in a host where k is equal to maXAgent for that particular machine.

So, total number of agents, totAgent in the system would be

)11(....... 1210 LLL−++++= mkkkktotAgent

where m is the number of service-providers in the system.

Homogenization provides better result even in a standalone machine that is solving non-divisible problems using

TDA server. In this experiment, standalone systems of six different performances of Figure 8 got speedups of 45,

177, 4, 5, 2 and 2 respectively.

Figure 8: Detection of maXAgent at different performance levels.

Figure 9: Homogenization
pattern for maXAgent.

4. Conclusion

Homogenization is not limited to only linearly divisible problems. Besides, it produces better result for non-

divisible independently executing parallel processes. It can be used for solving computation intensive scientific

problems. Commercial applications, where millions of records are manipulated and thousands of clients are to be

served, homogenization would provide better performance. Homogenization does not require any kind of user

interaction for its knowledge centric distribution mechanism. When someone is exploring the space, it becomes

challenging to detect which part of the space is poor and which part is rich. Homogenization enables system

independent performance evaluation, which is preserved by the TDA server. As a result homogenization would

become applicable in wide range of problem space. Homogenization can be used to enrich the system with

Machine Performance
(p hundred thousand keys/sec)

0 2 4 6 8 10
m

aX
A

ge
nt

2

3

4

5

6

7

8

Performance vs
maXAgent
Performance vs
formulaMaXAgent

Perf=58540 keys/s

0 2 4 6 8 10 12

0
200
400
600
800

1000
1200
1400
1600

Perf=278844 keys/s

0 2 4 6 8 10 12

0
200
400
600
800

1000
1200
1400 Perf=598818 keys/s

0 2 4 6 8 10 12
20

40

60

80

100

120

140

Perf=695014 keys/s

0 2 4 6 8 10 12
0

50

100

150

200

250

300 Perf=797115 keys/s

0 2 4 6 8 10 12
20

30

40

50

60

70 Perf=831931 keys/s

0 2 4 6 8 10 12
0

20

40

60

80

100

Number of Agents

Ti
m

e
(S

ec
.)

Migration of Thread [11] from the weaker part to the rich part of the space. The future direction of the work is to

provide Distributed Artificial Intelligence (DAI) with the environment of Distributed Intelligent System (DIS) to

secure maximum possible speedup not only homogenized by the server but also gained by intelligent service

providing agents.

Homogenization technique based of TDA, is an enriching mechanism of job distribution. TDA granulizes

computation intensive jobs to concurrent pieces using homogenization and operates them in a dynamic

environment to reduce total processing time. Experimental analysis shows that in a heterogeneous environment,

homogenization provided a 55% increase in speedup relative to maximum non-homogenized performance for a

linearly divisible problem. It is established with an automatic manner in TDA as a transparent load-balancing tool.

In a non-divisible independent parallel system homogenization provides speedup even if there exists just a single

service-providing machine. For implementing homogenization, the present JVM remains unchanged. The current

implementation is fully based on the existing JVM and that way TDA fulfills its main goal of providing a

distributed computing environment in an existing LAN.

5. References

[1] A. Baratloo, M. Karaul, Z. Kedem & P. Wyckoff, “Charlotte: Metacomputing on the Web”, Future

Generation Computer Systems, 15(5-6), 1999, 559-570.

[2] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, & D. Wu., “Javelin:

Internet-Based Parallel Computing Using Java”, Concurrency: Practice and Experience, 9(11), 1997,

1139-1160.

[3] M. M Fuad & M. J. Oudshoorn, “AdJava - Automatic Distribution of Java Applications”, Australian

Computer Science Communication, 4(28), 2002, 65-77.

[4] M. M. Fuad & M. J. Oudshoorn, “Automatic distribution and load balancing of Java objects in an agent

oriented distributed system”, Proceedings of 5th International Conference on Computer and Information

Technology, Dhaka, Bangladesh, 2002, 101-107.

[5] R. V. Nieuwpoort, T. Kielmann & E. B. Henri, “Efficient load balancing for wide-area divide-and-

conquer applications”, ACM SIGPLAN Notices, 36(7), 2001, 34-43.

[6] M. S. Hossain, K. M. N. H Khan, M. M. Fuad & D. Deb, “Triangular Dynamic Architecture for

Distributed Computing in a LAN Environment”, Proceedings of 6th International Conference on

Computer and Information Technology, 2(1), Dhaka, Bangladesh, November 2003, 481-486.

[7] M. S. Hossain, M. M. Fuad, D. Deb, K. M. N. H Khan & M. M. A. Joarder, “Load Balancing in a

Networked Environment through Homogenization”, Proceedings of 10th International Conference on

Cybernetics and Information Technologies (ISAS-CITSA 2004), 3(1), Orlando, Florida ~ USA, July 2004,

99-104.

[8] R. L. Hyde & B. D. Fleisch, “A Case for Virtual Distributed Objects”, Int'l Journal on Parallel and

Distributed Computing, 1(3), 1998, 1-11.

[9] Sun Microsystems, “The Real-Time Specification for Java”, www.java.sun.com, Last Visited: July 8,

2004.

[10] Sun Microsystems, “Java Remote Method Invocation Specification”,

http://java.sun.com/j2se/1.4.2/docs/guide/ rmi/spec/rmiTOC.html, Last Visited: July 8, 2004.

[11] K. Thitikamol & P. J. Keleher , “Thread Migration, Load Balancing and Heterogeneity in Non-Dedicated

Environments”, Proceedings of the 2000 Int'l Parallel and Distributed Processing Symposium, May

2000, 583-588.

[12] Gu J., “Local Search for Satisfiability (SAT) Problem”, IEEE Trans. On Systems, Man and Cybernetics,

23(4), 1993, 1108-1129.

[13] Gu J. & Sosic R., “A Polynomial Time Algorithm for the N-Queens Problem”, SIGART bulletin,1(3),

1990, 7-11.

[14] Jing H. & Qingsheng C., “Emergence from Local Evaluation Function”, SFI (Santa Fe Institute), WP 02-

08-036, August 2002.

