Triangular Dynamic Architecture for Distributed Computing in a LAN Environment

Mahmud Shahriar Hossain, Kazi Muhammad Najmul Hasan Khan,
M. Muztaba Fuad & Debzani Deb

Department of Computer Science & Engineering
Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.
{shahriar 9639, najmul_bd}@yahoo.com, {fuad, banya-cse}@sust.edu

ABSTRACT

A computationally intensive large job, granulized to concurrent
pieces and operating in a dynamic environment should reduce
the total processing time. However, distributing jobs across a
networked environment is a tedious and difficult task. Job
distribution in a Local Area Network based on Triangular
Dynamic Architecture (TDA) is a mechanism that establishes a
dynamic environment for job distribution, load balancing and
distributed processing with minimum interaction from the user.
This paper introduces TDA and discusses its architecture and
shows the benefits gained by utilizing such architecture in a
distributed computing environment.

Keywords: Distributed processing, TDA, Two-tier and Three-
tier Models, Java, RMI.

1. INTRODUCTION

Triangular Dynamic Architecture (TDA) introduces a
mechanism of distributed processing and parallel computation
for balancing the workload among the idle machines of a
network. The construction of TDA is accomplished by
introducing an intelligent server that dynamically categorizes
hosts and relates those hosts transparently in a local area
network.

1.1 GOALS AND OBJECTIVES

In a distributed system, there might be thin clients [7], who
possess least processing capability with a minimum resource
allotment; in contrary, there might be high performance hosts
with idle CPU time. All the machines will be properly balanced
with equal workload when TDA is applied. A TDA server
always haunts for job from all the clients. When the server finds
a job from a client, it divides the job into granules and
distributes it to the service providers. After processing, the
service providers directly return the outcomes to the requesting
client. An intelligent server must divide the requested jobs
efficiently so that the distribution mechanism properly balances
the load across the system. A fallacy may arise when the server
is deciding which service providers are going to get the job. A
service provider idle at this moment may not be idle a minute
later. The server should always be ready to detect such issues to
balance the load.

An access to a large database with billions of records is
basically occurred through indices. Access points are mentioned
in the index table for faster interpretation. Another consequence
is that the index table in turn may grow larger. The databases in
use may have different formats and may be dispersed at
different geographical locations. A client requesting for a record
is delayed if the search is linear. If indices are used, a portion of
the database needs to be accessed linearly. Such a linear access

becomes a cause of large access time. Undoubtedly, dividing the
job into different machines reduces the access time. However
the distribution of load itself can overwhelm the system. Hence
a mechanism to resolve this problem is mostly necessary to
implement the architecture. The architecture needs to be
dynamic because a static architecture cannot always provide a
perfect solution to the client requests. Moreover, platform
independence is a vital issue for maintaining different formats of
databases, as well as processing client requests arriving from
different locations. The system should completely hide the
entire mechanism of distribution from the user providing an
easy interface.

Once again, computation intensive calculations like matrix
multiplication can also be divided into pieces to different hosts
so that the computation time is reduced. Communication
overhead becomes critical in such a scientific calculation.
Special delegation mechanism should be used to reduce
congestion over the network. The critical aspect of the
architecture is to provide different types of job distribution
through the same server. The architecture should support
platform independence because in a local area network hosts of
different operating system and architecture exist. So, TDA is
provided with the facility of Java Virtual Machine (JVM)[12].
Sophisticated distribution mechanism should be used for
distributing the granulized job. TDA utilizes Remote Method
Invocation (RMI)[13] for load distribution by reason of its
flexibility of different types of object passing in an object-
oriented fashion. Another critical aspect is that the hosts of a
local area network varies in CPU speed, memory size, bus
speed, background processes and many other parameters. TDA
should homogenize (Section 3.5) the hosts to such a platform
where the load is balanced in the network rather than providing
only an equal distribution.

1.2 SCOPE

TDA enriches parallel and distributed processing mechanism in
a sophisticated manner across a local area network. For large-
scale distributed information systems where billions of records
are processed, hundreds of users are served concurrently and
large wvarieties of services are provided, TDA becomes a
promising architecture for faster implementation. E-commerce
based transaction processing managed by hundreds of hosts
based on TDA will provide platform independence, faster
transaction processing, ease of management and varieties of
other services. TDA supports various types of business-oriented
jobs as well as computation intensive scientific jobs to be
distributed in a local area network.

1.3 RELATED WORKS

TDA is a major extension of the three-tier model [1].
Architectures like TDA should possess own mechanisms to
resolve the task of distribution. Few other research projects

[3, 4, 5,6,8,9, 10, 11] have studied client-server, three-tier
architecture and object distribution.

Scott [11] introduces the basics of client/server computing and
component technologies and then proposes two frameworks for
client/server computing using distributed objects. The
component-based architecture defines the basic preliminary
components of TDA. TDA is further developed to communicate
among three kinds of hosts: server, client and service-provider.
Moreover, TDA establishes dynamic relations on runtime.

Randall et el. [10] have discussed the scalability of a client
server relationship. The distribution architecture is developed
turn by turn as the number of clients is increased. The paper
describes several existing distributed object oriented systems but
they did not show any kind of performance measurement
benchmarks against their comments.

JavaParty [9] transparently adds remote objects to Java [12] by
declaration in the source code. It introduces involvement of pre-
compiler. It creates multiple Java byte-code files for every
single distributable class. TDA does not require any pre-
compiler for its transparent distribution. JavaParty is specially
targeted towards and implemented on clusters of workstations. It
combines Java-like programming and the concepts of
distributed-shared memory in heterogeneous networks. An aim
of establishing TDA goes with a strict promise that no change of
the existing compilers would be done. Neither any kind of
hardware dedication would be used nor the network topology
would be changed.

Another work experimentally compares mechanism of load
balancing with existing load-balancing strategies that are
believed to be efficient for multi-cluster systems. Nieuwpoort et
al. [8] conducted this comparison and established a divide-and-
conquer model for writing distributed supercomputing
applications on hierarchical wide-area systems. But the
mechanism in TDA is established in a local area network,
without making any kind of change in the hardware level.
Searching to a database should not be distributed in a divide and
conquer strategy, because such a distribution makes the
mechanism dependent on large varieties of hosts which would
result in higher amount of communication overhead.

The aim of NODS [3] is to define an open and adaptable
architecture that can be extended and customized on a per-
application basis. Furthermore, services or database systems
configuration can be adapted at runtime (e.g., add new services,
change services, internal policies), according to environmental
change. TDA also enables such runtime facilities and their
improved versions depending on the TDA server.

Edelstein et al. [4] describes different client-server relationships
whereas some other research works [1, 2] also argues different
tier-concepts like three-tier and two-tier. A two-tier system
disperses user system interface, some processing management
and database-management, in two different layers. In three-tier
model, the three-layers are user system interface, process
management and database management. TDA is a further
development of three-tier model that is capable of performing
vast varieties of jobs in dynamic fashions other than database
handling. Compared with static three-tier model, TDA is
dynamic in nature.

Fuad et al. [5, 6] introduces a system called AdJava that
harnesses the computing power of underutilized hosts across a
LAN or WAN. It also provides load balancing and migration of
distributed objects through the use of intelligent software agents.
Although the migration mechanism used in AdJava is highly
automated, it suffers from penalty of migration of objects. TDA
provides mechanism to pass objects to the server and thereafter
service providers, but there are administrative preferences that
allow real distribution of load through analyzing it entirely or a
virtual distribution of load that allows distribution information
collection from the server. AdJava uses a simple distribution
policy to distribute objects to available machines. If the number
of objects to be distributed is more than the number of machines
in the system, AdJava distributes more than one object to those
machines that are loaded lightly compared to other machines in
the system. But TDA distributes a computation according to the
homogenized information about the system. Objects are
granulized according to that dynamic information. So there is no
need to recycle object-transfer to already loaded service
providers by a granule of the same request. AdJava harnesses its
performance only through scientific applications while TDA is
capable of distributing business applications as well.

2. TDA OVERVIEW

TDA is a sophisticated form of client-server relationship that in
turn is established over three-tier architecture. Now the classical
client server relations are no more suitable[3], applications now
follow the three-tier architecture. In TDA, the classical client-
server relationship is established dynamically and the three-tier
architecture is then merged to it. TDA offers a cyclic triangular
relationship (CTR) which is dynamically established by the
server. The relationship is constructed between the client, the
server and the service provider. A service-providing host, for
convenience, is called a Client Service Provider or CSP. As
shown in Figure 1, a client makes request to the server to
perform a job, the server then hands the job over to an
appropriate CSP. After processing the request, the CSP directly
sends the result to the requesting client.

2.1 TRIANGULAR DYNAMIC ARCHITECTURE (TDA)
TDA is called so because the CTRs are established on demand
and dynamically at run time. For all of the triangles, the server
serves as the common point. The server establishes CTRs when
any request is made. The server may also decide to make several
CTRs against a single request. Thus the efficiency of the TDA
depends on how efficiently job requests are divided into
granules and how the CTRs are established. The relationships
can also switch from one to another, that is, if the CSP of a CTR
becomes busy after receiving the sub-request from the server, it
can send the server a connection refusal request and also sends
the current status of the sub-job it was performing. If the server
grants the refusal request then the CSP is free, the server will
hand over the remaining part of the sub-job to another CSP that
is least busy. It is evident from the Figure 1 that the server is the
common point for all the triangles, which means that the server
is the one who is responsible for establishing such relations.
This is the basis of TDA.

If Clientl sends a request to the server and if the server decides
that the request can be divided into three parts, it sends the
granulized requests to three CSPs designated as CSP1, CSP2
and CSP3. The three CSPs process the corresponding sub-jobs

GSP 1 [csp 2

CsP3 | | CSP4 |

G

.
‘-

<" i+ CSP response
> to client

.
.
)
.
)

5 — Server order
: to CSP

« = Client request
to server

Figure 1: Sample Triangular Dynamic Architecture.

in parallel and send the outcomes directly to Client]. In this case
three CTRs are established, (i) clientl, server, CSP1, (ii) clientl,
server, CSP2, (iii) clientl, server, CSP3. For all these
dynamically established CTRs, the server is the common
element, which proves that server is the one that is responsible
for the decision of distribution.

2.2 MERGING THREE-TIER TO TDA

If the three-tier model is rearranged such that, the middle tier of
the three-tier model represents the CSPs in the TDA and a new
layer is introduced that holds the TDA server (Figure 2), the
combination gains several benefits. The TDA server gains
control over the process management layer of the three-tier
model. Each management section is now considered to be a
CSP, hence the server gets the ability to distribute them jobs.
This merging process favors subdividing a database query into
sub-queries by the TDA server and therefore processing them in
different CSPs for faster execution. Different CSPs can perform
different jobs. The TDA server is informed about the abilities of
the CSPs. For instance, some CSPs can read from a database,
where others can upgrade it; there may several CSPs that are
able to perform other computation intensive jobs. Some gaming
ports may also exist where deep look ahead searching is
involved like in chess. Figure 2 shows such a resulting
architecture when TDA is merged with three-tier model.

The relation between CSP level to User System Interface level
depends on the decided CTR established by the server. The
relation is dynamic because the server on demand establishes
CTRs in runtime. The CSP level has two parts — one
corresponding to the middle tier of the three-tier model i.e. the
middle tier CSPs and another corresponding to jobs other than

PRQLODY

TDA Server

/\\
B

User System
Interface

Dynamic
Relation

— Middle-tier of

three-tier model

Figure 2: Three-tier architecture lying inside TDA.

— CSP level

— Database
Management

database relation. The TDA server is the one to decide which
portion is going to get the subdivided jobs. Therefore, such a
merging can provide faster lookup to database, faster updates,
with other facilities as provided by the CSPs.

3. IMPLEMENTATION DETAILS

Implementation of TDA is a challenging job. A vast variety of
consequences are to be fulfilled while implementing TDA. This
section describes the implementation details.

3.1 USING RMI FOR TDA

With Remote Method Invocation (RMI), Java objects that reside
on different hosts can be used in a distributed fashion, i.e.,
remote object references provided by a name server are bound to
local variables. Then methods can be called on those remote
objects. RMI facilitates object function calls between Java
Virtual Machines (JVMs). JVMs can be located on separate
computers - yet one JVM can invoke methods belonging to an
object stored in another JVM. Methods can even pass objects
that a foreign virtual machine has never encountered before,
allowing dynamic loading of new classes as required.

When a CSP is interested in connecting with the server it looks
up for a registration query to the TDA server. The system is
built up in such a manner that, the CSPs become interested
during bootstrap; a tiny bootstrap loader is responsible for
getting connected with the server. The loader just runs the
program that communicates with the server to receive an ID for
convenient handshaking mechanism. The loader performs its job
when the machine is first turned on. Without a proper
registration to the server, the server cannot send serialized
objects holding job requests to the CSPs.

The discussion so far is about establishing a client-server
relationship with the CSPs only. In the same manner, client-
server relationship between client side programs and the server
can be established using RMI. Implementing CTR using RMI is
a challenging task. The challenge lies inside the reference
passing mechanism, using RMI. The server passes a reference of
the client side program to the CSPs along with the granule that
the server has decided to hand over to a CSP. That is, whenever
a client sends a request to the server it also sends its reference
along with the request.

Sub-query
receiving thread [
Concurrent
threads Sub-query and the
Result of Processing identification of
processing thread anterface
User Interface| ~Format Requeiﬁ receving
request and thread
Concurrent ol wsse Concurrent
threads I — threads :
Request T CSP searching
Handler thread

Figure 3: Implementation of Cyclic Triangular Relationship
(CTR) Using RMI.

RMI passes parameters in two ways — pass by value and pass by
reference of an object. A pass by value mechanism transfers the
whole object to a remote host as parameter. But a reference
parameter does not require the transfer of the whole object but
only the access path to the object that is to be sent. This
mechanism enables a CSP send the result after processing,
directly to the client. The implementation using RMI is
illustrated in Figure 3. The client side program has basically two
parts - a user interface and a request handler. User requests are
sent to the request handler of the client side program. The
request handler encrypts user request and adds user program
identification as a reference parameter.

The server receives the request along with the reference and
finds out the most efficient division of the query. CSP searching
thread in the server then sends sub-query to the CSPs. The CSPs
grasp the sub-query, process corresponding sub-jobs and then
directly send the result to the appropriate thin client - at specific
reference. It should be mentioned that the programs for
performing computation and database accesses inside CSPs are
all background processes. All these are totally hidden from the
user-knowledge of the particular CSP. Also, the requesting
client does not have any idea about all the remote programs,
threads, and other components.

3.2 TDA SERVER

TDA server is one, which is responsible for the actual
distribution of workload. The server maintains some information
and based on the stored information, the server can decide about
the number of granules to be generated for a particular request.
When a request arrives, the server always depends on the latest
data available to its local database; it does not look for more
information from the CSPs, since doing so will degrade its
performance.

3.3 CSp

Background processes are the heart of CSPs. All the processes
of a CSP are hidden from the remote user’s sight. A background
process always measures the current load of the computer even
when the CSP is doing its share of the work. But, it measures its
load in such a manner that it does not overwhelm other
processes because it is implemented through a low priority
thread. Time to time, it communicates with the server
mentioning the current load. The server hence upgrades the local
database about the corresponding CSP. If the remote host
becomes busy with user task over a measured threshold, it tries
to hand over the partially completed job. The server then
searches for a new CSP that is least busy. If such a CSP is
found, server permits the previous CSP a refusal after getting
the status of the sub-task it was resolving. The rest of the sub-
task is then performed by the new CSP, starting from the point
where the previous CSP has left. If such a refusal is not possible
then the CSP requesting a refusal must conduct the sub-task; in
that case the server marks the CSP as a busy one until the
background process form that CSP does not inform the server
about its load reduction.

3.4 CLIENT

The overall TDA is designed to facilitate the client; to reduce
the access time to a database and to perform many other jobs
that the client alone was unable to conduct efficiently.
Furthermore, the client might never perform the job as a thin
host. A client program is composed of a user console and a

request handler. User console is the basic interface to TDA for
the users. If a user casts a request through the console, the
request is sent to the request handler. Request handler encrypts
the request and sends the request along with the client object
reference to the TDA server. The result of processing is received
in the user interface portion.

3.5 HOMOGENIZING TDA

The server maintains several tables in its local database that
helps distributing the load. The server actually calculates the
scope-length to be offered to a particular CSP, using the tables
of the local database. Most critical knowledge-issues are
performance of the CSP, their response time, list of services
provided by a CSP, etc. A background process in the CSP
informs the server about its current load after every 30 seconds.
The server maintains this information and based on the stored
information, the server generates a performance number, which
is called the homogenized performance. The server depends on
the homogenized performance of the CSPs for the balanced
distribution of load.

Whenever a CSP gets an identity during bootstrap, it sends
performance parameter to the server. The server also measures
the communication distance of the CSP by pinging it test
packets. Time to time, the server upgrades its tables e.g., it sends
test packets to get the response time of the CSPs. Test packets
are directly thrown back to the server from the CSP. Also it
helps the server to know whether a particular CSP is dead or
active. Test packets are smaller in size and they merely congest
the traffic. If a CSP is not busy, but yet it has a large response
time, then the server does not invoke it for small jobs. The
server always tries to offer it massive and computation intensive
jobs so that the time consumed by communication overhead
becomes less pronounced.

A CSP with comparatively lower homogenized performance
always gets smaller portions of request than a faster one. A
service-provider that is dead with a sub-request keeping it
incomplete is again re-requested to another CSP by the server.
This prevents loss of sub-requests, hence the possible loss of
client-request. Some CSPs are marked by the administrator as
lazy and least busy all the times. Server prefers them as first
priority to be involved by sub-requests. The administrator can
also set a threshold value for homogenized performance. TDA
server ignores CSPs that have homogenized performance less
than the threshold value. Therefore, homogenization improves
TDA to not only a distributing architecture but also a
sophisticated load-balancing design.

4. PERFORMANCE ANALYSIS

TDA is able to perform distribution of different types of jobs.
To verify the potentiality of TDA, a business application is
introduced in this section. Performance is measured in three
types of environment: heterogeneous environment,
homogeneous environment and homogenized environment. A
heterogeneous environment is one, where hosts of different
configurations in hardware exist. They may also vary in their
operating systems, background daemons, virtual memory
allocations and many other parameters. A homogeneous
environment consists of systems with same hardware
configuration. It is hard to get a perfectly homogeneous
environment because the hosts may have different background

processes and applications. A homogenized environment is one
where TDA has applied homogenization ie. in reality,
homogenized environment is a heterogeneous one, but TDA
homogenized the overall system.

A linear search to a large database is a time consuming job.
TDA offers searching from different locations of a table of
records. A linear search-time can be reduced with concurrent
search by multiple CSPs from different locations. The entire
search area is divided by the TDA server and searches are
conducted by CSPs from the server-decided locations.

4.1 SYSTEM APPARATUS

A global database with one hundred thousand records is
constructed. The database is global to all the CSPs so that all
can make access to it. A linear search by one host takes a
significant amount of time to complete the search. This sample
problem is solved by TDA to verify the effect of TDA on
overall search time.

The experiments were taken with various combinations of Intel
machines. They manifested a heterogeneous infrastructure. For
experiment with homogeneous environment, six computers with
same hardware configurations were selected. For heterogeneous
and homogenized environment Pentium II, III, and IV Intel
machines with physical memory ranging from 64 to 128 MB
were used. All of them are connected by 100 Mbps Ethernet
network. All the TDA components were running over the
Virtual Machine provided by SUN's JDK version 1.2.2 or
higher.

4.2 HOMOGENEOUS BEHAVIOR OF TDA

For better understanding, homogeneous behavior is illustrated
first. Theoretically, application of TDA in a homogeneous
environment should produce a linear speedup, but in reality an
overhead is found which is a function of decision time made by

Homogeneous Environment
2 12000 (DBLength =30000)
2 10000 - I Actual search time
= 8000 - [Overhead
=
S 6000 -
®
& 4000
T 2000
2
8 0
0 1 2 3 4 5 6 7
Number of CSPs
(a) _
Homogeneous Environment
6 (DBLength =30000)
o)
5 4 o
a 4 1 o
3 3 1 o
(]
(% 2 o
14 —eo— \\ith overhead
0 o~ Without overhead
0 1 2 3 4 5 6 7
Number of CSPs
(b)

Figure 4: Homogeneous behavior of TDA (linear search in
30000 records).

the TDA server and communication distance. As a result the
speedup would not increase linearly as newer CSPs are involved
in a searching. Figure 4 shows the homogeneous behavior of
TDA. Figure 4(a) shows the relative time required for overall
search against different number of homogeneous machines
involved. The overhead and actual searching time is also
denoted in this figure. Corresponding speedup is plotted in
Figure 4(b). It shows that without considering the overhead,
speedup is almost a linear function (the gray line). The black
line shows the actual speedup against different number of CSPs
considering the overheads. This analysis shows that TDA
reduces the actual computation time as newer CSPs are involved
but the overhead flattened the expected linear behavior. For
higher amount of load the overheads would become negligible
and therefore the real speedup should become an almost linear
function.

43 HETEROGENEOUS BEHAVIOR OF TDA

If the TDA server does not have any homogenizing capability
then a heterogeneous behavior is experienced. In a
heterogeneous LAN environment, if the server distributes a load
into equally granulized sub-jobs, an unpredictable performance
is detected due to different CPU speed, operating system,
amount of memory, etc. In reality, a network is configured with
heterogeneous machines. So TDA should deal with
heterogeneous environment with close observation.

Figure 5(a) shows the actual search time, overhead and
thereafter the overall search time for using different numbers of
CSPs. Subsequent addition of newer CSPs reduces the actual
search time. But, addition of the sixth CSP and ninth CSP
increases the actual search time because these two CSPs were
comparatively of lower performance. Equal distribution of load
to all the CSPs may suffer from this type of performance
degradation. The corresponding speedup is shown in Figure 5
(c) with a gray line. Speedup is fallen when sixth and ninth
CSPs are introduced to the distribution. Hence the speedup with
equal distribution of load is mostly dependent on the low-
performance machines, because the completion of the search is
subject to the completion of the sub-request executed by the
slowest CSP. Heterogeneous behavior of TDA introduces a
massive problem of equal distribution for parallel computation.
It expresses that there should be a mechanism that would enrich
TDA with distribution of load according to the performances of
the CSPs invoked for computation. All the CSPs should
complete the partial computations almost at the same time. This
is possible only when slower CSPs would get lower amount of
load and the high performance CSPs will get larger portion of
the job. This introduces the concept of homogenization.

44 HOMOGENIZED BEHAVIOR OF TDA

The same physical heterogeneous environment of Figure 5(a) is
virtually homogenized by TDA and actual searching time is
found to be always reducing. Figure 5(b) shows that actual
searching time is always reducing although the sixth and ninth
CSPs are slow and loaded. TDA server delivered lower amount
of load to the slow and loaded machines. This introduces a
sophisticated balancing mechanism of loads across a local area
network. The corresponding speedup for the homogenized
environment is plotted in Figure 5(c) with a black line. It shows
that homogenization ensures speedup improvement upon
addition of a newer CSP whereas equal distribution of load does
not ensure performance improvement. Equal distribution suffers

™ DBLength = 100000
£ 70000 (Equal distribution)
2 60000
= 50000
‘G 40000
& 30000
©» 20000
‘s 10000
o 0
© 0123456728910
Number of CSPs
(a)
— DBLength = 100000
E (Homogenization)
< 70000
g 60000
= 50000
5 40000
@ 30000
% 20000
E 10000
o 0
(e} 012345678910
Number of CSPs
(b)
Speedup for load balancing
3.0 and equal distribution
2.5 1
5 20
8 15-
& 1.0 —&— Himogenization
05 | O— Equal distribution
0.0 BN S N S N R
0123456738910
Number of CSPs
(c)

Figure S: Analysis with search across 100000 records (a)
Heterogeneous behavior of TDA, (b) Homogenized behavior
of TDA, (c¢) Corresponding speedup of (a) and (b).

from heterogeneous behavior of parallel computation. Figure 5
(c) shows that maximum speedup for heterogeneous behavior is
found to be 2.3 when the distribution is committed between five
CSPs. Subsequent addition of newer CSPs improved the
speedup for homogenized environment and maximum speedup
was reached when nine CSPs were used. The maximum speedup
gained during homogenized performance analysis was 2.8.

5. CONCLUSION

Triangular Dynamic Architecture is an enriching mechanism of
job distribution across a local area network. TDA granulizes
computation intensive jobs to concurrent pieces and operates
them in a dynamic environment to reduce total processing time.
TDA establishes dynamic load balancing and distributed
processing mechanism with minimum interaction from the user.

TDA provides better processing time in a distributed computing
environment. For implementing TDA, the present JVM remains
unchanged. The current implementation is fully based on the
existing JVM and that way TDA fulfills its main goal of
providing a distributed computing environment in an existing
LAN.

6. REFERENCES

[1]

[10]

Carnegie Mellon Software Engineering Institute,
“Three Tier Software Architectures”, http://www.sei.
cmu.edu/str/descriptions/threetier.html.

Carnegie Mellon Software Engineering Institute, “Two
Tier Software Architectures”, http://www.sei.cmu.edu
/str/descriptions/twotier.html.

Collet Christine, “The NODS project, Networked Open
Database Services”, Proceedings of Symposium on
Objects and Databases (ECOOP), http://www-
Isr.imag.fr/ Les.Personnes/Christine.Collet, LNCS
1813, Sophia Antipolis and Cannes, France, June 2000.
Edelstein H., "Unraveling Client/Server Architecture",
DBMS (http://www.dbmsmag.com), Vol. 7, No. 5,
Page 34, May 1994.

Fuad M. M. and Oudshoorn M. J., "AdJava -
Automatic Distribution of Java Applications",
Australia Computer Science Communication, Vol. 4,
No. 28, Page 65-77, February 2002.

Fuad M. M. and Oudshoorn M. J., “Automatic
distribution and load balancing of Java objects in an
agent oriented distributed system”, ICCIT, Proceedings
of 5™ International Conference on Computer and

Information Technology, Page 101-107, Dhaka,
Bangladesh, December 2002.
Jennings T., “Application Deployment and

Integration”, Research Paper: Jacada ™ Ltd. Jacada
® for Java, http://www.jacada.com/products/Jacadaby
Butler.pdf, March 2001.

Nieuwpoort R. V., Kielmann T. and Bal Henri E.,
“Efficient load balancing for wide-area divide-and-
conquer applications”, ACM SIGPLAN Notices, Vol.
36, No. 7, Page 34-43, July 2001.

Philippsen M. and Zenger M., "JavaParty -
Transparent Remote Objects in Java", Concurrency:
Practice and Experience. Vol. 9, No. 11, Page 1225-
1242, November 1997.

Randall L. Hyde and Fleisch Brett D., "A Case for
Virtual Distributed Objects", Int'l Journal on Parallel
and Distributed Computing, Vol 1, No. 3, September
1998.

Scott M. Lewandowski, “Frameworks for component-
based client/server computing”, ACM Computing
Surveys (CSUR), Vol.30, No.l, Page 3-27, March
1998.

Sun Microsystems, “The Real-Time Specification for
Java”, www.java.sun.com, 2003.

Sun Microsystems, “Java Remote Method Invocation
Specification”, www.java.sun.com/j2se/1.4.2/docs/
guide/rmi/spec/rmiTOC.html, 2003.

http://www.sei.cmu.edu/str/descriptions/threetier.html
http://www.sei.cmu.edu/str/descriptions/threetier.html
http://www.sei.cmu.edu/str/descriptions/threetier.html
http://www.sei.cmu.edu /str/descriptions/twotier.html
http://www.sei.cmu.edu /str/descriptions/twotier.html
http://www-lsr.imag.fr/ Les.Personnes/Christine.Collet
http://www-lsr.imag.fr/ Les.Personnes/Christine.Collet
http://www.dbmsmag.com/
http://www.jacada.com/products/Jacadaby Butler.pdf
http://www.jacada.com/products/Jacadaby Butler.pdf
http://www.java.sun.com/
http://www.java.sun.com/j2se/1.4.2/ docs/guide/rmi/spec/rmiTOC.html
http://www.java.sun.com/j2se/1.4.2/ docs/guide/rmi/spec/rmiTOC.html

	ABSTRACT
	INTRODUCTION
	IMPLEMENTATION DETAILS
	3.2 TDA SERVER
	3.5 HOMOGENIZING TDA
	PERFORMANCE ANALYSIS

	CONCLUSION
	REFERENCES

