
1

Agent Based Processing of Global Evaluation Function

MAHMUD SHAHRIAR HOSSAIN
Lecturer, Department of Computer Science and Engineering

Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh.
E-mail: shahriar-cse@sust.edu

M. MUZTABA FUAD
Department of Computer Science

 Montana State University, Bozeman, MT 59717, USA.
E-mail: fuad@cs.montana.edu

DR. MD. MAHBUBUL ALAM JOARDER
Assistant Professor, Institute of Information Technology (IIT)

University of Dhaka, Dhaka-1000, Bangladesh.
E-mail: joarder@udhaka.net

FAX: +880-2-8615583

Load balancing across a networked environment is a monotonous job. Moreover, if
the job to be distributed is a constraint satisfying one, the distribution of load demands
core intelligence. This paper proposes parallel processing through Global Evaluation
Function by means of randomly initialized agents for solving Constraint Satisfaction
Problems. A potential issue about the number of agents in a machine under the
invocation of distribution is discussed here for securing the maximum benefit from
Global Evaluation and parallel processing. The proposed system is compared with
typical solution that shows an exclusive outcome supporting the nobility of parallel
implementation of Global Evaluation Function with certain number of agents in each
invoked machine.

Keywords: Global Evaluation Function, Constraint Satisfaction Problem, Backtracking
and Homogenization.

1. INTRODUCTION AND OVERVIEW

Problem solving is a very important topic in Artificial Intelligence. Decision
Problems or Constraint Satisfaction Problems (CSP)[1] are critical because some of them
need the best solution while others may not have any solution at all. Typical solutions
like backtracking cannot solve such problems because for large-scale problems,
searching space would increase sharply. There are several basic algorithms and methods
for solving Constraint Satisfaction Problems. Single-solution algorithms harness their
computing power for only one solution in a time. Examples can be provided as
Backtracking[4], Extremal Optimization[6], Local Search[7], Simulated Annealing[5],
Alife&AER[2, 3] model, etc. These algorithms can be added to multi-agent system. Jing
et al.[1] only focus on such one-copy algorithms with an emergence of Local Evaluation
Function. Our research work is based on Agent based Global Evaluation Function, while
it focuses on concurrent placement of agents at different locations for its computation
power.

2

Generate-test (GT)[1] generates a possible combination of all variables and then
checks whether it satisfies all the constraints or not. The simplest way to generate a
complete assignment of all variables is to select a value randomly, for each variable.
However this is a very inefficient way. GT can grow much smarter with the application
of sharp intelligence so that the random generation of test cases is forcefully headed
toward the solution. This can be done by an evaluation mechanism of the current
situation of the problem-state. This evaluation mechanism can be based on Global
Evaluation Function (GEF), which would vary problem to problem, depending on the
constraints to be satisfied. Once again, to avoid falling into the local-optima, the
algorithm may sometimes perform stop-and-restart[8], random walk and Tabu
search[9, 10] .

If multiple agents are created to perform GEF based GT, the forceful run toward
the solution would be faster. If the number of agents in a standalone machine is
increased, where all the agents are initialized randomly, the searching capability would
grow larger. But after including certain number of agents, the system performance would
decrease although it seems that the searching capability is higher. The included agents
with random initialization will not be able to secure the benefit any more because the
speed of each agent toward the solution would decrease due to increasing number of
agents in one machine. So the number of agents in a standalone machine should be
minimized by rigorous analysis.

If a distributed system is used for GEF based GT, each machine should run
multiple agents to secure the maximum benefit from the system. But the number of
agents in a machine should be optimized. This paper focuses on parallel agent based
solution by GEF for harnessing maximum processing power gained from a distributed
system.

2. ALGORITHM AND STRATEGY

This paper organizes relationship between Constraint Satisfaction Problem, Global
Evaluation Function and Multi-agent systems. Further it goes forward to show its
distributed implications.

2.1 CONSTRAINT SATISFACTION PROBLEM (CSP)

A Constraint Satisfaction Problem, P, consists of [11]

1. A finite set of variables, X, identified by the natural numbers, 1, 2, ………,
n, X={X1,X2,………,Xn}.

2. A domain set, containing a finite and discrete domain for each variable.
D={D1,D2,….Dn}, for all i [1, 2, ……., n], Xi Di .

3. A constraint set, C = {C(R1), C(R2),………,C(Rm)}. Ri is the ith constraint.
Each Ri is an ordered subset of the variables, and each constraint C(Ri) is a
set of tuples indicating the mutually consistent values for the variables in
Ri.

4. P is a finite discrete CSP, if all Di in D are discrete and finite.
5. P is a binary CSP, if each constraint is either unary or binary. It is possible

to convert a CSP with n-ary constraints to another equivalent binary
CSP[11].

3

A solution, S, is a complete assignment to all variables such that the assignment satisfies
all the constraints.

In this paper, N-queen problem is chosen as a Constraint Satisfaction Problem
where N queens should be placed in an N*N chessboard so that no two queens are placed
in the same row, same column or same diagonal position. It is a classical benchmark of
CSPs. Solutions exist for N-queen problem with N is greater than or equal to 4. The
equivalent CSP is
 X = { X1, X2, ………,Xn} where Xi refers to the position of the queen in the ith row.
 D={D1,D2,….Dn}, ,i Di = [1, n]
 C={C(Ru)| ,i j [1,n], C(Ru)={<b,c> |b Di, c Dj, b c, i-j b-c, i-j c-b}}
N-queen problem is an attractive candidate for algorithm performance evaluation and
also it is a scalable problem that has many applications[12].

2.2 GLOBAL EVALUATION FUNCTION (GEF)

The Global Evaluation Function for Generate-test style search methods are as
follows[1]:

1. Pick a random state from possible state set.
2. Choose a neighboring state and the system moves to that state:

Compute the evaluation value of all neighbors of the current system
state by Global Evaluation Function and then select the best state;
Alternatively, perform some random walk with some probability.

3. Repeat 2. and 3. until a solution is found or reached the maximum tries.
4. Return the current state as the solution.

There are varieties of neighborhood structure. One simple method to construct the
neighbor is to change any one variable's assigned value. Therefore, the difference
between the current state and its neighbors is one variable's assigned value, which
changes the evaluation worth derived from Global Evaluation Function. By this way a
number of

i iD 1 neighbors are found for each state.

GEF evaluates how good the current system-state Ssys is. This function is used to
rank the current state and to find out the best neighboring state by a move. There are lots
of ways to define the evaluation function. Evaluation function plays a dominating role in
the algorithm and a good definition of it will increase the performance of the
algorithm[1]. It is called Global Evaluation Function because it considers the whole
system, in together.

4 4 5 4

2 5 4 5

4 3 5 3

3 5 5 5

(a)

3 3 2 1

2 5 4 5

3 2 2 0

2 2 4 2

(b)

Figure 1: A move toward minimum evaluation value.

A move to (2,1)

4

For N-Queen problem GEF can be defined as the number of dissatisfied constraints
that follows Equation (1).

N

i

N

j
jijijisysglobal ijssjissssSE

1 1
)()()(

2
1)((1)

The number of dissatisfied constraints in a solution state is Eglobal(Solution State) = 0.
Figure 1(a)[1] shows an instance where the gray cells indicate the positions of queens for
a 4-Queen problem. The number in each cell indicates the value derived by GEF for
corresponding placement of queens. The current state corresponds to an evaluation value
of 5 where it suggests that if the queen of the second row were moved to the first column,
the evaluation value would become 2, the minimum among all other moves. Thereafter
Figure 1(b) [1] shows that after the move, a solution state with evaluation value 0 is
found in (3, 4). At this moment, if the queen of the third row is moved to fourth column,
a solution is found.

A state with better evaluation value does not always mean that it is closer to the
solution. Moreover a better evaluation value can be found in more than one cell. If the
so-called better evaluation value does not provide further improvement, another cell with
same evaluation value can be selected. Eventually, if all the cells with the minimum
evaluation value fall under the same fallacy, the move can be given to previous one that
forked the minimum value and move can be given to such a cell that have minimum
evaluation value which is greater than the previous minimum.

2.3 AGENT-BASED EVALUATION STRATEGY

Jing et al.[1] describes agent-based solution where each variable Xi is handled by
one agent. This conversion of CSP to multi-agent system complicates the GEF strategy.
Moreover agents cannot be controlled for global evaluation if they are placed in
independent threads. Even if piping mechanism were used for inter-thread
communication, the overhead would lead a dominating part. Moreover a distributed
system will suffer from communication overhead if agents are placed in different
machines.

This paper proposes placement of agents in independent threads so that the threads
can be placed in different machines under a Local Area Network. Each agent would
search the solution independently using GEF. A closer observation in the performance
analysis section will show that the number of agents in one machine demands some
analysis for securing the maximum benefit. The initiator of the searching should follow
the following strategy:

1. Start all the agents concurrently
a. Each agent picks a random state from its possible state set.
b. Choose a neighboring state and the system moves to that state:

Compute the evaluation value of all neighbors of the current
system state by Global Evaluation Function and then select
the best state; Alternatively, move toward better position with
some probability.

c. Repeat b. and c. until a solution is found.
d. Return the current state to the initiator as the solution.

2. If a solution is found, notify all agents to stop their corresponding
searching.

5

As all the agents start searching from random instances, it is possible that some of them
start with lower evaluation value than the others.

3. PERFORMANCE ANALYSIS FOR
AGENT BASED EVALUATION

The performance analysis is done in several steps to understand the behavior of the
problem and it is compared with typical backtracking algorithm to solve the N-queen
problem. The analysis finally harnesses the strategy to find out the maximum number of
agents, maxAgent that can be placed in one machine to secure the benefit of random
initialization of all the agents.

3.1 BACKTRACKING vs. GLOBAL EVALUATION FUNCTION (GEF)

Figure 2 shows a comparison between two standalone versions of solution of N-
queen problem. The red line stands for the backtracking solution and the other for the
GEF solution. The initial positions of all the queens are chosen randomly for GEF
method. Thereafter it goes forward to the positions with lower evaluation value. It stops
its searching until it finds the lowest possible evaluation value, Emin. The value Emin is
zero for the N-queen problem. Whenever it finds a position with Eglobal = Emin, it is
guaranteed that it has found a solution because global evaluation value Emin derives state
with fulfillment of constraints. Figure 2 shows time to reach a solution for different
number of queens. Definitely, GEF method shows better performance than typical
backtracking method.

Once again, Figure 3 shows plot for a fixed number of queens, which depicts that
the deterministic approach of backtracking method would result in static time for each
request. The red straight line stands for typical backtracking algorithm. Alternatively, the
same experiment with GEF method results in varying time because of its random
initialization every time a request is made. Among all the requests 70% requests result in
less time than typical backtracking algorithm. This behavior is really a promising one.

Figure 2: Comparison between
backtracking and global evaluation
function method.

Figure 3: Comparison between
backtracking and GEF method for N=28.

Request ID
0 5 10 15 20

Ti
m

e
(m

s)

0

100x103

200x103

300x103

400x103

BackTracking
GlobalEvaluation

Number of Queens (N)
0 5 10 15 20 25 30 35

Ti
m

e
(m

s)

0

50x103

100x103

150x103

200x103

250x103

300x103

350x103
N vs time (Backtracking)
N vs time (Global Evaluation)

6

Because it shows, if agents are placed in different machines it is probable that 70%
machines would provide faster results than typical backtracking solution. So definitely,
the initiator would get the solution faster than a typical backtracking as well as single
GEF method.

3.2 GEF AND AGENT-BASED SOLUTION

A system that runs multiple agents concurrently in a standalone machine by
different independent threads, would result in a system state that possesses the probable
lower evaluation value and likely to be closer to the solution. In this way, agent-based
GEF provides exclusive outcome.

Figure 4 shows the experimental results. Performances are taken for various
numbers of queens, N. For each N, time to find the solution is taken, with different
number of agents. A maximum of 20 agents are taken for each N. The experiment shows
that it is better to use two agents rather than using one, again it is better to use three
agents rather than two. Further inference of the statement is not true i.e., after
introduction of the third agent, the search time eventually increases with the involvement
of further agents. The tendency is a valid one because at every level, requests are made
several times and average time is taken to plot the graph of Figure 4.

Figure 4: GEF for different number of queens (nAgent vs. time).

Number of Agents, nAgent
0 5 10 15 20

tim
e

(m
s)

0

20x103

40x103

60x103

80x103

100x103

120x103

N = 4
N = 5
N = 6
N = 7
N = 8
N = 9
N = 10
N = 11
N = 12
N = 13
N = 14
N = 15
N = 17
N = 19
N = 21
N = 23
N = 25
N = 27
N = 29
N = 31

7

Figure 5: GEF for different number of queens and their tendency.

The tendency for each N can be retrieved from the corresponding regression lines
drawn in Figure 5. Most of the regression lines crisscross time=0 line when number of
agents is between 2 and 3. The regression lines prove that if the number of agents were
three, the system would provide solution in the fastest possible speed. This performance
was taken in a machine with 1.7 GHz Genuine Intel processor and 256 MB of RAM.

A single regression line can be plotted by the data from which averages were taken.
This regression line will provide the maximum number of agents, maxAgent, that should
be used in a standalone machine. Figure 6 provides the scatter plot of all the data and the
corresponding regression line [green line] that crisscrosses time=0 line at nAgent = 3.

Thus, random initialization of agents can secure a benefit form the GEF but the
benefit is limited in standalone machine. The number is limited by maxAgent, k [value of
k depends upon some other parameters related to the performance and configuration of
the machine. For our case k=3].

Figure 6: Scatter plot of all the data and the regression line.

Number of Agents, nAgent
0 5 10 15 20

tim
e(

m
s)

0

20x103

40x103

60x103

80x103

100x103

120x103

Number of Agents, nAgent
0 5 10 15 20

tim
e

(m
s)

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103

160x103

180x103

nAgent vs time
Regression Line

8

3.3 HOMOGENIZATION[13] FOR maxAgent

Homogenization is a technique that enables the distribution of workload to different
nodes in a Local Area Network composed of heterogeneous elements. Homogenization is
especially applicable for problem instances that are linearly divisible. It is not applicable
for dividing a problem instance of AI where probabilistic Global Evaluation mechanism
is used. Despite homogenization shows its benefit in such problems by varying the
number of agents in the machines. Analysis of the previous section shows that maxAgent
is the number of agents that secures the maximum benefit of Global Evaluation Function
from a machine. This number varies machine to machine depending on the
performances. In the parallel implementation of Global Evaluation Function,
homogenization can be used to balance the number of agents depending on the
performances of the machines.

In the experiments different machines with different loads with different
performances were taken and it is found that maxAgent varies with the machine
performance. A machine performance is taken by key encryption capability of the
machine per second. It is found that maxAgent follows equation (2).

 maxAgent
1000

7000 pe (2)

where p = performance of the machine in hundred thousand keys per second.
Figure 7 shows runtime behavior and the behavior observed from the formula. It

shows that as the performance is increased maxAgent falls accordingly. For a very high
performance machine the theoretical maxAgent would become less than unity. In such a
case, for such machines number of agents should be equal to unity. The agent loader of a
machine should load k number of agents where k is equal to maxAgent from equation (2).

Figure 7: Homogenization pattern for maxAgent.

Machine Performance (p hundred thousand keys/sec)

0 2 4 6 8 10

m
ax
A
ge
nt

2

3

4

5

6

7

8

Performance vs maxAgent
Performance vs formulaMaxAgent

9

3.4 PARALLEL AGENT-BASED SOLUTION

For achieving the maximum benefit of randomization from a distributed
architecture, each machine should possess a number of k agents that is equal to
maxAgent. When multiple agents are placed on each machine of a local area network, the
system would return the solution within minimum possible time. By the consequence, it
would suffer from an overhead TOVE that results from three basic areas: distribution of
job, redirection of result and time to stop agents after a result is found. The Turn around
Time, TTAT is the sum of Actual Search Time, TO and the overhead time, TOVE i.e.,

OVEOTAT TTT (3)
The search space increases if the number of queens, N is increased. The search space
increases by the square of N in the N-Queen problem. As a result,

2NTO (4)
Once again, if the number of agents, NA is increased, Actual Search Time, TO decreases
because of the parallel randomization of agents from different locations of the local area
network. Actual Search Time, T0 is inversely proportional to the number of agents, NA.
That is,

A
O NT 1 (5)

Combining equation (4) and (5)

A
O N

NT
2

 (6)

Once again, from equation (6) it is obtained that

A

O
O N

NKT
2

 (7)

where KO is the constant of proportionality. The behaviors for different number of agents
are reflected in Figure 8. The corresponding runtime plot is provided with Figure 9.
Both the figures show that as the number of queens increases, the Actual Search Time

Figure 8: Tendency of Actual Search time
when N increases. Different lines show the
behavior with different number of agents.

Figure 9: Runtime behavior of Actual
Search Time when N increases. Different
lines depict the behavior with different
number of agents.

Number of Queens, N

0 10 20 30 40

A
ct

ua
l S

ea
rc

h
Ti

m
e

(m
s)

0

100x103

200x103

300x103

400x103

NA = 2
NA = 4
NA = 6
NA = 8
NA = 10

Number of Computers = 5
Number of Agents = 10
maxAgent = 2

Number of Queens (N)

0 10 20 30 40

A
ct

ua
l S

ea
rc

h
Ti

m
e,

 T
O

0

50x103

100x103

150x103

200x103

250x103

N
A = 2

N
A = 4

N
A = 6

N
A = 8

N
A = 10

KO = 250

10

Figure 10: Tendency of Actual Search
time when NA increases. Different lines
show the behavior with different number of
queens.

Figure 11: Tendency of Actual Search
time when NA increases. Different lines
show the behavior with different number of
queens.

increases. Moreover the lines depict that increase of number of agents results in a faster
solution. Each line of Figure 8 actually reflects the behavior of equation (4) although the
overall plot is done by using equation (7). The plot of Figure 8 appears in a different
manner in Figure 10. Figure 11 shows its corresponding runtime plot. Both Figure 10 and
Figure 11 reflect the behavior of equation (5).

All the runtime simulations in this section are taken with several homogeneous
machines, each with Genuine Intel 1.1 GHz processor and 128 MB of RAM. All the
machines run in the Windows platform and are equipped with Java Virtual Machine
provided by Sun's J2SDK 1.4.1. 100 Mbps Ethernet Network connects all the machines.

The distribution penalty, TOVE is proportional to the number of agents, NA, because
the initiator initiates all the NA agents and as well it stops all of them after receiving the
result. Therefore,

AOVE NT (8)
Moreover, as TOVE holds the time consumed by communication, it is also proportional to
the number of queens, N. It is noticeable that TOVE is not proportional to N2 because the
result is received through an one dimensional vector of length N.

NTOVE (9)
Combining (7) and (8)

NNT AOVE (10)

or
 NNKT AOVEOVE (11)

where KOVE is a proportionality constant that varies network to network.

Number of Agents (NA)
2 4 6 8 10

A
ct

ua
l S

ea
rc

h
Ti

m
e

(m
s)

0

100x103

200x103

300x103

400x103

N=4
N=7
N=10
N=13
N=16
N=19
N=22
N=25
N=28
N=31
N=34
N=37
N=40

Number of Computers = 5
Number of Agents = 10
maxAgent = 2

Number of Agents, NA
2 4 6 8 10

A
ct

ua
l S

ea
rc

h
Ti

m
e,

 T
O

0

50x103

100x103

150x103

200x103

250x103

N=4
N=7
N=10
N=13
N=16
N=19
N=22
N=25
N=28
N=31
N=34
N=37
N=40

KO = 250

11

Figure 12: Formula Overhead. Figure 13: Runtime Overhead.

Figure 12 shows the formula overhead plotted by equation (11) and Figure 13
shows the corresponding runtime results. All the points of the runtime plots of this paper
are average of multiple number of simulations. If the averages were taken from infinite
number of simulations, the resulting plots would become as perfect as the formula
graphs.

The most important feature of the analysis should be derived from the ratio
OVE

O

T
T

.

If it turns to unity i.e., the actual search time becomes equal to the overhead, addition of
further agents should be staopped. Because futher involment of agents would hinder the
speedup increment.

From equation (7) and equation (11), it is obtained that

2

2

)(AOVE

O

AOVE

A

O

OVE

O

N
N

K
K

NNK
N

NK

T
T

 (12)

The ratio
OVE

O

K
K

 plays an important role for getting the optimum result and the terminal

point of involment of agents. The value, 2)(AN
N should never be less than

1

OVE

O

K
K

,

otherwise TO would become less than TOVE.
In this experiment, KO = 250 and KOVE = 1. So, the ultimate number of agents, when

N = 40 can be deduced as

 100.,.,1
)(

40
1

250,1
)(22 A

AAOVE

O Nei
NN

N
K
K .

Number of Agents, NA

2 4 6 8 10

Fo
rm

ul
a

O
ve

rh
ea

d,
 T

O
V

E

0

100

200

300

400

500 N=4
N=7
N=10
N=13
N=16
N=19
N=22
N=25
N=28
N=31
N=34
N=37
N=40

KOVE = 1

Number of Agents, NA

2 4 6 8 10

R
un

 T
im

e
O

ve
rh

ea
d

(m
s)

0

100

200

300

400

500

600

700

N=4
N=7
N=10
N=13
N=16
N=19
N=22
N=25
N=28
N=31
N=34
N=37
N=40

Maximum number of machines = 5
Maximum number of agents = 10

12

Figure 14: Terminal point at NA =100 while N = 40.

Figure 14 also shows the theoretical plot, which shows that if more than 100 agents are
used in a parallel system, the overhead would dominate. So, in a distributed and parallel
system for solving Constraint Satisfaction Problems, there exists an ultimate number of
agents, after which the Turn Around Time is dominated by the overhead.

4. FUTURE DIRECTION

The future direction of the work is to provide Agent Migration to employ the under
utilized machines of the network. Establishment of Agent Migration by Thread
Migration[14] mechanism would develop a very dynamic system that ensures maximum
use of the resources. Migration of agent to an underutilized machine from a loaded one
would provide a balance of loads in the Local Area Network.

5. CONCLUSION

Global Evaluation Function itself produces better result depending on some probability
in searching for solution of Constraint Satisfaction Problems. Moreover, if a distributed
mechanism based on maxAgent strategy is built, it would definitely provide faster

KO = 250

KOVE = 1

N = 40

Number of Agents, NA

0 50 100 150 200

tim
e

0

20x103

40x103

60x103

80x103

100x103

120x103

140x103

Actual Search Time, TO

Overhead TOVE

13

response, as experimental data shows that 70% GEF based randomization provides better
results than typical solutions. In a distributed system, GEF utilizes this probability with
maximum possible efficiency because even if the probability becomes smallest, the
initiator would receive results within the shortest possible time from the machine that is
nearest to the solution. Hence maxAgent strategy along with ultimate number of agents in
a concurrent fashion ensures maximum benefit over typical solutions and enriches
parallel processing systems for solving Constraint Satisfaction Problems.

6. REFERENCES

[1] Jing H. and Qingsheng C., "Emergence from Local Evaluation Function", SFI
(Santa Fe Institute), WP 02-08-036, August 2002.

[2] Jing H., Liu J. and Cai Q., "Agents to a Kingdom of N Queens", Jiming Liu and
Ning Zhong (Eds.), Intelligent Agent Technology: Systems, Methodologies and
Tools, Page 110-120, The World Scientific Publishing Co. Pte, Ltd., Nov. 1999.

[3] Liu J., Jing H. and Tang Y. Y., "Multi-agent Oriented Constraint Satisfaction",
Artificial Intelligence, Vol. 136, No. 1, Page 101-144, 2002.

[4] Kumar, V. 1987. "Depth-first Search", Encyclopedia of Artificial Intelligence,
Vol. 2, ed. S. C. Shapiro, Page 1004 -1005. New York: John Wiley and Sons,
Inc, 1987.

[5] Kirkpatrick S., GellatJr C. D. and Veechi M. P., "Optimization by Simulated
Annealing", Science, Vol. 220, Page 671-681, May 1983.

[6] Boettcher S. and Percus A. G., "Nature's way of optimizing", Artificial
Intelligence, Vol 119, Page 275-286, 2000.

[7] McAllester D., Selman B., and Kautz H., "Evidence for Invariants in Local
Search", Proceedings of AAAI'97, Page 321-326, 1997.

[8] Selman B., Henry A. Kautz, and Cohen B., "Noise Strategies for Improving
Local Search", Proceedings of AAAI'94, Page 337-334. MIT Press, 1994.

[9] Glover F., "Tabu Search - Part I", ORSA Journal of Computing, Vol. 1, No. 3,
Page 190-206, 1989.

[10] Glover F., "Tabu Search - Part II", ORSA Journal of Computing, Vol. 2, No. 1,
Page 4-32, 1990.

[11] Vipin Kumar, "Algorithm for Constraint Satisfaction Problem: A Survey", AI
Magazine, Vol. 13 No. 1, Page 32-44, 1992.

14

[12] Sosic R., Gu J., "Efficient local search with conflict minimization: A case study
of the N-Queen problem", IEEE Transactions on Knowledge and Data
Engineering, Vol.6, No.5, Page 661-668, 1994.

[13] Hossain M. S., Fuad M. M., Deb D., Khan K.M.N.H., and Joarder M. M. A.,
“Homogenization: A Mechanism for Distributed Processing across a Local Area
Network”, To appear in the ECOOP'2004 Workshop on WS 7: Communication
Abstractions for Distributed Systems, Oslo, Norway, June 14, 2004.

[14] K. Thitikamol and P. J. Keleher , “Thread Migration, Load Balancing and
Heterogeneity in Non-Dedicated Environments”, Proceedings of the 2000 Int'l
Parallel and Distributed Processing Symposium, Page 583-588, May 2000.

