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Load balancing across a networked environment is a monotonous job. Moreover, if 
the job to be distributed is a constraint satisfying one, the distribution of load demands 
core intelligence. This paper proposes parallel processing through Global Evaluation 
Function by means of randomly initialized agents for solving Constraint Satisfaction 
Problems. A potential issue about the number of agents in a machine under the 
invocation of distribution is discussed here for securing the maximum benefit from 
Global Evaluation and parallel processing. The proposed system is compared with 
typical solution that shows an exclusive outcome supporting the nobility of parallel 
implementation of Global Evaluation Function with certain number of agents in each 
invoked machine. 

Keywords: Global Evaluation Function, Constraint Satisfaction Problem, Backtracking 
and  Homogenization. 

1. INTRODUCTION AND OVERVIEW 

Problem solving is a very important topic in Artificial Intelligence. Decision 
Problems or Constraint Satisfaction Problems (CSP)[ 1 ] are critical because some of them 
need the best solution while others may not have any solution at all. Typical solutions 
like backtracking cannot solve such problems because for large-scale problems, 
searching space would increase sharply. There are several basic algorithms and methods 
for solving Constraint Satisfaction Problems. Single-solution algorithms harness their 
computing power for only one solution in a time. Examples can be provided as 
Backtracking[ 4 ], Extremal Optimization[ 6 ], Local Search[ 7 ], Simulated    Annealing[ 5 ],
Alife&AER[ 2, 3 ] model, etc. These algorithms can be added to multi-agent system. Jing 
et al.[ 1 ] only focus on such one-copy algorithms with an emergence of Local Evaluation 
Function. Our research work is based on Agent based Global Evaluation Function, while 
it focuses on concurrent placement of agents at different locations for its computation 
power. 
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Generate-test (GT)[ 1 ] generates a possible combination of all variables and then 
checks whether it satisfies all the constraints or not. The simplest way to generate a 
complete assignment of all variables is to select a value randomly, for each variable. 
However this is a very inefficient way. GT can grow much smarter with the application 
of sharp intelligence so that the random generation of test cases is forcefully headed 
toward the solution. This can be done by an evaluation mechanism of the current 
situation of the problem-state. This evaluation mechanism can be based on Global 
Evaluation Function (GEF), which would vary problem to problem, depending on the 
constraints to be satisfied. Once again, to avoid falling into the local-optima, the 
algorithm may sometimes perform stop-and-restart[ 8 ], random walk and Tabu        
search[ 9, 10] . 

If multiple agents are created to perform GEF based GT, the forceful run toward 
the solution would be faster. If the number of agents in a standalone machine is 
increased, where all the agents are initialized randomly, the searching capability would 
grow larger. But after including certain number of agents, the system performance would 
decrease although it seems that the searching capability is higher. The included agents 
with random initialization will not be able to secure the benefit any more because the 
speed of each agent toward the solution would decrease due to increasing number of 
agents in one machine. So the number of agents in a standalone machine should be 
minimized by rigorous analysis.  

If a distributed system is used for GEF based GT, each machine should run 
multiple agents to secure the maximum benefit from the system. But the number of 
agents in a machine should be optimized. This paper focuses on parallel agent based 
solution by GEF for harnessing maximum processing power gained from a distributed 
system. 

2. ALGORITHM AND STRATEGY 

This paper organizes relationship between Constraint Satisfaction Problem, Global 
Evaluation Function and Multi-agent systems. Further it goes forward to show its 
distributed implications. 

2.1 CONSTRAINT SATISFACTION PROBLEM (CSP) 

A Constraint Satisfaction Problem, P, consists of [ 11 ]

1. A finite set of variables, X, identified by the natural numbers, 1, 2, ………, 
n, X={X1,X2,………,Xn}.

2. A domain set, containing a finite and discrete domain for each variable. 
D={D1,D2,….Dn}, for all i [1, 2, ……., n], Xi Di  . 

3. A constraint set, C = {C(R1), C(R2),………,C(Rm)}. Ri is the ith constraint. 
Each Ri is an ordered subset of the variables, and each constraint C(Ri) is a 
set of tuples indicating the mutually consistent values for the variables in 
Ri.

4. P is a finite discrete CSP, if all Di in D are discrete and finite. 
5. P is a binary CSP, if each constraint is either unary or binary. It is possible 

to convert a CSP with n-ary constraints to another equivalent binary     
CSP[ 11 ].
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A solution, S, is a complete assignment to all variables such that the assignment satisfies 
all the constraints. 

In this paper, N-queen problem is chosen as a Constraint Satisfaction Problem 
where N queens should be placed in an N*N chessboard so that no two queens are placed 
in the same row, same column or same diagonal position. It is a classical benchmark of 
CSPs. Solutions exist for         N-queen problem with N is greater than or equal to 4. The 
equivalent CSP is  
          X = { X1, X2, ………,Xn} where Xi refers to the position of the queen in the ith row. 
         D={D1,D2,….Dn}, ,i  Di = [1, n]  
         C={C(Ru)| ,i  j [1,n], C(Ru)={<b,c> |b Di, c Dj, b c, i-j b-c, i-j c-b}} 
N-queen problem is an attractive candidate for algorithm performance evaluation and 
also it is a scalable problem that has many applications[ 12 ].

2.2 GLOBAL EVALUATION FUNCTION (GEF) 

The Global Evaluation Function for Generate-test style search methods are as 
follows[ 1 ]:

1. Pick a random state from possible state set. 
2. Choose a neighboring state and the system moves to that state: 

Compute the evaluation value of all neighbors of the current system 
state by Global Evaluation Function and then select the best state; 
Alternatively, perform some random walk with some probability. 

3. Repeat 2. and 3. until a solution is found or reached the maximum tries. 
4. Return the current state as the solution. 

There are varieties of neighborhood structure. One simple method to construct the 
neighbor is to change any one variable's assigned value. Therefore, the difference 
between the current state and its neighbors is one variable's assigned value, which 
changes the evaluation worth derived from Global Evaluation Function. By this way a 
number of 

i iD 1  neighbors are found for each state. 

GEF evaluates how good the current system-state Ssys is. This function is used to 
rank the current state and to find out the best neighboring state by a move. There are lots 
of ways to define the evaluation function. Evaluation function plays a dominating role in 
the algorithm and a good definition of it will increase the performance of the     
algorithm[ 1 ]. It is called Global Evaluation Function because it considers the whole 
system, in together.  
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Figure 1: A move toward minimum evaluation value.

A move to (2,1) 
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For N-Queen problem GEF can be defined as the number of dissatisfied constraints 
that follows Equation (1). 
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The number of dissatisfied constraints in a solution state is Eglobal(Solution State) = 0.         
Figure 1(a)[ 1 ] shows an instance where the gray cells indicate the positions of queens for 
a 4-Queen problem. The number in each cell indicates the value derived by GEF for 
corresponding placement of queens. The current state corresponds to an evaluation value 
of 5 where it suggests that if the queen of the second row were moved to the first column, 
the evaluation value would become 2, the minimum among all other moves. Thereafter 
Figure 1(b) [ 1 ] shows that after the move, a solution state with evaluation value 0 is 
found in (3, 4). At this moment, if the queen of the third row is moved to fourth column, 
a solution is found. 

A state with better evaluation value does not always mean that it is closer to the 
solution. Moreover a better evaluation value can be found in more than one cell. If the 
so-called better evaluation value does not provide further improvement, another cell with 
same evaluation value can be selected. Eventually, if all the cells with the minimum 
evaluation value fall under the same fallacy, the move can be given to previous one that 
forked the minimum value and move can be given to such a cell that have minimum 
evaluation value which is greater than the previous minimum.  

2.3 AGENT-BASED EVALUATION STRATEGY 

Jing et al.[ 1 ] describes agent-based solution where each variable Xi is handled by 
one agent. This conversion of CSP to multi-agent system complicates the GEF strategy. 
Moreover agents cannot be controlled for global evaluation if they are placed in 
independent threads. Even if piping mechanism were used for inter-thread 
communication, the overhead would lead a dominating part. Moreover a distributed 
system will suffer from communication overhead if agents are placed in different 
machines.

This paper proposes placement of agents in independent threads so that the threads 
can be placed in different machines under a Local Area Network. Each agent would 
search the solution independently using GEF. A closer observation in the performance 
analysis section will show that the number of agents in one machine demands some 
analysis for securing the maximum benefit. The initiator of the searching should follow 
the following strategy: 

1. Start all the agents concurrently 
a. Each agent picks a random state from its possible state set. 
b. Choose a neighboring state and the system moves to that state: 

Compute the evaluation value of all neighbors of the current 
system state by Global Evaluation Function and then select 
the best state; Alternatively, move toward better position with 
some probability. 

c. Repeat b. and c. until a solution is found. 
d. Return the current state to the initiator as the solution. 

2. If a solution is found, notify all agents to stop their corresponding 
searching. 
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As all the agents start searching from random instances, it is possible that some of them 
start with lower evaluation value than the others. 

3. PERFORMANCE ANALYSIS FOR 
AGENT BASED EVALUATION 

The performance analysis is done in several steps to understand the behavior of the 
problem and it is compared with typical backtracking algorithm to solve the N-queen 
problem. The analysis finally harnesses the strategy to find out the maximum number of 
agents, maxAgent that can be placed in one machine to secure the benefit of random 
initialization of all the agents. 

3.1 BACKTRACKING vs. GLOBAL EVALUATION FUNCTION (GEF) 

Figure 2 shows a comparison between two standalone versions of solution of N-
queen problem. The red line stands for the backtracking solution and the other for the 
GEF solution. The initial positions of all the queens are chosen randomly for GEF 
method. Thereafter it goes forward to the positions with lower evaluation value. It stops 
its searching until it finds the lowest possible evaluation value, Emin. The value Emin is 
zero for the N-queen problem. Whenever it finds a position with Eglobal = Emin, it is 
guaranteed that it has found a solution because global evaluation value Emin derives state 
with fulfillment of constraints. Figure 2 shows time to reach a solution for different 
number of queens. Definitely, GEF method shows better performance than typical 
backtracking method. 

Once again, Figure 3 shows plot for a fixed number of queens, which depicts that 
the deterministic approach of backtracking method would result in static time for each 
request. The red straight line stands for typical backtracking algorithm. Alternatively, the 
same experiment with GEF method results in varying time because of its random 
initialization every time a request is made. Among all the requests 70% requests result in 
less time than typical backtracking algorithm. This behavior is really a promising one.

Figure 2: Comparison between 
backtracking and global evaluation 
function method. 

Figure 3: Comparison between 
backtracking and GEF method for N=28.
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Because it shows, if agents are placed in different machines it is probable that 70% 
machines would provide faster results than typical backtracking solution. So definitely, 
the initiator would get the solution faster than a typical backtracking as well as single 
GEF method. 

3.2 GEF AND AGENT-BASED SOLUTION 

A system that runs multiple agents concurrently in a standalone machine by 
different independent threads, would result in a system state that possesses the probable 
lower evaluation value and likely to be closer to the solution. In this way, agent-based 
GEF provides exclusive outcome. 

Figure 4 shows the experimental results. Performances are taken for various 
numbers of queens, N. For each N, time to find the solution is taken, with different 
number of agents. A maximum of 20 agents are taken for each N. The experiment shows 
that it is better to use two agents rather than using one, again it is better to use three 
agents rather than two. Further inference of the statement is not true i.e., after 
introduction of the third agent, the search time eventually increases with the involvement 
of further agents. The tendency is a valid one because at every level, requests are made 
several times and average time is taken to plot the graph of Figure 4.  

Figure 4: GEF for different number of queens (nAgent vs. time).
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Figure 5: GEF for different number of queens and their tendency. 

The tendency for each N can be retrieved from the corresponding regression lines 
drawn in Figure 5. Most of the regression lines crisscross time=0 line when number of 
agents is between 2 and 3. The regression lines prove that if the number of agents were 
three, the system would provide solution in the fastest possible speed. This performance 
was taken in a machine with 1.7 GHz Genuine Intel processor and 256 MB of RAM.

A single regression line can be plotted by the data from which averages were taken. 
This regression line will provide the maximum number of agents, maxAgent, that should 
be used in a standalone machine. Figure 6 provides the scatter plot of all the data and the 
corresponding regression line [green line] that crisscrosses time=0 line at nAgent = 3. 

Thus, random initialization of agents can secure a benefit form the GEF but the 
benefit is limited in standalone machine. The number is limited by maxAgent, k [value of 
k depends upon some other parameters related to the performance and configuration of 
the machine. For our case k=3]. 

Figure 6: Scatter plot of all the data and the regression line. 
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3.3 HOMOGENIZATION[ 13 ] FOR maxAgent

Homogenization is a technique that enables the distribution of workload to different 
nodes in a Local Area Network composed of heterogeneous elements. Homogenization is 
especially applicable for problem instances that are linearly divisible. It is not applicable 
for dividing a problem instance of AI where probabilistic Global Evaluation mechanism 
is used. Despite homogenization shows its benefit in such problems by varying the 
number of agents in the machines. Analysis of the previous section shows that maxAgent
is the number of agents that secures the maximum benefit of Global Evaluation Function 
from a machine. This number varies machine to machine depending on the 
performances. In the parallel implementation of Global Evaluation Function, 
homogenization can be used to balance the number of agents depending on the 
performances of the machines.  

In the experiments different machines with different loads with different 
performances were taken and it is found that maxAgent varies with the machine 
performance. A machine performance is taken by key encryption capability of the 
machine per second. It is found that maxAgent follows equation (2). 

                     maxAgent 
1000

7000 pe                                      (2) 

where p = performance of the machine in hundred thousand keys per second. 
Figure 7 shows runtime behavior and the behavior observed from the formula. It 

shows that as the performance is increased maxAgent falls accordingly. For a very high 
performance machine the theoretical maxAgent would become less than unity. In such a 
case, for such machines number of agents should be equal to unity. The agent loader of a 
machine should load k number of agents where k is equal to maxAgent from equation (2). 

Figure 7: Homogenization pattern for maxAgent.
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3.4 PARALLEL AGENT-BASED SOLUTION 

For achieving the maximum benefit of randomization from a distributed 
architecture, each machine should possess a number of k agents that is equal to 
maxAgent. When multiple agents are placed on each machine of a local area network, the 
system would return the solution within minimum possible time. By the consequence, it 
would suffer from an overhead TOVE that results from three basic areas: distribution of 
job, redirection of result and time to stop agents after a result is found. The Turn around 
Time, TTAT is the sum of Actual Search Time, TO and the overhead time, TOVE i.e.,

OVEOTAT TTT                                                                                   (3) 
The search space increases if the number of queens, N is increased. The search space 
increases by the square of N in the N-Queen problem. As a result, 

2NTO                                                                                                 (4) 
Once again, if the number of agents, NA is increased, Actual Search Time, TO decreases 
because of the parallel randomization of agents from different locations of the local area 
network. Actual Search Time, T0 is inversely proportional to the number of agents, NA.
That is,

A
O NT 1                                                                                               (5) 

Combining equation (4) and (5) 

A
O N

NT
2

                                                                                              (6) 

Once again, from equation (6) it is obtained that 

A

O
O N

NKT
2

                                                                                          (7) 

where KO is the constant of proportionality. The behaviors for different number of agents 
are reflected in Figure 8. The corresponding runtime plot  is  provided  with  Figure 9. 
Both  the  figures  show  that as the number of queens increases, the  Actual Search Time

Figure 8: Tendency of Actual Search time
when N increases. Different lines show the 
behavior with different number of agents.

Figure 9: Runtime behavior of Actual 
Search Time when N increases. Different 
lines depict the behavior with different 
number of agents. 
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Figure 10: Tendency of Actual Search 
time when NA increases. Different lines 
show the behavior with different number of 
queens. 

Figure 11: Tendency of Actual Search 
time when NA increases. Different lines 
show the behavior with different number of 
queens.  

increases. Moreover the lines depict that increase of number of agents results in a faster 
solution. Each line of Figure 8 actually reflects the behavior of equation (4) although the 
overall plot is done by using equation (7). The plot of Figure 8 appears in a different 
manner in Figure 10. Figure 11 shows its corresponding runtime plot. Both Figure 10 and 
Figure 11 reflect the behavior of equation (5). 

All the runtime simulations in this section are taken with several homogeneous 
machines, each with Genuine Intel 1.1 GHz processor and 128 MB of RAM. All the 
machines run in the Windows platform and are equipped with Java Virtual Machine 
provided by Sun's J2SDK 1.4.1.  100 Mbps Ethernet Network connects all the machines. 

The distribution penalty, TOVE is proportional to the number of agents, NA, because 
the initiator initiates all the NA agents and as well it stops all of them after receiving the 
result. Therefore, 

AOVE NT                                                                                               (8) 
Moreover, as TOVE holds the time consumed by communication, it is also proportional to 
the number of queens, N. It is noticeable that TOVE is not proportional to N2 because the 
result is received through an one dimensional vector of length N.

NTOVE                                                                                                 (9) 
Combining (7) and (8) 

NNT AOVE                                                                                          (10) 

or
                   NNKT AOVEOVE                                                                                 (11) 

where KOVE is a proportionality constant that varies network to network. 
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Figure 12: Formula Overhead. Figure 13: Runtime Overhead.

Figure 12 shows the formula overhead plotted by equation (11) and Figure 13 
shows the corresponding runtime results. All the points of the runtime plots of this paper 
are average of multiple number of simulations. If the averages were taken from infinite 
number of simulations, the resulting plots would become as perfect as the formula 
graphs. 

The most important feature of the analysis should be derived from the ratio 
OVE

O

T
T

.

If it turns to unity i.e., the actual search time becomes equal to the overhead, addition of 
further agents should be staopped. Because futher involment of agents would hinder the 
speedup increment.  

From equation (7) and equation (11), it is obtained that 
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                                                (12) 

The ratio
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O

K
K

 plays an important role for getting the optimum result and the terminal 

point of involment of agents. The value, 2)( AN
N should never be less than 

1
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O

K
K

,

otherwise TO would become less than TOVE.
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Figure 14: Terminal point at NA =100 while N = 40. 

Figure 14 also shows the theoretical plot, which shows that if more than 100 agents are 
used in a parallel system, the overhead would dominate. So, in a distributed and parallel 
system for solving Constraint Satisfaction Problems, there exists an ultimate number of 
agents, after which the Turn Around Time is dominated by the overhead. 

4. FUTURE DIRECTION

The future direction of the work is to provide Agent Migration to employ the under 
utilized machines of the network. Establishment of Agent Migration by Thread
Migration[ 14 ] mechanism would develop a very dynamic system that ensures maximum 
use of the resources. Migration of agent to an underutilized machine from a loaded one 
would provide a balance of loads in the Local Area Network. 

5. CONCLUSION 

Global Evaluation Function itself produces better result depending on some probability 
in searching for solution of Constraint Satisfaction Problems. Moreover, if a distributed 
mechanism based on maxAgent strategy is built, it would definitely provide faster 
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response, as experimental data shows that 70% GEF based randomization provides better 
results than typical solutions. In a distributed system, GEF utilizes this probability with 
maximum possible efficiency because even if the probability becomes smallest, the 
initiator would receive results within the shortest possible time from the machine that is 
nearest to the solution. Hence maxAgent strategy along with ultimate number of agents in 
a concurrent fashion ensures maximum benefit over typical solutions and enriches 
parallel processing systems for solving Constraint Satisfaction Problems.
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