

Homogenization: A Mechanism for Distributed Processing across a Local Area Network

Mahmud Shahriar Hossain
Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh. E-mail: shahriar-cse@sust.edu

M. Muztaba Fuad
Department of Computer Science, Montana State University, Bozeman, MT 59717, USA. E-mail: fuad@cs.montana.edu

Debzani Deb
Department of Computer Science, Montana State University, Bozeman, MT 59717, USA. E-mail: debzani@cs.montana.edu

Kazi Muhammad Najmul Hasan Khan
Department of Computer Science and Engineering, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh. E-mail: najmul_bd@yahoo.com

and
Dr. Md. Mahbubul Alam Joarder

Institute Of Information Technology (IIT), University of Dhaka, Dhaka-1000, Bangladesh. E-mail: joarder@udhaka.net

ABSTRACT

Distributed processing across a networked environment suffers
from unpredictable behavior of speedup due to heterogeneous
nature of the hardware and software in the remote machines. It
is challenging to get a better performance from a distributed
system by distributing task in an intelligent manner such that
the heterogeneous nature of the system do not have any effect
on the speedup ratio. This paper introduces homogenization, a
technique that distributes and balances the workload in such a
manner that the user gets the highest speedup possible from a
distributed environment. Along with providing better
performance, homogenization is totally transparent to the user
and user needs no interaction with the system to secure the
benefit.

Keywords: Homogenization, Distributed processing, Java,

 Triangular Dynamic Architecture (TDA), RMI.

1. INTRODUCTION

Triangular Dynamic Architecture (TDA) [10] introduces a
mechanism of distributed processing and parallel computation
for balancing the workload among the idle machines of a
network. The construction of TDA is accomplished by
introducing an intelligent server that dynamically categorizes
hosts and relates those hosts transparently in a local area
network. In a distributed system, there might be thin-clients[7],
who possess least processing capability with a minimum
resource allotment; also there might be high performance hosts
with idle CPU time. All the machines will be properly balanced
with equal workload when TDA is applied. When the server
finds a job from a client, it divides the job into granules and
distributes it to the service providers. After processing, the
service providers directly return the outcomes to the requesting
client.

An intelligent server must divide the requested jobs efficiently
so that the distribution mechanism properly balances the load
across the system. TDA provides a dynamic nature of
distributed and parallel processing that possesses platform
independence and a load-balancing tool called homogenization.
Homogenization is a process that assures TDA to balance the
workload across a networked environment in a dynamic and
intelligent way. Every distributed and parallel processing
mechanism suffers a massive problem when the networked
environment is a heterogeneous one. Moreover a LAN
environment basically encompasses a heterogeneous
infrastructure because the hosts vary in hardware architecture,
memory, resident Operating Systems, background daemons and

many other parameters. Homogenization brings all of these
heterogeneous parameters to the same virtual platform. Equal
allotment of workload would suffer from speedup degradation
with the appearance of a low-performance machine.
Homogenization assures speedup even when low-performance
machines are involved. It should be implemented in a
transparent way with minimum interaction from the user.

2. RELATED WORKS

Although there are several distributed systems [1, 3, 11, 16],
there is hardly any work on intelligent job distribution and load
balancing.

Scott [14] introduces the basics of client/server computing and
component technologies and then proposes two frameworks for
client/server computing using distributed objects. The
component-based architecture defines the basic preliminary
components of TDA. TDA is further developed to communicate
among three kinds of hosts - server, client and service-provider.
Moreover, TDA establishes dynamic relations on runtime and
implements homogenization.

Randall et al. [11] have discussed the scalability of a client
server relationship. The distribution architecture is developed
turn by turn as the number of clients is increased. The paper
describes several existing distributed object oriented systems
but they did not show any kind of performance measurement
benchmarks against their comments.

Launay et al. [13] introduced a framework that constraints
parallelism without any extension to the Java [15] language.
The project aims at the automatic generation of distributed code
from multithreaded Java programs. Although parallelism is its
basic concern, it does not emphasize its performance in load
balancing rather it stresses its performance in code generation.
In contrast, homogenization enhances parallelism by providing
balanced distribution of load among the machines across TDA.

JavaParty [9] transparently adds remote objects to Java by
declaration in the source code. It introduces involvement of pre-
compiler. It creates multiple Java byte-code files for every
single distributable class. JavaParty is specially targeted
towards and implemented on clusters of workstations. It
combines Java-like programming and the concepts of
distributed-shared memory in heterogeneous networks. In
contrast, homogenization provides a balancing architecture in
TDA with the involvement of an intelligent server without any
requirement of pre-compilers. Although JavaParty deals with
heterogeneous infrastructure, TDA is enriched with dynamic

homogenization that does not require any static entry about
heterogeneous machines.

Another work experimentally compares mechanism of load
balancing with existing load-balancing strategies that are
believed to be efficient for multi-cluster systems. Nieuwpoort et
al. [8] conducted this comparison and established a divide-and-
conquer model for writing distributed supercomputing
applications on hierarchical wide-area systems. In this research
work, an algorithm named “cluster-aware random stealing” is
used, which is analogous to homogenization in TDA. But the
divide-and-conquer strategy may result in high round-trip time.
This is why TDA dynamically uses straightforward
homogenization process. Homogenization does not provide only
the awareness about the machine-configurations but also it
enriches TDA server with the load-information of the hosts.

Fuad et al. [5, 6] introduce a system called AdJava that
harnesses the computing power of underutilized hosts across a
LAN or WAN. It also provides load balancing and migration of
distributed objects through the use of intelligent software
agents. Although the migration mechanism used in AdJava is
highly automated, it suffers from penalty of migration time of
the object. TDA provides mechanism to pass objects to the
server and thereafter service providers, but there are
administrative preferences that allow real distribution of load
through analyzing it entirely or a virtual distribution of load that
allows distribution information collection from the server.
AdJava uses a simple distribution policy to distribute objects to
available machines. If the number of objects to be distributed is
more than the number of machines in the system AdJava
distributes more than one object to those machines that are
loaded lightly compared to other machines in the system. On the
contrary, TDA distributes a computation according to the
homogenized information about the system. Objects are
granulized according to that dynamic information. So there is
no need to recycle object-transfer to already loaded service
providers by a granule of the same request. AdJava harnesses its
performance only through scientific applications while TDA is
capable of distributing business applications as well.

3. SYSTEM ARCHITECTURE

TDA is a sophisticated form of client-server relationship that in
turn is established over three-tier architecture. Now the classical
client server relations are no more suitable [4], applications now
follow the three-tier architecture. In TDA, the classical client-
server relationship is established dynamically and the three-tier
architecture is then merged to it. TDA offers triangular
relationships, which is dynamically established by the server.
The relationship is constructed between the client, the server
and the service-provider. TDA uses Remote Method Invocation
(RMI) [16] for implementing the triangular relationships.

3.1 TRIANGULAR DYNAMIC ARCHITECTURE
TDA is called so because multiple triangular relationships are
established on demand dynamically at run time. For all of the
triangles, the server serves as the common point. The server
may also decide to make several triangular relationships against
a single request. The relationships also can dynamically switch
from one to another, that is, if a service-provider becomes busy
after receiving the sub-request from the server, it can send the
server a connection refusal request and also sends the current

status of the sub-job it was performing. If the server grants the
refusal request then the service-provider is free, the server will

Figure 1: Sample Triangular Dynamic Architecture.

hand over the remaining part of the sub-job to another service-
provider that is least busy. It is evident from the Figure 1 that
the server is the common point for all the triangles, which
means that the server is the one who is responsible for
establishing such relations. This is the basic design of TDA. If
Client1 sends a request to the server and if the server decides
that the request can be divided into three parts, it sends the
granulized requests to three service-providers designated as
service-provider 1, service-provider 2 and service-provider 3.

The three service-providers process the corresponding sub-jobs
in parallel and send the outcomes directly to Client1. In this
case three triangular relationships are established, (i) client1,
server, service-provider 1, (ii) client1, server, service-provider
2, (iii) client1, server, service-provider 3. For all these
dynamically established relationships, the server is the common
element, which proves that server is one that is responsible for
the decision of distribution.

For the time being, it is assumed that service-provider 1 and
service-provider 2 have performance twice than service-
provider 3. If the TDA server decides an equal distribution of
load to these three service-providers then the distribution would
suffer from the problem of parallel processing. The problem is,
service-provider 3 would take twice the time taken by service-
provider 1 or service-provider 2 for computation. As a result
overall computation time becomes a function of the time taken
by the slowest machine among the invoked hosts for a particular
request. So there should be a mechanism, which would
contribute a balanced distribution rather than equal allotment.
The distribution should occur in such a fashion that all the
invoked service-providers finish their computation at the same
time regardless their performance. Homogenization is a process
that deals with this problem in TDA.

3.2 TDA SERVER
TDA server is one, which is responsible for the actual
distribution of workload. The server maintains some
information and based on the stored information, the server can
decide about the number of granules to be generated for a
particular request. When a request arrives, the server always

Server

Client 1

SP 1 SP 2 SP 3 SP 4 SP n

Service-Providers
(SPs)

Client 2 Client m

Service-
provider

response to
client

Server order to
service-provider

Client request
to TDA server

depends on the latest data available to its local database; it does
not look for more information from the service-providers, since
doing so will degrade its performance.
3.3 SERVICE-PROVIDER
Service-providers perform the actual computation in TDA.
Background processes are the heart of service-providers. All the
processes of a service-provider are hidden from the remote
user’s sight. A background process always measures the current
load of the host even when the service-provider is doing its
share of the work. But, it measures its load in such a manner
that it does not overwhelm other processes because it is
implemented through a low priority thread. Time to time, it
communicates with the server mentioning the current load.

3.4 CLIENT
The overall TDA is designed to facilitate the client; to reduce
computation time and to perform many jobs that the client alone
was unable to conduct efficiently. Furthermore, the client might
never perform the job as a thin host. A client program is
composed of a user console and a request handler. User console
is the basic interface to TDA for the users. If a user casts a
request through the console, the request is sent to the request
handler. Request handler encrypts the request and sends the
request along with the client object reference to the TDA server.
The result of processing is received in the user interface portion.

4. HOMOGENIZATION

Figure 2 illustrates the homogenization process for TDA. Java
Virtual Machine (JVM) [15] brings all the hosts in TDA to the
same platform named homogenization plane. In the
homogenization plane all the machines are of same virtual
platform but they are of different performance factors. The
TDA server performs the next level of homogenization. It
brings the service-providers to the homogenization line. This
level of homogenization is performed by allotment-variation of
workload depending on the performance factors of the service-
providers.

In the homogenization line, all the service-providers take same
amount of time to complete corresponding sub-requests. Scope
length is the length of allotment of workload to a service-
provider decided by the server. Scope length variation makes all
the service-providers finish their computation at the same time.

Figure 2: Illustration of homogenization techniques for TDA.

5. HOMOGENIZING TDA

The server maintains several tables in its local database that
helps distributing the load. The server actually calculates the
scope-length to be offered to a particular service-provider, using
the tables of the local database. Most critical knowledge-issues
are performance of the service-providers, their response time,
list of services provided by a service-provider, etc. A
background process in the service-provider informs the server
about its current load after every 30 seconds. The server
maintains this information and based on the stored information,
the server generates a performance number, which is called the
homogenized performance. Homogenized performance is the
outcome of the second level homogenization of Figure 2. The
server depends on the homogenized performance of the service-
providers for the balanced distribution of load.

Whenever a service-provider gets an identity during bootstrap,
it sends performance parameter to the server. The server also
measures the communication distance of the service-provider by
pinging it test packets. Time to time, the server upgrades its
tables e.g., it sends test packets to get the response time of the
service-providers. Test packets are directly thrown back to the
server from the service-provider. Moreover, it helps the server
to know whether a particular service-provider is dead or active.
It helps the server controlling the fault tolerance mechanism.
Test packets are smaller in size and they merely congest the
traffic. If a service-provider is not busy, but yet it has a large
response time, then the server does not invoke it for small jobs.
The server always tries to offer it massive and computation
intensive jobs so that the time consumed by communication
overhead becomes less pronounced.

A service-provider with comparatively lower homogenized
performance always gets smaller portions of request than a
faster one. A service-provider that is dead with a sub-request
keeping it incomplete is again re-requested to another service-
provider by the server. This prevents loss of sub-requests, hence
the possible loss of client-request. Some service-providers are
marked by the administrator as lazy and least busy all the times.
Server prefers them as first priority to be involved by sub-
requests. The administrator can also set a threshold value for
homogenized performance. TDA server ignores service-
providers that have homogenized performance less than the
threshold value. Therefore, homogenization improves TDA not
only as a distributing architecture but also as a sophisticated
load-balancing design.

6. PERFORMANCE ANALYSIS

To verify the potentiality of homogenization, a scientific
application is implemented in TDA. Performance is measured in
two types of environment: heterogeneous environment, and
homogenized environment. A homogenized environment is one
where TDA has applied homogenization i.e. in reality
homogenized environment is a heterogeneous one, but TDA
homogenized the overall system.

Matrix multiplication is a common scientific computation that is
to be solved for different scientific problems. Considering the
simplest algorithm that multiplies two matrices with three loops,
the experiment is performed. All the statistics taken are for the
same network, same service-providers and the same thin client,

Performance
factors

Scope Length

Platform factors

Homogenization
plane

Homogenization
Line

Figure 3: Performance Analysis: (a) Heterogeneous
behavior of TDA, (b) Homogenized behavior of TDA. (c)

Corresponding speedup of (a) and (b).

as well as the same TDA server. For experimental purpose, the
test matrices were all square matrices. Every time two square
matrices of same size were requested to the server to distribute.
Only the first matrix is granulized into pieces and sent to
different service-providers. Each service-provider gets a copy of
the second matrix from the thin client. Each service-provider
then calculates a portion of the result and sends it directly to the
thin client that requested for the job. The thin client combines
the result when all the portions are received.

Figure 4: Speedup with different loads for (a) Equal
distribution and (b) Homogenization.

The experiments are taken with various combinations of Intel
machines. They were varying in CPU speed, memory size,
operating system, user processes, background daemons and
many other parameters. Pentium II, III, and IV Intel machines
with physical memory ranging from 64 to 128 MB are used.
All of them are connected by 100 Mbps Ethernet network. All
the TDA components were running over the Virtual Machine
provided by SUN's JDK version 1.2.2 or higher.

6.1 HETEROGENEOUS BEHAVIOR OF TDA
Figure 3 shows both heterogeneous and homogenized behavior
of TDA for square matrix size of 800. The black portion of a
bar indicates the actual computation time and the gray portion
represents the overhead due to communication distance. From
Figure 3(a), it is evident that introduction of successive service-
providers reduces the actual computation time. Closer
inspection shows that introduction of the sixth and the ninth
service-providers do not reduce the actual computation time
rather computation time is increased. This type of degradation
of performance is found because the sixth and ninth service-
providers were comparatively of low CPU speed. Equal
allotment of load results in heterogeneous pattern of speedup.
The heterogeneous pattern of speedup is shown in Figure 3(c)
with a gray line. The speedup pattern shows that speedup is
decreased when sixth and ninth service-providers are involved.

Square matrix length = 800
(Homogenization)

Number of service-providers
 (b)

0 1 2 3 4 5 6 7 8 9 10O
ve

ra
ll

co
m

pu
ta

tio
n

tim
e(

m
s)

0

20000

40000

60000

80000

100000

Actual computation time
Overhead

Square matrix length = 800
(Equal distribution)

Number of service-providers
 (a)

0 1 2 3 4 5 6 7 8 9 10O
ve

ra
ll

co
m

pu
ta

tio
n

tim
e(

m
s)

0

20000

40000

60000

80000

100000

Speedup for homogenization
and equal distribution

Number of service-providers
 (c)

0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
U

p

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Homogenization
Equal distribution

0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Speedup at different loads
(with equal distribution)

Number of service-providers
 (a)

0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

Load = 200
Load = 400
Load = 600
Load = 800
Load = 1000

Number of service-providers
 (b)

Speedup at different loads
(with homogenization)

Overhead affects speedup because overall computation time is
composed of actual computation time and overhead. Overhead
is an additive function of communication time and decision
making time of the server.

6.2 HOMOGENIZED BEHAVIOR OF TDA
The same analysis is taken with the only exception that now
allotment of load is not equal. TDA homogenized the
environment. The physical environment is the same as
heterogeneous one, but now homogenization is applied. Figure
3(b) shows that application of homogenization assures decrease
in actual computation time although the infrastructure is
heterogeneous. Corresponding speedup is shown in Figure 3(c)
with a black line.

Introduction of newer service-providers causes speed-up
improvement regardless their configuration. But the
acceleration of speedup is decreased while large amount of
service-providers is involved in a distribution. This clarifies that
the almost constant overhead becomes pronounced when the
actual computation time is reduced. Subsequent involvement of
too many service-providers results in slow speedup
improvement. In this experiment, homogenization provides a
maximum speedup of 3.6 with nine service-providers but non-
homogenized distribution provides maximum speedup of 2.8
with 5 service-providers.

6.3 LOAD VS. SPEEDUP
Speedup also depends on the size of the load. Different sizes of
matrices are used to understand the behavior. Figure 4(a) shows
the speedup lines at different size of matrix multiplication. The
figure depicts heterogeneous performance improvement. The
matrix sizes are 200, 400, 600, 800 and 1000. For some of the
size, speedup is less than unity which illustrates that TDA
could not improve the performance because the load was too
small. In this case, overheads dominate over the actual
computation time. During the size 200, such degradation is
found. For all other sizes, speedup is greater than unity. It
proves that TDA shows higher performance at higher degree of
load.

The corresponding homogenized performance for the same
heterogeneous infrastructure is given in Figure 4(b), which
shows steady improvement of performance at higher amount of
loads. A comparison between Figure 4(a) and Figure 4(b) shows
that the maximum speedup reached during non-homogenized
situation is around 3.5 where the maximum speedup reached
during homogenization is around 5.5 which describes the
nobility of homogenization through TDA.

7. CONCLUSION

Homogenization technique based of TDA, is an enriching
mechanism of job distribution across a local area network. TDA
granulizes computation intensive jobs to concurrent pieces
using homogenization and operates them in a dynamic
environment to reduce total processing time. Experimental
analysis shows that in a heterogeneous environment,
homogenization provided a 55% increase in speedup relative to
maximum non-homogenized performance. Homogenization
does not require any kind of user interaction for its knowledge-
centric distribution mechanism. It is established with an
automatic manner in TDA as a transparent load-balancing tool.

Homogenization provides better processing time in a distributed
computing environment. For implementing homogenization, the
present JVM remains unchanged. The current implementation is
fully based on the existing JVM and that way TDA fulfills its
main goal of providing a distributed computing environment in
an existing LAN.

8. REFERENCES

[1] Baratloo A., Karaul M., Kedem Z. and Wyckoff P.,
“Charlotte: Metacomputing on the Web”, Proceedings of
the 9th Conference on Parallel and Distributed
Computing Systems, 1996.

[2] Carnegie Mellon Software Engineering Institute, “Three
Tier Software Architectures”, http://www.sei.cmu.edu/
str/descriptions/threetier.html.

[3] Christiansen B., Cappello P., Ionescu M.F., Neary M. O.,
Schauser K. and WU D., “Javelin: Internet Based Parallel
Computing in Java”, ACM 1997 Workshop on Java for
Science and Engineering Computation.

[4] Collet Christine, “The NODS project, Networked Open
Database Services”, Proceedings of Symposium on
Objects and Databases (ECOOP), http://www-
lsr.imag.fr/ Les.Personnes/Christine.Collet, LNCS 1813,
Sophia Antipolis and Cannes, France, June 2000.

[5] Fuad M. M. and Oudshoorn M. J., “AdJava - Automatic

Distribution of Java Applications”, Australia Computer
Science Communication, Vol. 4, No. 28, Page 65-77,
February 2002.

[6] Fuad M. M. and Oudshoorn M. J., “Automatic

distribution and load balancing of Java objects in an
agent oriented distributed system”, ICCIT, Proceedings
of 5th International Conference on Computer and
Information Technology, Page 101-107, Dhaka,
Bangladesh, December 2002.

[7] Jennings T., “Application Deployment and Integration”,

Research Paper: Jacada ™ Ltd. Jacada ® for Java,
http://www.jacada.com/products/JacadabyButler.pdf,
March 2001.

[8] Nieuwpoort R. V., Kielmann T. and Bal Henri E.,

“Efficient load balancing for wide-area divide-and-
conquer applications”, ACM SIGPLAN Notices, Vol. 36,
No. 7, Page 34-43, July 2001.

[9] Philippsen Michael and Zenger Matthias, “JavaParty –

Transparent Remote Objects in Java”, Concurrency:
Practice and Experience. Vol. 9, No. 11, Page 1225-
1242, November 1997.

[10] Hossain, M.S. and Khan, K.M.N.H., “Triangular

Dynamic Architecture”, 4th Year project report, Dept. of
CSE, Shahjalal University, Sylhet, Bangladesh, June
2003.

[11] Hyde R. L. and Fleisch B. D., “A Case for Virtual

Distributed Objects”, Int'l Journal on Parallel and
Distributed Computing, Vol 1, No. 3, September 1998.

[12] Izzat M., Recht T. and Chan T., “Ajents: Towards an
Environment for Parallel, Distributed and Mobile Java
Applications”, ACM 1999 Java Grande Conference.

[13] Launay P. and Pazat J. L., “A Framework for Parallel
Programming in JAVA” High-Performance Computing
and Networking, International Conference and
Exhibition, Page 628-637, Amsterdam, The Netherlands,
April 1998.

[14] Scott M. Lewandowski, “Frameworks for Component-

Based Client/Server Computing”, ACM Computing
Surveys (CSUR), Vol.30, No.1, Page 3-27, March 1998.

[15] Sun Microsystems, “The Real-Time Specification for

Java”, www.java.sun.com, 2003.

[16] Sun Microsystems, “Java Remote Method Invocation

Specification”, www.java.sun.com/j2se/1.4.2/docs/
guide/rmi/spec/rmiTOC.html, 2003.

[17] Yarrington P., Collier C. and Pickenheim M., “Parallel
Processing with HyperSizer”, White Paper, Collier
Research Corporation, http://www.collier-
research.com/ pdf/wp01_parallel_processing_with_
hypersizer.pdf, September 2001.

