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Abstract 

 
This paper introduces a new technique of document 

clustering based on frequent senses. The proposed 
system, GDClust (Graph-Based Document Clustering) 
works with frequent senses rather than frequent 
keywords used in traditional text mining techniques. 
GDClust presents text documents as hierarchical 
document-graphs and utilizes an Apriori paradigm to 
find the frequent subgraphs, which reflect frequent 
senses. Discovered frequent subgraphs are then 
utilized to generate sense-based document clusters. We 
propose a novel multilevel Gaussian minimum support 
approach for candidate subgraph generation. GDClust 
utilizes English language ontology to construct 
document-graphs and exploits graph-based data 
mining technique for sense discovery and clustering. It 
is an automated system and requires minimal human 
interaction for the clustering purpose.  
 
1. Introduction 
 

The goal of this paper is to present a new, human-
like hierarchical clustering technique driven by recent 
discoveries in the area of graph-based data mining. 
Our approach is motivated by typical human behavior, 
when given a task of organizing multiple documents. 
As an example, consider the behavior of scientific 
book editor, who needs to organize multiple research 
papers into a single book volume, with a hierarchical 
table of contents. Typically, research papers, even 
when coming from the same area, are written (1) in 
multiple writing styles, (2) on different levels of detail, 
and (3) in reference to different aspects of an analyzed 
area. Instead of searching for identical words and 
counting their occurrences, like many well-known 
computer-based text clustering techniques do [2]–[4], 
the human brain usually remembers only a few crucial 
keywords representing senses, which provide the 

editor with a compressed representation of the 
documents. These senses are then used to fit a given 
research paper into a book organization scheme, 
reflected by the table of contents. In our work, we 
replace editor’s knowledge with ontology and use it to 
discover common senses that can then be used to 
organize documents. 

In GDClust, we construct document-graphs from 
text documents and apply an Apriori paradigm [18] for 
discovering frequent subgraphs from them. We utilize 
a hierarchic representation of English terms, WordNet 
[1], to construct document-graphs. Since each 
document can be represented as graph of related terms, 
they can be searched for frequent subgraphs using 
graph mining algorithms. We aim to cluster documents 
depending on the similarity of the subgraphs in the 
document-graphs. GDClust enables clustering of 
documents providing humanlike sense-based searching 
capabilities, rather than focusing only on the co-
occurrence of frequent terms. It follows the way 
human beings process the text data. As the outcome of 
GDClust, we achieve subgraphs of meaningful senses.  

The rest of the paper is organized as follows. 
Section 2 describes the literature review of this work. 
The overall GDClust system is portrayed in section 3. 
Some illustrative experimental results are discussed in 
section 4. We conclude the paper in section 5. 
 
2. Literature review 
 

The benefit of GDClust is that it is able to group 
documents in the same cluster even if they do not 
contain common keywords, but still possess the same 
sense. Existing clustering techniques cannot perform 
this sort of discovery [2]–[4] or do this work only to a 
limited degree (e.g., Latent Semantic Index (LSI) [5]).  

With GDClust, we aim to develop a document 
clustering technique that is able to cluster documents 
depending on senses rather than depending on the 



exact match of keywords. Developing algorithms that 
discover all frequently occurring subgraphs in a large 
graph database is particularly challenging and 
computationally intensive, as graph and subgraph 
isomorphism play a key role throughout the 
computations [6]. Nevertheless, graph models have 
been used in complex datasets and recognized as 
useful by various researchers in chemical domain [7], 
computer vision technology [8], image and object 
retrieval [9], social network analysis [10] and machine 
learning [11]. In our work, we utilize the power of 
using graphs to model a complex sense of text data.   

There are well-known subgraph discovery systems 
like FSG (Frequent Subgraph Discovery) [6], gSpan 
(graph-based Substructure pattern mining) [12], DSPM 
(Diagonally Subgraph Pattern Mining) [13], and 
SUBDUE [14]. These works let us to believe that the 
concept of construction of document-graphs and 
discovering frequent subgraphs to gain sense-based 
clustering of our work is feasible. All these systems 
deal with multiple aspects of efficient frequent 
subgraph mining. Most of them have been tested on 
real and artificial datasets of chemical compounds. 
None of them has been applied however, to mine the 
text data. In this paper, we discuss GDClust that 
performs frequent subgraph discovery from text 
repository with the aim of document clustering.  

Agrawal et al. [18] proposed the Apriori approach 
for association rule mining. There had been extensive 
research works for generating association rules from 
frequent itemsets [19]–[20]. Besides, there are some 
transaction reduction approaches proposed by Agrawal 
et al. [18], and Han et al. [26]. We apply a variation of 
mining multilevel association rules [26] for the 
frequent sense discovery process and propose a novel 
Gaussian minimum support strategy for subgraph 
discovery in multiple levels of the taxonomy. 

We introduce a sense based document clustering 
technique for the first time in the text-mining area. The 
work closest to our approach, we managed to find is a 
graph query refinement method proposed by Tomita et 
al. [15]. Their system depends on user interaction for 
the hierarchic organization of a text query. In contrast, 
we depend on a predefined ontology [1], for automated 
retrieval of frequent subgraphs from text documents. 
GDClust offers a fully automated system that utilizes 
Apriori-based subgraph discovery technique to harness 
the capability of sense-based document clustering. 

 
3. System overview 
 

This section portrays the techniques used for sense 
discovery and document clustering in GDClust.   

3.1. Document-graph construction algorithm 
 

GDClust utilizes BOW Toolkit [16] and WordNet 
2.1 taxonomy to convert a document to its 
corresponding document-graph (Table 1). We utilized 
the WordNet’s noun taxonomy, which provides a 
hypernymy-hyponymy relation between concepts and 
allows constructing a Concept Tree with up to 18 
levels of abstractions. A concept is a set of 
synonymous words named synset. All nouns in 
WordNet are merged to a single topmost synset 
(i.e.,{entity}). 

Our document-graph construction algorithm selects 
informative keywords from a document and retrieves 
corresponding synsets from WordNet. Then, it 
traverses up to the topmost level of abstraction to 
discover all related abstract terms and their relations. 
The graph of the links between keywords’ synsets of 
each document and their abstracts compose the 
individual document-graph.  
 
3.2. Utilizing Apriori paradigm for frequent 
sense discovery 
 

GDClust uses frequent subgraphs as representation 
of common senses among the document-graphs. Two 
document-graphs, containing some common frequent 
subgraphs, do not have to have common keywords. 
Our system not only looks at the original keywords, 
but also looks at the origin of the keywords and their 
neighboring (i.e., abstract) synsets. Two different 
words, leading to the same hypernym, are going to 
generate two highly similar subgraphs, reflecting a 
common sense.  

We use an Apriori paradigm, designed originally 
for finding frequent itemsets in market basket datasets 

Table 1. Algorithm for construction of 
document-graphs. 
(1) For each document Di, construct a document-graph Gi, 

where 1<i<n, and n is the total number of documents { 
(2) For each keyword, kj where 1<j<m and m is the 

number of keywords in document Di { 
(3) Traverse WordNet taxonomy up to the topmost 

level. During the traversal, consider each synset as 
a vertex. E is considered as a directed edge 
between two vertices V1 and V2, iff V2 is the 
hypernym of V1. 

(4) E is labeled by V1:::V2. If there is any repeated 
vertex or edge that was detected earlier for another 
keyword kt (t ≠ j) of the same document, Di, do not 
add the repeated vertices and edges to Gi, 
otherwise, add vertices and edges to Gi. 

(5) } // End of “For each keyword” 
(6) } // End of “For each document” 



[18], to mine the frequent subgraphs from the 
document-graphs. In our work, subgraphs correspond 
to items in traditional frequent itemset discovery. The 
algorithm is portrayed in Table 2. The 
find_frequent_1-edge_subgraphs procedure utilizes the 
dynamic minimum support strategy (section 3.2.1) to 
select 1-edge subgraphs from the document-graphs. 
The apriori_gen procedure in the algorithm performs 
joining and pruning of graphs. In the join operation, 
the list of subgraphs Lk-1, is joined with another Lk-1 to 
generate potential candidates for the next Apriori’s 
iteration. A k-edge candidate subgraph is generated by 
combining two (k-1)-edge subgraphs of Lk-1. The 
procedure removes candidate subgraphs that contain a 
subgraph which is not frequent. Details are described 
in section 3.2.2. 

For improving the efficiency of Apriori algorithm, 
we used hash-based technique [21]. Besides, 
document-graphs are pruned with the observation that 
a document-graph which does not contain any frequent 
k-edge subgraph cannot contain any frequent (k+1)-
edge subgraph. Therefore such a document-graph can 
be removed for further consideration. 

 
3.2.1. Ontologically-constrained generation of 
subgraph candidates with dynamic minimum 
support. We use this approach to limit number of 
candidate subgraphs with extremely abstract and very 
specific meanings. Since the WordNet’s ontology 
merges to a single term, the topmost level of 
abstraction is a common vertex for all the generated 
document-graphs, yielding subgraphs that involve the 
vertex with topmost level of abstraction to be less 
informative for clustering. Moreover, terms near to the 
lowest level of abstraction are less important due to 
their rare appearance in the document-graphs. As a 
result, terms appearing within the intermediate levels 

of the taxonomy are more representative clusters’ 
labels than subgraphs containing terms at higher and 
lower levels. 

We use a novel dynamic minimum support imposed 
Apriori paradigm to discover the frequent senses from 
document-graphs. This approach was motivated by the 
work on mining multilevel association rules [26]. The 
significant difference of our approach is that the 
technique operates neither with uniform minimum 
support, nor with linearly reduced support. Rather, it 
imposes the minimum support to the subgraphs in 
Gaussian normalization fashion, assigning different 
minimum support thresholds based on the term’s 
abstraction level. To do this assignment in shorter 
time, instead of using WordNet, we use a master 
document-graph. A master document-graph is a sum 
of all our document-graphs, intersected with the 
WordNet taxonomy. An edge of the master document-
graph is ranked according to the levels in WordNet 
taxonomy (currently, 18 abstraction levels). At the 
same time, the edges of the master document-graph do 
not have to cover all these 18 levels. Therefore, 
maximum abstraction levels in the master document-
graph is bounded by  lmax≤18. 

For the preliminary investigations, we have chosen 
Gaussian normalization strategy. The Gaussian 
function possesses the shape matching our criteria of 
requiring smaller minimum support for the terms 
located at the intermediate levels, and assigning higher 
minimum support thresholds to the terms located at the 
lower and higher levels of the master document-graph. 
The approach imposes importance to the mid-levels of 
the taxonomy formed by master document-graph, with 
the assumption based on an observation that the 
generated document-graphs would contain a lot of 
common, but uninteresting, subgraphs at the topmost 
level, and distinct, but not frequent, subgraphs at the 
bottom levels. The first would generate large clusters 
with low inter-cluster similarity, and the second would 
generate huge number of very small clusters. 

The Gaussian function can be defined as: 
2 2( x b ) 2cf ( x ) Ae− − ÷=  (1) 

where A is the height of the Gaussian peak, b is the 
position of the center of the peak and c is defined as: 

wc
2 2 ln( 2 )

=  (2) 

where w is the width of the curve at A/2. In our case, 
maxb l / 2= . We apply this behavior to model the 

minimum support of mining multilevel senses from 
WordNet taxonomy. This is illustrated in Figure 1. The 
hierarchy drawn in the figure indicates our master 
document-graph. The Gaussian graph indicates that 
minimum support is the largest at the highest and 

Table 2. Apriori algorithm for discovering 
frequent subgraphs. 
D, a database of document-graphs. 
min_sup, the minimum support count threshold 
Output: L, frequent subgraphs in D. 
Method: 
(1) L1= find_frequent_1-edge_subgraphs(D); 
(2) for (k=2; Lk-1≠Φ; k++){ 
(3) Ck=apriori_gen(Lk-1); 
(4) for each document-graph g∈D{ 
(5)    Cg=subset(Ck , g); 
(6)    for each candidate c∈  Ck 
(7)        c.count++; 
(8) } 
(9) Lk={ c∈  Ck | c.count ≥ min_sup} 
(10) } 
(11) Return L=∪ k Lk 



lowest levels (i.e., level 1 and level lmax). The model 
generates our pre-defined minimum support, min_sup 
only at the mid level of the taxonomy and applies 
gradual increment of minimum support at higher and 
lower levels. One can shift the min_sup value to other 
levels by changing b of equation (1). Moreover, more 
subgraphs can be pruned from the candidate list by 
reducing w to make the curve narrower.  
 
3.2.2. Candidate generation mechanism. The 
document-graph construction algorithm ensures that a 
document-graph would not contain more than one edge 
between two vertices. Additionally, the overall sense 
discovery concept ensures that a subgraph does not 
appear more than once in a document graph, unlike 
chemical compounds [7]. In our case, all the edges and 
vertices of a document-graph are labeled. We generate 
a (k+1)-edge candidate subgraph by combining two k-
edge subgraphs where these two k-edge subgraphs 
have a common core subgraph [6] of (k-1)-edges. In 
GDClust, each k-edge subgraph object is composed of 
a connected edge-list and a list of possible edges that 
generated this k-edge subgraph from a (k-1)-edge 
subgraph.  
 
3.3. Clustering text documents 
 

GDClust uses Hierarchical Agglomerative 
Clustering (HAC) [22] to group documents together. 
We construct a dissimilarity matrix for every pair of 
document-graphs. Dissimilarity between a pair of 
document-graphs G1 and G2 is measured using the 
formula: d=1.0-similarity, where similarity is  [23]: 

1 2
1 2

1 2

count( SG( G ) SG( G ))
sim( G ,G )

count( SG( G ) SG( G ))
∩

=
∪

 (3) 

where SG(G1) and SG(G2) are the sets of frequent 
subgraphs that exist in document-graph G1 and G2 
respectively. The dividend of equation (3) indicates the 

number of common frequent subgraphs between 
document-graphs G1 and G2, and the divisor indicates 
the total number of unique frequent subgraphs in G1 
and G2.  

To get the accurate number of clusters we evaluated 
results of HAC using silhouette coefficient [24]-[25].  
 
4. Performance of GDClust 

 
GDClust detected 1458 unique edges in the 

generated 1000 document-graphs. The algorithm 
discovered largest frequent subgraph with 11 edges. 
Figure 2 shows an estimation of execution time of the 
Apriori algorithm for sense discovery. The gray line 
shows cumulative discovery time and the black line 
indicates individual k-edge subgraph discovery time. 
For this simulation, min_sup (of Figure 1) is set to 3% 
(this allows the dynamic minimum supports to be in 
the range [3, 100]) and the c value of equation (1) is 
derived with w=(50% of A) in equation (2). To show 
the impact of multilevel Gaussian minimum support, 
number of selected 1-edge subgraphs from the 
candidate list of 1458 edges with different min_sup is 
portrayed in Table 3. Number of selected 1-edge 
subgraphs becomes static below certain min_sup. In 
this simulation, number of selected 1-edge subgraphs 
is always 174 for min_sup<=4. For other min_sup 
values, a lower min_sup in the Gaussian minimum 
support function would produce higher number of 1-
edge subgraphs at the very first level of the Apriori 
strategy of GDClust. This indicates that reduction of 
min_sup value may not result in further inclusion of 1-
edge subgraphs. In that case, if necessary, w should be 
increased to include additional 1-edges subgraphs. 

More and more edges can be pruned even with 
fixed min_sup, but varying w of the multilevel 
Gaussian minimum support curve. A narrower 
Gaussian curve with smaller w would result in smaller 
number of subgraphs, whereas a broader Gaussian 
curve with larger w will generate more 1-edge 
subgraphs. This behavior is reflected in Table 4. It 
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Figure 1. Gaussian minimum support strategy 
for multilevel mining.  
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Figure 2. k-edge subgraph discovery time with 
1000 document-graphs. 



shows that with a fixed min_sup, number of selected 1-
edge subgraphs increase with increasing values of w. 

One can also shift the center of the peak by 
controlling the b value of equation (1), making the 
curve skewed in any direction. In our preliminary 
experiments, we kept the curve symmetric, with the 
assumption that most of the senses of the document-
graphs are represented by the midlevel of the 
taxonomy and similar document-graphs have the 
tendency to start overlapping at midlevel.  
 
4.1. Document-graph clustering 

 
The discovered subgraphs of the previous section 

are used for the clustering purpose. The 1000 
documents were chosen from 10 different groups of 
20-newsGroup Dataset [27]. Figure 3 shows average 
silhouette coefficients at different number of clusters 
obtained by hierarchical agglomerative clustering. As 
the tendency of the curve is downward after certain 
number of clusters, we displayed silhouettes up to 25 
clusters. The graph shows that the maximum average 

silhouette coefficient is found when the number of 
clusters is 9. This is close to the number of groups in 
the input documents. It is to be noted that, all the 
average silhouettes displayed in Figure 3 are greater 
than 0.75 which is particularly good. This means that 
average silhouette coefficient remains high in the 
neighborhood of natural number of clusters (i.e. 10) 
and gradually falls downward in such a plot. Our 
results show, that the quality of clustering reaches its 
maximum for 9 clusters. This demonstrates a close 
match of cluster numbers with the number of 
predefined groups of the dataset. 
 
5. Conclusion 
 

GDClust presents a new technique for clustering 
text documents based on co-occurrence of frequent 
senses in the documents. The developed novel 
approach offers an interesting, sense-based alternative 
to the commonly used bag-of-tokens technique for 
clustering text documents. Unlike traditional systems, 
GDClust harnesses its clustering capability from the 
frequent senses discovered in the documents. It utilizes 
graph-based mining technology to discover frequent 
senses. GDClust is an automated system and requires 
minimal user interaction for its operations.  

In the close future, we want to look carefully at the 
concept of the inexact matching of subgraphs [14], as 
we believe it can be used effectively during our 
clustering process. We expect that the inexact 
matching would allow us to select only larger 
subgraphs generated by the Apriori approach, which 
could farther decrease computational costs involved in 
the phase of frequent subgraph candidate analysis. We 
are also interested in extending our multilevel dynamic 
minimum support approach. For our preliminary 
investigations, we used Gaussian minimum support 
strategy for the taxonomy. Finding the most 

Table 4. Number of 1-edge subgraphs selected 
from 1458 edges with different w of Gaussian 
minimum support approach, and fixed 
min_sup=5%. 

w = % of A. (from equation 1) N(1) 
10 2 
20 27 
30 120 
40 234 
50 275 
60 289 
70 309 
80 341 
90 381 

100 425 
N(1) indicates number of selected 1-edge subgraphs. 
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Figure 3. Calculated average silhouette 
coefficient at different number of clusters. 

Table 3. Number of 1-edge subgraphs selected 
from 1458 edges with different min_sup of 
Gaussian minimum support approach (w is 
set to 50% of A of equation 1). 

min_sup(%) N(1) 
10 97 
9 121 
8 130 
7 151 
6 159 
5 166 
4 174 
3 174 
2 174 
1 174 

N(1) indicates number of selected 1-edge subgraphs. 



appropriate minimum support model remains as one of 
important aspects of our future work. 
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