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ABSTRACT
Intelligence analysts grapple with many challenges, chief among
them is the need for software support in storytelling, i.e., automati-
cally ‘connecting the dots’ between disparate entities (e.g., people,
organizations) in an effort to form hypotheses and suggest non-
obvious relationships. We present a system to automatically con-
struct stories in entity networks that can help form directed chains
of relationships, with support for co-referencing, evidence marshal-
ing, and imposing syntactic constraints on the story generation pro-
cess. A novel optimization technique based on concept lattice min-
ing enables us to rapidly construct stories on massive datasets. Us-
ing several public domain datasets, we illustrate how our approach
overcomes many limitations of current systems and enables the an-
alyst to efficiently narrow down to hypotheses of interest and reason
about alternative explanations.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—Data min-
ing; H.3.3 [Information storage and retrieval]: Information search
and retrieval—Search process, Retrieval models

Keywords
Storytelling, connecting the dots, redescriptions, intelligence anal-
ysis

1 Introduction
Intelligence analysts today are faced with many challenges, chief
among them being the need to fuse disparate streams of data, and
rapidly arrive at analytical decisions and quantitative predictions
for use by policy makers. Although there are available catalogs of
problem solving strategies suitable for intelligence analysis (e.g.,
see [1, 2]) and several visual analytic tools (e.g. [3–8]), our under-
standing of underlying user needs is constantly evolving.

After a thorough user study, Kang and Stasko [9] suggested sev-
eral design implications for systems supporting intelligence analy-
sis. Along with several suggestions related to information manage-
ment, two of the suggested design requirements are: (1) help an-
alysts create a convincing production by supporting insight prove-
nance and sanity checks, and (2) help analysts continuously build
a conceptual model. In our work, we design an algorithmic frame-
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work to help intelligence analysts make connections by providing
evidence and explanations to build a mental model.

Here, we focus on the task of storytelling [10], i.e., connect-
ing the dots between disparate entities in an attempt to discover
relationships between hitherto different concepts and suggest hy-
potheses. For example, what is the connection between Osama Bin
Laden and Igor Kolokov? What other entities relate them and what
documents provide evidence for the underlying connections?

1.1 Limitations of Current Tools
Current tools in this space—e.g., Entity Workspace [5], Jigsaw [8],
NetLens [11], and Sentinel Visualizer [4]. Entity Workspace—use
entity recognizers to infer a graph of relationships between enti-
ties (see Fig. 1). (There are other tools that we do not survey
here, e.g., Palantir [7], but their characteristics are similar.) Entity
Workspace focuses more on information representation goals and
does not provide graph exploration or summarization capabilities,
whereas Jigsaw, NetLens, and Sentinel Visualizer provide explo-
ration techniques with different emphases. In Jigsaw and NetLens,
the user can traverse from entities to documents (in which the en-
tities appear), and vice versa. Sentinel Visualizer supports explo-
ration of the entity network and can hide document level details
by using concepts of degree centrality, betweenness centrality, and
closeness. In all cases, however, manual exploration becomes dif-
ficult as networks get dense with increasing numbers of entities.
More broadly, significant shortcomings of the above tools are:

A. Lack of support for “evidence marshaling”: The tools de-
scribed above employ entity network models where the edges
represent only boolean associations between entities, i.e., pres-
ence/absence in the same document(s). They require that
the documents be manually read by analysts to marshal evi-
dence.

B. Lack of support for explanation: Extracted and inferred rela-
tionships between entities should be explained by surround-
ing evidence. With the above tools, the user is relegated
the task of explaining the visualized relationships. Because
multiple explanations can exist for a relationship, the analyst
is further burdened with the manual task of sorting through
these explanations.

C. Directed search: Current tools do not support automated di-
rected search to discover relationships between user-specified
entities. Manual exploration often results in failed searches
that loop back to the origin instead of leading towards a des-
tination entity.

D. Syntactic constraints: Analysts bring in significant domain
knowledge that manifest as syntactic constraints on path find-
ing. In current systems, users must manually apply con-
straints at each step of the exploration which significantly
prolongs the discovery process.

E. Lack of support for entity disambiguation: A person named
“Igor Kolokov” might be referenced in different ways across



(a) Entity Workspace [5].

(b) Jigsaw [8].

(c) NetLens [11].

(d) Sentinel Visualizer [4].

Figure 1: State-of-the-art visual analytic tools for intelligence analysis.

a document (e.g., “Igor Kolokov” can be variously extracted
as “Igor Kolokov”, “Kolokov”, and “Igor”). In current visual
analytics tools for intelligence analysis, entity disambigua-
tion is a manual process left to the user. Further, current
entity recognition tools will be unable to extract an entity
from a sentence if the sentence contains pronominal refer-
ences (e.g., “that guy” instead of “Kolokov”).

F. The curse of large datasets and massive networks: All the
above tools require that a pre-generated or fully materialized
network of all relationships be computed prior to exploration.
As a result, exploration of large networks becomes computa-
tionally taxing and practically infeasible with even few tens
of thousands of entities.

1.2 Contributions
The above shortcomings motivate our story generation methodol-
ogy. A collection of documents is mined and indexed to provide
efficient access to nearest-neighbor queries, and a storytelling al-
gorithm is used to direct searches toward desired destination enti-
ties. Various pre- and post- processing techniques are utilized to
discover stories and explain them. Our contributions are:

1. Cliques: We introduce a new network model that employs
cliques to define weighted edges between entities (different
from the boolean edge models of existing systems). Cliques
are used as evidence to support a particular connection be-
tween two entities and serve as the primary building block of
storytelling. This component addresses issue (A).

2. Explanation Chain (Clique Chain): To provide effective ex-
planations, we propose a relationship model between two en-
tities (a story) as a path traversed from one entity to another
through a series of cliques. Thus the story between two enti-
ties is explained as a chain of cliques where evidence is mar-
shalled by the entities’ surrounding neighbors within their
respective cliques. This component addresses issue (B).

3. Efficient Automated Search for Storytelling: We propose a
formulation of heuristic search for finding explanations/clique
chains between two entities. The search algorithm can effi-
ciently provide multiple explanations for the identical start
and end entities based on two user-defined parameters. This
component address issue (C).

4. Syntactic Storytelling: User can provide syntactic constraints
to the proposed search algorithm to obtain relevant stories
and improve processing time. This contribution addresses
issue (D).

5. Coreferencing: We use coreferencing to disambiguate pronom-
inal references as well as references to the same person. This
component addresses issue (E).

6. Induced Similarity Networks: Our algorithms operate directly
on the vector space model without materializing the network
to obtain significant computational efficiency. We demon-
strate our ability to scale to large datasets and to rapidly gen-
erate/verify multiple hypotheses. This component addresses
issue (F).

2 Related Projects
Intelligence analysis: Research work into software tools for intel-
ligence analysis can be grouped into model-guided systems [12–
14], multi-agent systems [15], graph-based analytic tools [16–19],
and collaborative systems [5,20,21]. Our work falls in the category
of graph-based analytic tools. We support exploration of the entity-
entity graph (without materializing it) to help intelligence analysts
to marshal evidence, explain connections, and form hypotheses.

Visual analytic tools: A different way to classify software tools
is in terms of the activity they support, i.e., information foraging
vs. sensemaking [22]. Some of the tools in the former category are
IN-SPIRE [6], and NetLens [11]; they leave the reasoning processes
to the analyst. Other tools, such as Analyst’s Notebook [3], Sentinel
Visualizer [4], Entity Workspace [5], Jigsaw [8], and Palantir [7]
focus more on the the sensemaking process, and while many of
them ostensibly support information foraging, some of these tools
are primarily for late stage sensemaking and presentation.

Connecting the dots: The “connecting the dots” problem is not
new and has appeared before in a variety of contexts: entity net-
works [23], image collections [24], cellular networks [25], social
networks [26], and document collections [10, 27, 28]. While some
of these works can be adapted toward our problem context, the no-
tion of a story in intelligence analysis often deals with relating enti-
ties sequentially such that neighboring entities share commonality,
whereas the above projects typically require a stronger connecting
thread through all entities, not just neighboring entities. Swanson
refers to the notion of neighboring commonality as complementary
but disjoint (CBD) structures [29], whereby two arguments may
exist separately that when considered together lead to new insights,
but the objects exhibiting these two arguments are unaware of each
other.

This paper builds upon our prior work in [10,30] in many impor-
tant ways. First, we build stories through entity networks extracted



J. Escalante C. Morales A. Sufaat O. HanifSeashore Hotel

(a) Clique size, k=2 and distance threshold, θ=0.99: Laboratory technician Jose Escalante is connected to Omar Hanif, a key player of a
possible terrorist attack and an Al-Queda operative. The connection is explained by a story with three junction nodes: Carlos Morales, Ali
Sufaat, and Seashore Hotel.
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(b) Clique size, k=6 and distance threshold, θ=0.99: A larger clique size requirement adds more evidence to the story and better explains the
connection.
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(c) Clique size, k=6 and distance threshold, θ=0.93. A longer clique-chain with k = 6 provides another detailed explanation of the connection
between Jose Escalante and Omar Hanif.

Figure 2: Different explanations for the connection between two entities: Jose Escalante and Omar Hanif.

from documents whereas these prior projects build stories through
documents directly. This emphasis on entity networks is closer to
how intelligence analysts reason about connections. Second, the
present paper significantly generalizes the work in [10] by incor-
porating the notion of cliques in stories, thus supporting evidence
marshalling and explanation generation. Third, we present a novel
optimization technique for large databases based on concept lattice
mining to support faster story construction.

3 Problem Setting
A story between entities e1 and et is a sequence of intermediate
entities e2, e3, ..., et−1 such that every neighboring pair of entities
satisfies some user defined criteria. We model entities and the doc-
uments they occur in using a traditional vector space model. The
problem of finding a story then can be modeled as a path search
problem in the induced entity-entity graph E , but direct material-
ization of E with hundreds of thousands of entities and billions of
edges is infeasible. What is needed is support for directed explo-
ration of the graph toward desired entities.

Given a start and end entity, our algorithm induces the network
on the fly from the vector space model and finds a path. We allow
the analyst to influence the story construction using two distinct
criteria: clique size and distance thresholds. Given a story connect-
ing a start and an end entity (see Fig. 2(a)), analysts can perform
one of two tasks: they can either aim to strengthen the individual
connections resulting in a longer path (see Fig. 2(b)), or they can
organize evidence around the given connection (see Fig. 2(c)). We
use the notions of distance threshold and clique size to mimic these
behaviors. The distance threshold refers to the maximum accept-
able distance between two neighboring entities in a story. Lower
distance thresholds impose stricter requirements and lead to longer
paths. The clique size refers to the minimum size of the clique
that every pair of neighboring entities must participate in. Greater
clique sizes provide more evidence and tend to provide longer sto-
ries.

We use the term edge to refer to the basic unit of a direct link
between two entities. A k-clique has k entities and is composed of
k(k− 1)/2 edges where every edge satisfies the distance threshold
θ. A clique chain is composed of a number of consecutive cliques
connecting as start and end entity. Clique chains of Fig. 2(a, b,
and c) are respectively composed of 2-, 6-, and 6-cliques. Applied

distance thresholds to these three clique chains are 0.99, 0.99, and
0.93. Each clique chain provides alternative explanations for the re-
lationship between the same pair of entities. We use the term story
to refer to a relation between two entities via the junction entities
of the corresponding clique chain. The stories are highlighted by
thick lines in the clique chains of Fig. 2.

We use the Soergel distance between two entities e1 and e2 to
measure the strength between them:

D(e1, e2) =

∑
f∈F

|V (e1, f)− V (e2, f)|∑
f∈F

max(V (e1, f), V (e2, f))

where V (e, f) indicates the weight of feature f for entity e. Here,
the features are the different documents in which the entity appears.
Let e(f) be the set of entities associated with feature f, and f(e)
be the set of features associated with entity e. Soergel distance
is a true distance measure: it is exactly 0.0 when the entities e1
and e2 have exactly the same features is symmetric, and obeys the
triangle inequality. For entities in a document collection, the weight
V (e, f) can be defined as

V (e, f) =
(1 + log(ne,f ))

(
log |E|
|e(f)|

)
∑|f(e)|

j=1

(
(1 + log(ne,j))

(
log |E|
|e(j)|

))2
where ne,f is the frequency of entity e in document f , |e(f)| is the
number of entities in document f , |e(j)| is the number of entities
in document j, and |E| is the total number of entities. Note that
this is a variant of tf-idf modeling with cosine normalization in the
entity-document space.

4 Approach
Figure 3 summarizes our storytelling framework. The framework
takes a document corpus as input, applies algorithmic approaches
to handle the research issues in story generation, and outputs stories
at the end of the pipeline. We describe the entire process in detail
in this section.

Our overall methodology is based on using a concept lattice frame-
work to structure the search for stories. A concept lattice [31] struc-
tures the membership of entities in documents into sets of overlaps
and relationships between these sets. Recall that the two parameters
influencing the quality of the path—distance threshold and clique
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Figure 3: Storytelling pipeline.

size—impose a duality. The distance threshold is posed over fea-
ture sets whereas the clique size is over entities. We use the clique
size to prune the concept lattice during construction (by incorpo-
rating it as a support constraint) and the distance threshold to select
candidates for dynamic construction of paths. There are three key
computational stages: (i) construction of the concept lattice, (ii)
generating promising candidates for path following, and (iii) eval-
uating candidates for potential to lead to destination. Of these, the
first stage can be viewed as a startup cost that can be amortized over
storytelling tasks.

We adopt the CHARM-L [31] algorithm of Zaki for constructing
concept lattices. The second and third stages are organized as part
of an A* search algorithm that begins with the starting entity, uses
the concept lattice to identify candidates satisfying the distance
threshold and clique size requirements, and evaluates them heuris-
tically for their promise in leading to the end entity. In practice,
we will place a limit on the branching factor (b) of the search, thus
sacrificing completeness for efficiency. We showcase these steps in
detail below, including the construction of admissible heuristics.

4.1 Concept Lattice Construction
We employ the notion of a concept lattice [31] to capture similar-
ities between entities. Each concept/closed set is a pair: (entity
set, document set). Concepts capture a maximal co-occurrence be-
tween entity sets and document sets, i.e., it is not possible to add
more entities to a concept without losing some documents, and vice
versa. We order the entity list for each concept by the number of
documents. Note that we can find an approximate set of nearest
neighbors for an entity e from the entity list of the concept con-
taining e and the longest document set. The concept lattice is a
data structure that models conceptual clusters of entities and feature
overlaps and is used here as a quick lookup of potential neighbors
that will satisfy the distance threshold and clique constraints.

4.2 Successor Generation
Successor generation is the task of, given an entity, using the dis-
tance threshold and clique size requirements, to identify a set of
possible successors for path following. Note that this does not use
the end entity in its computation. We study three techniques for
successor generation:

1. Cover Tree Nearest Neighbor,
2. Nearest Neighbors Approximation (NNA), and
3. k-Clique Near Neighbor (kCNN).
Among these three techniques, NNA and kCNN approaches are

our contributions and the cover tree approach is used for compari-
son purpose only.

4.2.1 Cover Tree Nearest Neighbor
The cover tree [32] is a data structure for fast nearest neighbor
operations in a space of entities organized alongside any distance

Algorithm 1 NNA(e)
Input: An entity e ∈ E

fringe ← >(e) order by feature set size
prospects ← ∅
while fringe 6= ∅ do
r ← dequeue from fringe
while prospects 6= ∅ do
e′ ← head prospects
if J(e, e′) > |Items(e)|

|Items(r)| then
yield e′

dequeue prospects
else

break
for all r′ ∈ ChildrenOf r do

add r′ to fringe order by feature set size
for all e′ in e(r′) do

add e′ to prospects order by J(e, e′)

metric (here, we use the Soergel distance [33]). The space com-
plexity is O(‖E‖), i.e., linear in the entity size of the database. A
nearest neighbor query requires logarithmic time in the entity space
O
(
c12log (n)

)
where c is the expansion constant associated with

the feature set dimension of the dataset (see [32] for details).

4.2.2 Nearest Neighbors Approximation (NNA)
The second mechanism we use for successor generation is to ap-
proximate the nearest neighbors of an entity using the concept lat-
tice. We use the Jaccard coefficient between two entities as an in-
dicator to inversely (and approximately) track the Soergel distance
between the entities. In order to efficiently calculate an entity’s
nearest neighbors, however, we cannot simply calculate the Jac-
card coefficient between it and every other entity. We harness the
concept lattice to avoid wasteful comparisons.

A formal description of our NNA algorithm is shown in Algo-
rithm 1. The set >(e) is the set of all redescriptions [31] which
form the upper edge in the concept lattice where e appears. J(e, e′)
of Algorithm 1 refers to Jaccard coefficient between two entities is
defined as

J(e, e′) =
|f(e) ∩ f(e′)|
|f(e) ∪ f(e′)|

which is a measure of how similar two entities are based upon how
many features they share in proportion to their overall size. NNA
returns better approximate redescriptions of an entity first. This is
still, however, an approximation since it uses the Jacccard coeffi-
cient rather than the Soergel distance.
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Figure 4: Distribution of common and uncommon features of entities e1
and e2 inside and outside the concept lattice. (The hexagon indicates the
concept lattice).



Dmixed(e1, e2) =
|U1L|×minw(e1)+|U2L|×minw(e2)+

∑
f∈CL

|V (e1,f)−V (e2,f)|
|U1L|×minw(e1)+|U2L|×minw(e2)+

∑
f∈CL

max(V (e1,f),V (e2,f))+|TO|×max(maxw(e1),maxw(e2))

Figure 5: The mixed mode Soergel distance equation.

4.2.3 k-Clique Near Neighbor (kCNN)
The basic idea of the kCNN approach is, in addition to finding a
good set of successor nodes for a given entity e, to be able to have
sufficient number of them so that, combinatorially, they contribute
a desired number of cliques. With a clique size constraint of k, it
is not sufficient to merely pick the top k neighbors of the given en-
tity, since the successor generation function expects multiple clique
candidates. Given that this function expects b clique candidates,
minimum number m of candidate entities to identify can be cast as
the solution to the inequalities:(

m− 1
k

)
< b and

(
m
k

)
≥ b

The entity list of each concept of the lattice is ordered in the
number of features and this aids in picking the top m candidate en-
tities for the given entity e. We pick up these m candidate entities
for o from the entity list of the concept containing the longest fea-
ture set and redescription set containing e. Note that, in practice,
the entity list of each concept is much larger than m and as a re-
sult kCNN does not need to traverse the lattice to obtain promising
candidates. kCNN thus forms combinations of size k from thesem
entities to obtain a total of b k-cliques. Since m is calculated using
the two inequalities, the total number of such combinations is equal
to or slightly greater than b (but never less than b). Each clique is
given an average distance score calculated from the distances of the
entities of the clique and the current entity e. This aids kCNN in
returning a priority queue of exactly b candidate k-cliques.

4.3 Evaluating Candidates
We now have a set of candidates that are close to the current entity
and must determine which of these has potential to lead to the des-
tination. We present two operational modes to rank candidates: (i)
the normal mode and (ii) the mixed mode.

4.3.1 Normal Mode
The normal mode is suitable for the general case where we have
all the entities and features resident in the database. The primary
criteria of optimality for the A* search procedure is the cumulative
Soergel distance of the path. We use the straight line Soergel dis-
tance for the heuristic. This can never overestimate the cost of a
path from any entity e to the goal (and is hence admissible), be-
cause the Soergel distance maintains the triangle inequality.

4.3.2 Mixed Mode
The mixed mode distance measure is effective for large datasets
where only important information is stored while other informa-
tion is removed from the system after recording some of their ag-
gregated information to save on space and cost. With the mixed
mode approach, for simplicity, we assume that all the information
about items outside the concept lattice are absent but some of their
aggregated information like number of features truncated are pro-
vided. Figure 4 shows the distribution of common and uncommon
features of entities e1 and e2 inside and outside a concept lattice.

Figure 5 shows our formula for the mixed mode approach. Con-
sider the set of features TO that do not appear in the lattice due
to the support threshold of the concept lattice, minsup. Some fea-
tures of TO can be common to both entities e1 and e2. |U1O| and
|U2O| are the numbers of uncommon features in entities e1 and e2,
which are thus outside the frequent concept lattice. Length |TO| is
a known variable due to the recorded aggregated information, but
|U1O| and |U2O| are unknown. This is why |U1O| and |U2O| do
not appear in Dmixed(e1, e2). For Dmixed(e1, e2), we consider that
all the features of TO (i.e., features outside the lattice) are com-

mon in both entities e1 and e2 and all these features have the same
weight which is max(maxw(e1),maxw(e2)).

To be able to use Dmixed(e1, e2) as a heuristic, it should be men-
tioned that Dmixed(e1, e2) must never overestimate the original So-
ergel distance D(e1, e2). The proof is omitted due to space con-
straints.

4.4 Implementation Details
The aim of the algorithms we have described so far is to support in-
telligence analysts in marshaling thoughts and evidence in order to
generate hypotheses and then to generate defensible and persuasive
arguments on hypotheses that are most favored by the evidence.
Note that significant domain knowledge is still required to analyze
a dataset to find a set of good stories. This raises some implementa-
tion issues regarding pre- and post processing, starting points, and
exploration constraints. This subsection describes these implemen-
tation issues.

4.4.1 Entity Extraction
We used a number of named-entity recognition (NER) APIs to ex-
tract entities from a document collection. We used multiple NER
APIs because we observed that some named entities are better ex-
tracted by one tool but missed by another. The NER APIs we used
are LingPipe [34], OpenNLP [35], and Stanford NER [36]. We
combined the entities extracted by these three named-entity recog-
nizers and modeled the entities in the vector space model (entities
are objects and documents are features).

4.4.2 Syntactic Storytelling
The kCNN approach already uses two constraints: clique size and
distance threshold. It is possible to include a syntactic constraint to
the successor generation process (Figure 6). For example, we can
restrict the exploration in such a way that the junction nodes can
be of certain types of entities, e.g., people or organizations. Other
entity types such as places, dates, money amount, phone number,
etc. are better used as surrounding evidence, and hence can be part
of a clique but not as a junction point.

Figure 6(a) shows that the connection between “Osama Bin Laden”
and “Igor Kolokov” has a place “Cairo” as a junction node. One
way to interpret this connection is that Laden and Kolokov vis-
ited Cairo. This interpretation becomes unimportant if the dates of
their travel to Cairo are far apart. On the other hand, Figure 6(b)
shows that Laden and Kolokov are connected via “Saeed Hasham”.
This new junction node warrants further investigation about “Saeed
Hasham”. In the Atlantic Storm dataset discussed later, Saeed
Hasham is a direct recruitee of Osama Bin Laden and Igor Kolokov
is recruited by Saeed Hasham. There is no direct connection be-
tween Laden and Kolokov. Therefore, a syntactic constraint ap-
plied on the successor generation module can provide better con-
nections. In the experimental results section we provide perfor-
mance and quality comparison between two strategies: with and
without person/organization as junction nodes (Section 5.4).

4.4.3 Coreferencing
Coreference is the art of determining when two entity mentions in
a text refer to the same entity. We use LingPipe’s heuristic coref-

Osama Bin Laden Cairo Igor Kolokov

(a) A city as an intermediate node

Osama Bin Laden Saeed Hasham Igor Kolokov

(b) A person as an intermediate node
Figure 6: Using syntactic constraints on story generation.



Text: A Russian named Igor Kolokov was arrested in Cairo on 29 January, 2003 and

charged with assault on an Egyptian police officer who had attempted to arrest him for

being drunk in public. Kolokov sells medical supplies throughout the Middle East and

represents a company in Moscow called Medikat.

Coreferred text: A Russian named Igor Kolokov was arrested in Cairo on 29 January,

2003 and charged with assault on an Egyptian police officer who had attempted to arrest

Igor Kolokov for being drunk in public. Igor Kolokov sells medical supplies throughout

the Middle East and represents a company in Moscow called Medikat.

Figure 7: Example of coreferencing.

erence package [34] to resolve pronominal references to entities.
LingPipe’s coreference package is based on a greedy algorithm
called CogNIAC [37] that visits each entity mentioned in a doc-
ument in order, and for each mention either links it to a previous
linked chain of mentions, or begins a new chain consisting only
of the current mention. The resolution of a mention is guided by
matchers and anti-matchers that score candidate antecedent men-
tion chains based on properties such as the closest matching alias
(using a complex comparison allowing for missing tokens), known
alias associations, discourse proximity (how far away the last men-
tion in a chain is and how many are intervening), and entity type.
Figure 7 shows a simple example where “Kolokov” and some pro-
nouns are replaced by “Igor Kolokov” using this approach.

4.4.4 How does the Analyst Know where to Start?
The question of how to find a starting point is very subjective and
depends on the analyst’s objectives. Some systems choose use
graph-theoretic metrics such as betweenness centrality to identify
key players in an entity network. We found significant benefits
in classifying documents and using entities extracted from specific
classes as candidate starting points. We use the AlchemyAPI [38]
to assign each document to its most likely topic category (news,
sports, business, law and crime, etc.). The analyst’s further perusal
of documents in each category helps narrow down the number of
documents that might contain potential start and end entities. In
section 5.6.2, we describe how we can reduce the start set of docu-
ments to solve a particular task with the VAST 2011 dataset.

4.4.5 Modeling Issues
So far, we have discussed our framework in the entity space. That
is, the network we consider has entities as nodes and each entity
is modeled as a vector of documents. Storytelling provides differ-
ent explanations of a relationship between two entities as form of
clique chains where each node of the clique chains is an entity. It is
possible to reverse this model and traverse in the document space
so that we can obtain clique chains of entities. In this reverse case,
documents are modeled as vectors of entities and we can find ex-
planation clique chains for a pair of documents instead of a pair of
entities. This reverse modeling is sometimes useful where the in-
vestigation is less evidence based and the task is to find a small plot
from a large volume of documents. In section 5.6.2, we explain
how when we used documents as objects and entities as features,
we can identify an imminent threat to a hypothetical city.

5 Experimental Results
Due to confidentiality reasons, our group is unable to disclose many
intelligence analysis datasets that we have applied our algorithm
on. For this paper, we demonstrate results on many public domain
datasets, including i) the Atlantic Storm dataset developed in the
Joint Military Intelligence College [39], ii) two datasets from the
annual VAST challenge contests in 2010 and 2011, and iii) a dataset
of politicians that we harvested from Wikipedia text. These datasets
range from having 779 to 230,627 entities.

5.1 Evaluation measures
We use both quantitative and qualitative measures for our evalua-
tion. To compare the performance of different successor genera-
tion strategies, we assess the number of nodes explored against the
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Figure 8: Comparison of successor generation approaches.

length of the story, and whether this growth is linear or exponen-
tial. For a numerical measure of story quality, we assess the pair-
wise Soergel distances between entities in a story (both consecutive
and non-consecutive ones) and distill these distances into a disper-
sion coefficient. The dispersion coefficient assesses the overlap of
the features of the entities of a story (not the graph structure of the
clique chain) and, thus, evaluates the story, not the clique chain. An
ideal story is one that meets the Soergel distance threshold only be-
tween consecutive pairs whereas a non-ideal story “oversatisfies”
the distance threshold and meets it even between non-consecutive
pairs. If n entities of a story are e0, e1, . . ., en−1, then we quantify
dispersion coefficient as:

ϑ = 1− 1

n− 2

n−3∑
i=0

n−1∑
j=i+2

disp (ei, ej)

where
disp (ei, ej) =

{
1

n+i−j
, if D (ei, ej) > θ

0, otherwise

Thus, the dispersion coefficient is 1 for an ideal story and 0 in
the worst case when every pair of entities of the story satisfies the
distance threshold. Finally, we describe below the analysts inter-
pretations and conclusions from the discovered stories. All the re-
sults presented in this paper were obtained using a regular desktop
computer with Intel Core2 Quad CPU Q9450 @ 2.66GHz and 8
GB physical memory.

5.2 Evaluating Successor Generation Strate-
gies

The goal of this experiment is to assess the number of nodes ex-
plored by the A* search and the time taken as a function of the dis-
covered path length, and as a function of different successor gen-
eration strategies. For this purpose, we used the VAST11 dataset
and aimed to generate 10,000 stories between randomly selected
entity pairs, with a distance threshold of 0.95. Figure 8 depicts
the results of the successful searches. As Figure 8 (left) shows,
the cover tree and NNA approaches require much more number of
node exploration than kCNN with k=2 and 7. The runtime trends
shown in Figure 8(right) also mirror the number of nodes explored
in Figure 8(left). This result is not surprising, as the cover tree al-
gorithm does not factor into the clique constraint, thus preventing it
from taking advantage of the search space reduction that this con-
straint provides. NNA does take advantage of this constraint, how-
ever, and it generates a strict ordering on the Jaccard’s coefficient
over the cliques, whereas kCNN simply generates some b candidate
cliques. In practice, the kCNN relaxation results in the discovery of
candidate cliques more rapidly than the NNA algorithm, while still
remaining accurate. In both cases a post processing step is neces-
sary to determine if a given candidate does in fact meet the search
threshold. Through the remainder of this paper, we thus use the
kCNN algorithm as it provides the best performance of the three
algorithms.

5.3 Interplay between Clique and Distance
Thresholds

We use the VAST11 dataset to study the effects of varying distance
and clique size thresholds. As expected, the number of possible sto-
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Figure 9: VAST 2011 Text Dataset (Entities are objects and documents are
features): Relation between clique chain and distance threshold.

ries decreases monotonically with stricter distance and clique size
requirements. Figure 9 shows the relationship between the largest
available clique size as distance thresholds become progressively
stricter.

5.4 Comparison between Syntactic and non-
syntactic Storytelling

To explore this phenomena, we apply apply our algorithms on a
dataset of politicians harvested from Wikipedia.org (contains 230,627
entities and 49,612 documents). We allow only person/organization
type of entities as junction points of a clique chain in syntactic sto-
rytelling. On the other hand, non-syntactic storytelling can use any
type of entities as junction nodes. To evaluate the performance of
these two approaches, we generated 10,000 random pairs of politi-
cians and invoked syntactic and non-syntactic storytelling with a
range of distance threshold and clique size. Figure 10 compares
the results of syntactic and non-syntactic storytelling with those
start and end entity pairs for which at least one story was found
by both the approaches. Figure 10 (left) shows that the average
dispersion is better (i.e., higher) for syntactic storytelling with any
distance threshold. This plot also depicts an increase in average dis-
persion with stricter (lower) distance thresholds for both syntactic
and non-syntactic approaches.

Figure 10(middle) compares syntactic and non-syntactic versions
of storytelling in terms of average clique size as a function of dis-
tance threshold. It shows that the average clique size is smaller with
the syntactic approach at any distance threshold. This indicates that
the extra syntactic constraint applied to the successor generator re-
duces the size of the neighborhood. As a result, the explanations
(with cliques) are generally smaller than the non-syntactic version.

Figure 10(right) shows the distributions of the costs of the paths
of the discovered stories for both syntactic and non-syntactic strate-
gies. It shows that the syntactic approach discovers costlier paths
than the non-syntactic approach. The extra syntactic restrictions
at the junction nodes result in costlier and hence rare stories that
the non-syntactic approach might not discover. Around 60% of
the discovered stories for the non-syntactic approach have cost be-
tween 4.0 to 8.0 where only 36.5% of the stories with the syntactic
approach fall into this range. Note that both the approaches yield
a right skewed distribution, but the syntactic approach has a longer
right skew than the non-syntactic approach indicating generation of
costlier stories.

5.5 Comparison between Storytelling and an
uninformed Search

We used the VAST 2011 dataset to compare storytelling against an
uninformed search. Figure 11 (a) shows that the use of Soergel
distance heuristic improves the average branching factor over the
vanilla BFS (h=0). Overall improvement of average branching fac-
tor is more than 50%. Figure 11(b) shows that the use of the straight
line Soergel distance for the heuristic exhibits lower runtime than

exploration by the A* procedure over BFS (h=0), for a range of
different clique sizes. The average time saved is more than 60%,
even with the smallest clique size k=2. The heuristic tends to save
additional time as larger clique size requirements are imposed.

Figure 11 (c) and (d) respectively depict the average effective
branching factor and average time to generate stories as functions
of clique size, for different approaches. Despite the use of the trun-
cated dataset, Figure 11 (c) and (d) show that the mixed mode gains
due to the heuristic over the BFS have a similar trend to the normal
mode of Figure 11 (a) and (b). Therefore, the mixed mode analy-
sis offers a practical mechanism to provide the best possible gains
from lossy datasets without time consuming remodeling of the vec-
tor space (e.g., [10] uses a costly remodeling for post processing).

5.6 Use Case Studies
In this subsection we describe some of the illustrative results we
obtained using some benchmark intelligence analysis datasets.

5.6.1 Atlantic Storm Dataset
The Atlantic Storm dataset was developed in the Joint Military In-
telligence College as part of an evidence-based case study. We ex-
tracted 779 entities from the Atlantic Storm text dataset. An illus-
trative example of some stories are already shown in Figure 2 which
provides multiple explanations of the relationship between two per-
sons, Jose Escalante and Omar Hanif, who play an important role
in transferring biological agents from Europe to the Caribbean.

After analyzing some stories, the user obtains a mental model
of the attack. An illustrative mental model is shown in Figure
12. It depicts that the conspiracy starts from Osama Bin Laden
in Afghanistan. Two of his close contacts are Saeed Hasham and
Fahd al Badawi. Once these two contacts are discovered it be-
comes easy to find stories involving Igor Kolokov, Pyotr Safrygin,
and Boris Bugarov. All these three people are former employees
of Russian State Research Center of Virology and Biotechnology
(Vector). Among them Boris Bugarov is known to be a bioweapon
scientist. Another person named Abdellah Atmani, who works
for Holland Orange Ship Lines, helps in smuggling the biologi-
cal agents to the Caribbean from Morocco. After discovering the
plot up to this point, a story involving four key entities (Escalante,
Arze, Morales, and Sufaat) reveals that the biological agents will be
transferred to the USA from the Bahamas. Omar Hanif and Adnan
Hijaji are two key players who recruited Al Qaeda field agents to
tansport the biological agents to the USA by several cruise ships.

5.6.2 VAST 2011 Dataset
The VAST11 dataset contains 4,447 documents. The task is to find
any imminent threat to the imaginary city named “Vastopolis”. We
extracted a total of 55,109 entities from 4,447 documents. To find
a starting set to work with, we first classify each of the documents
using AlchemyAPI (Section 4.4.4). We reduced the set of 4,474
documents down to 122 by selecting the articles that were classi-
fied as “law and crime” or were considered “unclassifiable”. This
narrows down the potential number of terminal entities (start and
end) to a few hundred from 55,109 entities. (Note that once given
a start and end point, our storytelling algorithm still uses the entire
collection.)

Since the number of entities is too large for an analyst to work
with and the possible imminent threat is hidden in the news articles,
we modeled the documents as vectors of entities (as described in
Section 4.4.5). In the actual solution plot there are only around ten
entities and thirteen documents involved. There are other stories
that can be discovered from this dataset but they do not pose any
imminent threats to Vastopolis.

An example story from the dataset is: [03435.txt → 00783.txt
→ 02566.txt→ 01785.txt→ 03212.txt]. The start document con-
tains an entity named “Paramurderers of Chaos” which is the name
of a terror group and the end document contains a report regard-
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Figure 12: A sketch of the solution of the Atlantic Storm dataset.

ing a talk of professor (Edward Patino), another important entity
in this plot. The algorithm selects documents 00783.txt, 02566.txt
and 01785.txt as junction documents. The first two junction docu-
ments (00783.txt, 02566.txt) are related to computer viruses, worm
threats, and security flaws in the Vast University. The next docu-
ment (01785.txt) is related to a Robbery at Vast University (equip-
ments of Professor Edward Patino were stolen). 01785.txt is one
of the key documents in the solution which is properly picked by
our algorithm. Note that document 00783.txt is considered a “false
lead” in the solution planted by the VAST 2011 contest organizers.
This study demonstrates that out algorithm was able to identify sev-
eral key elements hidden inside a large corpora of news articles as
well as a few false leads related to the actual plot. Several stories
combined together and explanations provided by the cliques lead
an analyst to the mental model of the whole plot.

5.6.3 VAST 2010 Dataset
Unlike the VAST 2011 dataset, VAST 2010 dataset is composed
of transcribed phone calls, email messages, and reports from fields
agents. The task is to investigate arms dealing. We extracted a
total of 621 entities from this dataset, of which 102 are person en-
tities. After reading a few documents, the user becomes interested

in two people: Igor Sviatoslavich and Viktor Bout. The user first
uses syntactic storytelling so that the junction points are people or
organizations, but syntactic storytelling reported that there is no
story between the given entities. A broader search reveals the result
shown in Figure 13, where the junction nodes are locations. Both
the two intermediate cliques of the chain are validated in the solu-
tion provided by the VAST 2010 Contest organizers. This story is
part of an arms deal in the Iran region of the entire plot (called Iran
network). Some places used to transport arms from North Korea
to Iran were Colombo (Sri Lanka), Pyongyang, and Don Mueang.
The story successfully reveals these locations. The story also re-
veals another person “Soltanzadeh” who is part of the Iran arms
dealing network.

6 Discussion
We have presented a novel approach to storytelling between en-
tities in large document collections, with applications to intelli-
gence analysis. Our algorithms are both efficient at handling large
datasets and effective at teasing out complicated plots from textual
corpora. In the future, we aim to explore ways to automatically
incorporate user feedback about presented stories, so as to dynami-
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Figure 13: An example clique chain connecting Igor Sviatoslavich with
Viktor Bout. Both of them are involved in arms dealing in the Iran network.

cally adjust the weightings of documents and/or the similarity func-
tions. This will enable analysts to preferentially explore certain
types of stories featuring preferred entity types or subplots. We
will also explore incorporating additional sources of data, besides
text documents, e.g., social media. Finally, we plan to continue
our dialog with intelligence analysts to further develop compelling
software tools for analytics.
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