
Semantically-Guided Clustering of Text Documents via

Frequent Subgraphs Discovery

Rafal A. Angryk
1
, M. Shahriar Hossain

2
, Brandon Norick

1

1 Department of Computer Science, Montana State University,

Bozeman, MT 59717, USA
2 Department of Computer Science, Virginia Tech

Blacksburg, VA 24061, USA

angryk@cs.montana.edu, msh@cs.vt.edu, brandon.norick@msu.montana.edu

Abstract. In this paper we introduce and analyze two improvements to

GDClust [1], a system for document clustering based on the co-occurrence of

frequent subgraphs. GDClust (Graph-Based Document Clustering) works with

frequent senses derived from the constraints provided by the natural language

rather than working with the co-occurrences of frequent keywords commonly

used in the vector space model of document clustering. Text documents are

transformed to hierarchical document-graphs, and an efficient graph-mining

technique is used to find frequent subgraphs. Discovered frequent subgraphs are

then utilized to generate accurate sense-based document clusters. In this paper,

we introduce two novel mechanisms called the Subgraph-Extension Generator

(SEG) and the Maximum Subgraph-Extension Generator (MaxSEG) which

directly utilize constraints from the natural language to reduce the number of

candidates and the overhead imposed by our first implementation of GDClust.

Keywords: graph-based data mining, text clustering, clustering with semantic

constraints.

1 Introduction

There has been significant increase in research on text clustering, natural language

processing and textual information extraction in the last decade. Most of these

techniques rely on searching for identical words and counting their occurrences. The

major motivation for our approach comes from typical human behavior when people

are given the task of organizing multiple documents. As an example, consider the

behavior of a scientific book editor who is faced with the complicated problem of

organizing multiple research papers into a single volume with a hierarchical table of

contents. Typically, even papers from the same research area are written (1) in

multiple writing styles (e.g., using “clusters” instead of “concentration points”), (2) on

different levels of detail (e.g., survey papers versus works discussing a single

algorithm) and (3) in reference to different aspects of an analyzed area (e.g.,

clustering of numeric versus categorical data). Instead of searching for identical

mailto:angryk@cs.montana.edu
mailto:msh@cs.vt.edu
mailto:brandon.norick@msu.montana.edu

words and counting their occurrences, as many well-known text clustering techniques

do [3]-[5], the human brain usually remembers only a few crucial keywords and their

abstract senses, which provide the editor with a compressed representation of the

analyzed document. These keywords, discovered thanks to the expert’s knowledge

(replaced, in our case, by WordNet [6]-[7]), are then used by the book editor to fit a

given research paper into a book’s organization scheme, reflected by the table of

contents.

In this paper we improve the GDClust [1], a system that performs frequent

subgraph discovery from a text repository for document clustering. In our approach

document similarity is evaluated by generating a graph representation of each

document, where edges in the graph represent hypernym relationships of keywords

and abstract terms. Thus, a document-graph represents the structure within the

ontology, which is independent of its specific keywords and their frequencies. In [1],

we have shown that GDClust, which relies less on the appearance of specific

keywords, is more robust than the traditional vector space model-based clustering and

represents an advanced method for organizing the numerous documents available to

us on a daily basis. Here, we propose a novel Subgraph-Extension Generation (SEG)

mechanism that significantly outperforms a well-known FSG [7] approach, used in

the original implementation of GDClust [1]. Additionally, we enhanced our

Subgraph-Extension Generation by introducing our Maximum Subgraph-Extension

Generation (MaxSEG) mechanism which provides faster dissimilarity matrix

construction with the cost of slightly deteriorated performance compared to our SEG

approach.

The rest of the paper is organized as follows. Section 2 describes the background of

this work. The overall GDClust system paired with our enhancements are portrayed in

Section 3. Some illustrative experimental results are discussed in Section 4. We

conclude the paper in Section 5.

2 Background

Graph models have been used in complex datasets and recognized as useful by

various researchers in chemical domain [9], computer vision technology [10], image

and object retrieval [11] and social network analysis [12]. Nowadays, there are well-

known subgraph discovery systems like FSG (Frequent Subgraph Discovery) [2],

gSpan (graph-based Substructure pattern mining) [13], DSPM (Diagonally Subgraph

Pattern Mining) [14], and SUBDUE [15]. Most of them have been tested on real and

artificial datasets of chemical compounds. None of them however, has been applied to

the mining of text data.

Agrawal et al. [8] proposed the Apriori approach for frequent patterns discovery. It

is an iterative algorithm, where candidates for larger frequent patterns are gradually

grown from frequent patterns of a smaller size. We start from discovering frequent

patterns of size k=1, and in the next iteration merge them into the candidates for k=2-

size frequent patterns. After the candidates are created, we check for frequencies of

their occurrences, and move on to the next iteration.

There had been extensive research work in the area of generating association rules

from frequent itemsets [16–17]. There are also some transaction reduction approaches

proposed by Han et al. [18]. We apply our own variation of mining multilevel

association rules [18] for the frequent sense discovery process and utilize the

Gaussian minimum support strategy to prune edges from multiple levels of the terms.

Our system (GDClust [1]) utilizes the power of using graphs to model a complex

sense of text data. It constructs the document-graphs from text documents and a

semantic lexicon, WordNet [6]-[7], and then applies an Apriori paradigm [8] to

discover frequent subgraphs from them. GDClust uses frequent subgraphs as the

representation of common abstract senses among the document-graphs. The benefit of

GDClust is that it is able to group documents in the same cluster even if they do not

contain common keywords, but still possess the same sense. The vector space model

of document clustering cannot perform this sort of discovery [3]-[5].

The work we managed to find that is closest to our approach is a graph query

refinement method proposed by Tomita et al. [19]. Their prototype depends on user

interaction for the hierarchic organization of a text query. In contrast, we depend on a

predefined ontology [6-7], for the automated retrieval of frequent subgraphs from text

documents. GDClust offers an unsupervised system that utilizes an efficient subgraph

discovery technique to harness the capability of sense-based document clustering.

3 System Overview

Our GDClust pipeline can be divided into three major components: (1) the

Conversion Unit and (2) the Subgraph Discovery Unit and (3) the Clustering Unit.

The Conversion Unit is responsible for the conversion of each document to its

corresponding graph representation. It utilizes the Word Vector Tool (WVTool) [20]

for the retrieval of meaningful keywords from the documents. It uses the WordNet

hypernymy hierarchy to construct the document-graphs. We utilized WordNet’s noun

taxonomy, which provides hypernymy-hyponymy relationships between concepts and

allows the construction of a document-graph with up to 18 levels of abstractions. Our

document-graph construction algorithm traverses up to the topmost level of

abstractions of the keywords of a document to construct the corresponding document-

graph. To incorporate natural language constraints and speed up the process of

frequent subgraph discovery, we also construct a master document-graph (MDG)

which is a merged document-graph containing connections between all the keywords

of all the documents and their abstract terms. Section 3.2 describes how the MDG

helps in faster generation of candidate subgraphs.

The Subgraph Discovery Unit discovers frequent subgraphs representing frequent

senses from the generated document-graphs. The Clustering Unit constructs the

dissimilarity matrix and clusters the documents utilizing the frequent subgraphs that

were discovered by the Subgraph Discovery Unit. Sections 3.2 and 3.3 describe the

subgraph discovery processes and the clustering mechanism used by our GDClust.

3.1 Candidate Subgraph Pruning Using Gassian Minimum Support

We use an Apriori paradigm, designed originally for finding frequent itemsets in

market basket datasets [4], to mine the frequent subgraphs from the document-graphs.

We utilize our Gaussian minimum support strategy to logically prune 1-edge

subgraphs from candidate list before generating any higher order subgraphs. At each

iteration of the frequent subgraph discovery process, a k-edge candidate subgraph is

generated by using the (k-1)-edge subgraphs of the candidate subgraph list Lk-1.

Since using WordNet results in a very large graph of all English nouns, we

introduced the master document-graph (MDG) and propose a dynamic minimum

support strategy in GDClust. We use the dynamic minimum support strategy to limit

the number of candidate subgraphs with extremely abstract and very specific synsets.

Since WordNet’s ontology merges to a single term, the topmost level of abstraction is

a common vertex for all of the generated document-graphs, yielding subgraphs that

include the vertex with the topmost level of abstraction to be less informative for

clustering. Moreover, terms near to the bottom of the hierarchy are less useful due to

their rare appearance in the document-graphs causing them to be of little use for

clustering purposes. Terms appearing within the intermediate levels of the taxonomy

seem to be more representative clusters’ labels than subgraphs containing terms at

higher and lower levels.

Support Threshold [f(x)]

SupMIN

A
bs

tr
ac

tio
n

Le
ve

l [
x]

w

A

 l
max

2

1

 0

 …. …. …. ….

Fig. 1. Abstraction constrained Gaussian Minimum Support

Our dynamic minimum support strategy, based on Gaussain function used to model

minimum support distribution is illustrated in Fig. 1. The hierarchy drawn in the

figure indicates our master document-graph where the gray dots indicate the

keywords. w is the width of the curve at A/2 and lmax is the maximum number of

abstraction levels in the master document-graph. Since there are 18 levels of

abstraction in WordNet’s noun taxonomy, in our master document-graph 0≤lmax<18.

Our Gaussian model accepts only the keywords which have frequency≥min_sup (our

predefined minimum support threshold) only when they appear at the mid level of our

abstraction-based taxonomy. In the remaining cases, the model applies a gradual

increase of minimum support at higher and lower levels. This model makes the mid-

levels of the taxonomy formed by master document-graph more important. It also

assumes, based on our observation, that the generated document-graphs contain a lot

of frequent, but uninteresting subgraphs at the topmost level. At the same time, the

document-graphs have distinct subgraphs at the bottom levels which are not frequent

enough to carry significant meaning for the clustering purposes. The first group of

subgraphs would generate large clusters with low inter-cluster similarity, and the

second would generate a huge number of very small clusters. We apply the Gaussian

dynamic minimum support strategy to prune 1-edge subgraphs before the starting of

generation of higher order subgraphs.

3.2 Semantically-guided Candidate Subgraph Generation

Our document-graph construction algorithm ensures that a document-graph does

not contain more than one edge between two nodes. Additionally, the overall

subgraph discovery concept ensures that the same subgraph does not appear more

than once in a particular document-graph. All the edges and nodes of a document-

graph are uniquely labeled. We developed a fast method to generate candidate

subgraphs named Subgraph-Extension Generator (SEG). We have compared our

approach with the original FSG-based [2] mechanism. Additionally, we enhanced our

SEG to Maximum Subgraph-Extension Generator (MaxSEG) which generates fewer

amounts of subgraphs and thus offers faster dissimilarity matrix construction during

the clustering phase. The descriptions of FSG, SEG and MaxSEG approaches are as

follows.

1) FSG [7]: In the FSG approach, a (k+1)-edge candidate subgraph is generated

by combining two k-edge subgraphs where these two k-edge subgraphs have a

common core subgraph [7] of (k-1)-edges.

This approach requires time-consuming comparisons between core subgraphs during

the generation of a higher level subgraph. To avoid edge-by-edge comparisons, we

assigned a unique code for each subgraph from the list of their edges’ DFS-codes.

This code is stored as the hash-code of the subgraph object. Therefore, checking two

m

n

o

l p
q

m

n

o

p

m

n

o

l p

l q

m

n

o

p

m o p

r

n

m o

l

p

r

n

m

n

o

l p

m

n

o

l p s

m

n

o

p s

m

n

o

l p

m

n

o

t z

.…………………………………………………
………………………………………………….

………………………………………………….

Fig. 2. Attempts to combine lmnop with

other 5-edge subgraphs of (L5)

m

n

o

l
p

m o

l
p s

m

n

o

l
p

q

m

n

o

l
p

r

n

l

m n

o

q

p

r

s

Master Document-Graph

Fig. 3. 6-edge Subgraph-Extension Generation for

the 5-edge subgraph lmnop

core subgraphs for equality has been reduced to a simple integer hash-code

comparison. Although this approach is very fast for small graphs, it becomes

inefficient for big document-graphs due to large number of blind attempts to combine

k-edge subgraphs to generate (k+1)-edge subgraphs.

Consider an iteration in which we have a total of 21 5-edge subgraphs in the

candidate list L5. We try to generate 6-edge subgraphs from this list. Consider the

situation of generating candidates using one 5-edge subgraph (e.g., lmnop) of L5. The

original FSG approach tries to combine all remaining 20 other subgraphs with lmnop

but succeeds, let us assume, only in three cases. Fig. 2 illustrates that lmnop is

successfully combined with only mnopq, mnopr and mnops. All 17 other attempts to

generate a 6-edge subgraph with lmnop fail because the 4-edge core-subgraphs,

analyzed in this case, do not match. Fig. 2 shows the attempts to generate good

candidates for just one subgraph (lmnop). For all the subgraphs in L5, there would be

a total of 21×20=420 blind attempts to generate 6-edge subgraphs. Some of these

attempts would succeed, but most would fail to generate acceptable 6-edge

candidates. Although GDClust utilizes hash-codes of subgraphs and core-subgraphs

for faster comparisons, it cannot avoid comparing a large number of hash-codes for

all candidates using the FSG approach. We have reduced this number of comparisons

by a significant degree by implementing our own and new Subgraph-Extension

Generation approach.

2) Subgraph-Extension Generator (SEG): Rather than trying a brute-force strategy

of comparing all possible combinations (e.g., FSG), we use the master document-

graph as the source of background knowledge to entirely eliminate the unsuccessful

attempts while generating (k+1)-edge candidate subgraphs from k-edge subgraphs.

We maintain a neighboring-edges’ list for each k-edge subgraph and generate

candidates for frequent higher order subgraphs by taking edges only from this list.

Fig. 3 shows the Subgraph-Extension Generation mechanism for subgraph lmnop,

which can be compared with the FSG approach of Fig. 2. The gray edges of Fig. 3 are

the edges of the 5-edge subgraph which we want to extend to generate 6-edge

candidates. The black lines indicate the neighboring edges which extend the 5-edge

gray subgraph maintained in our MDG. The same instance is used for both Fig. 2 and

Fig. 3 for an easy comparison. The neighboring-edges’ list of lmnop contains edges

{q, r, s}. Unlike in Fig. 2, in the example presented in Fig. 3, the Subgraph-Extension

Generation technique does not try to blindly generate higher order subgraphs 20

times. Rather, it proceeds only three times, using the constraints coming from

knowledge about the neighboring edges of lmnop in the MDG. It results in only three

attempts to generate higher-order candidate subgraphs. None of these attempts fails to

generate a candidate subgraph because the mechanism depends on the physical

evidence of possible extension. Therefore, the Subgraph-Extension Generation of

GDClust offers a novel knowledge-based mechanism that eliminates unnecessary

attempts to combine subgraphs. All the generated candidate subgraphs that pass the

minimum support threshold are entered into a subgraph-document matrix (analogous

to term-document matrix of the vector-space model of document clustering). The

subgraph-document matrix is used in the document clustering process later.

3) Maximum Subgraph-Extension Generator (MaxSEG): In the MaxSEG

approach, we keep only the largest frequent subgraphs and remove all smaller

subgraphs if they are contained in the higher order subgraphs. Any k-edge subgraph

with support s is removed from the subgraph-document matrix if every (k+1)-edge

frequent subgraph generated from it has the same support=s. If the k-edge subgraph

generates at least one (k+1)-edge frequent subgraph that has min_sup≤support<s then

we keep both the k-edge subgraph and the generated (k+1)-edge subgraphs.

In our implementation the SEG and the MaxSEG both require the same number of

attempts to generate (k+1)-edge subgraphs from a k-edge subgraph, but they result in

different numbers of subgraphs in the subgraph-document matrix. Consider that the 5-

edge subgraph lmnop of the example given in Fig. 3 appears in 20 document-graphs

(support=20) and the minimum support threshold is 10. If every generated 6-edge

subgraph of the example has support=20, then we remove lmnop from the subgraph-

document matrix and keep only the newly generated 6-edge subgraphs. Now consider

another situation where one of the generated 6-edge subgraphs lmnopq has

support=15 and the other 6-edge subgraphs have support=20. In this case, all of the

5-edge and 6-edge subgraphs lmnop, lmnopq, lmnopr and lmnops will remain in the

subgraph-document matrix according to our MaxSEG approach. Therefore, the

decision whether a k-edge subgraph will remain in the subgraph-document matrix or

not is taken after generating all the (k+1)-edge subgraphs from this particular k-edge

subgraph. This is why both SEG and MaxSEG approaches require the same number

of attempts to generate higher order subgraphs, but the numbers of their resultant

subgraphs are different.

3.3 Clustering and Evaluation

GDClust uses Hierarchical Agglomerative Clustering (HAC) [21] to gradually

group the documents. We have chosen HAC because it facilitates the evaluation of

our results from a broad range of generated clusters. The clustering unit constructs a

dissimilarity matrix that contains dissimilarity values between every pair of

document-graphs derived based on the number of common frequent subgraphs

occurring in their respective document-graphs. We have used the cosine similarity

measure [22] in GDClust because of its popularity in text clustering due to better

stability of similarity values even when the comparing documents have significantly

different sizes.

To evaluate the clustering of GDClust, we used both unsupervised and supervised

evaluations of cluster validity. As an unsupervised evaluation we used the Average

Silhouette Coefficient (ASC) [23]. We used entropy, purity and F-measure as

supervised measures of cluster evaluation [24]. We compared our sense-based system

with the traditional vector space model-based clustering mechanism (i.e., bag-of-

words) that applies logarithmic normalization of keywords’ frequency (TF-IDF) and

uses the cosine similarity measure for the construction of the dissimilarity matrix.

Additionally, we compared our sense-based system with a vector space model

utilizing the background knowledge of WordNet (i.e., bag-of-concepts). With this

clustering mechanism, we expand each term into its corresponding synsets (i.e.,

concepts) from WordNet, then we split the term’s frequency between these synsets to

obtain synset frequency values. Using these frequencies we compute values which are

analogous to TF-IDFs in the term based model, and then these are used with the

cosine similarity measure for the construction of the dissimilarity matrix. The same

hierarchical agglomerative clustering algorithm as GDClust is used in the vector

space model based systems to keep our experiments comparable.

4 Experimental Results

In our experiments, we used all 19997 documents of the 20 Newsgroups [25]

dataset. The supervised evaluation of clustering is dependent on the class labels

provided with the dataset. Some of the 20 class labels of the 20 Newsgroups dataset

can be combined together to form a higher level group. As a result, the class labels

provided with the dataset may not match the clusters well and therefore our

supervised evaluation must carry some imperfection. Table 1 shows the list of the 20

Newsgroups, partitioned to 6 classes more or less according to subject matter as

recommended in [25]. We used these 6 classes of 19997 documents for our

supervised evaluation of clustering.

Table 1. 20 Newsgroups dataset [25].

Class # of Docs Original Newsgroups’ Labels

1 5000 comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,

comp.sys.mac.hardware, comp.windows.x

2 4000 rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

3 4000 sci.crypt, sci.electronics, sci.med, sci.space

4 3000 talk.politics.misc, talk.politics.guns, talk.politics.mideast

5 2997 talk.religion.misc, alt.atheism, soc.religion.christian

6 1000 misc.forsale

4.1 Performance and Accuracy Analysis of the Subgraph Discovery Process

This section provides the experimental results of GDClust using the original FSG,

Subgraph-Extension Generation (SEG), and Maximum Subgraph-Extension

Generation (MaxSEG) approaches. Since the FSG approach is very slow compared to

min_sup=0.02, w=(50% of lmax), lmax=17

13375 edges in MDG, 5000 docs, 4807 keywords

k-edge subgraphs

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

T
im

e
 (

m
s
)

0

5x106

10x106

15x106

20x106

25x106

30x106

FSG

SEG

MaxSEG

k-edge subgraphs

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

T
im

e
 (

m
s
)

0

1000

2000

3000

4000

FSG

SEG

MaxSEG

 (a) (b)

Fig. 4 Comparison between FSG, SEG, and MaxSEG. We changed the scale in Fig. 4 (b) to show

the actual behaviors of SEG and MaxSEG ((b) is a close-up of (a)).

our SEG and MaxSEG mechanisms, we used only a subset of 5000 documents to

show the comparison between approaches in Fig. 4. We constructed the stratified

subset of 5000 documents by randomly selecting 25% of the documents from each of

the 6 groups of Table 1. We show results with the complete 20 Newsgroups dataset in

Section 4.2.

The improved GDClust offers the new SEG and MaxSEG approaches for the

frequent subgraph discovery process which outperforms the existing FSG strategy.

Due to the speed of SEG and MaxSEG, the lines drawn for them appear linear and flat

in comparison to the light-gray line of the FSG approach (Fig.4(a)), although the

actual behaviors of SEG and MaxSEG are not linear (Fig.4(b)). The curves maintain

their hat-like shape, typical of the Apriori approaches, but due to the scale necessary

to show the FSG results it is not clearly visible in Fig. 4 (a).

Table 2. Number of attempts to

generate k+1-size candidates from the

k-size freq. subgraphs, where k is the

number of iteration in Apriori.

k FSG SEG and

MaxSEG

% of

Attempts

Saved

1 --- --- ---

2 11990 184 98.47%

3 7656 289 96.23%

4 6320 406 93.58%

5 8742 654 92.52%

6 18360 1150 93.74%

7 41412 2006 95.16%

8 92112 3386 96.32%

9 195806 5532 97.17%

10 416670 8954 97.85%

11 827190 13850 98.33%

12 1441200 19855 98.62%

13 2124306 25973 98.78%

14 2661792 31117 98.83%

15 2861172 34365 98.80%

16 2697806 35341 98.69%

17 2263520 34106 98.49%

18 1649940 30565 98.15%

19 1031240 25268 97.55%

20 539490 19035 96.47%

21 231842 12952 94.41%

22 78680 7810 90.07%

23 20306 4098 79.82%

24 3782 1827 51.69%

25 462 665 34.63%

26 30 185 23.33%

Table 3. Numbers of Frequent

Subgraphs, actually discovered in each

iteration (k) of all 3 implementations:

FSG, SEG, and MaxSEG

 k

FSG

and

SEG

Max

SEG

% of

Subgraphs

Reduced by

Max SEG

1 110 86 21.82%

2 88 72 18.18%

3 80 68 15.00%

4 94 81 13.83%

5 136 112 17.65%

6 204 164 19.61%

7 304 236 22.37%

8 443 338 23.70%

9 646 469 27.40%

10 910 605 33.52%

11 1201 733 38.97%

12 1458 832 42.94%

13 1632 877 46.26%

14 1692 846 50.00%

15 1643 782 52.40%

16 1505 696 53.75%

17 1285 590 54.09%

18 1016 468 53.94%

19 735 350 52.38%

20 482 241 50.00%

21 281 150 46.62%

22 143 83 41.96%

23 62 40 35.48%

24 22 16 27.27%

25 6 5 16.67%

26 1 1 0.00%

The SEG and MaxSEG approaches of GDClust outperform the FSG approach by a

high magnitude due to the lower number of attempts used to generate higher order

subgraphs by avoiding blind attempts. Table 2 shows that in every case SEG or

MaxSEG saved a huge percentage of blind attempts generated by the FSG approach.

The SEG and MaxSEG approaches saved 98.8% of the attempts while generating 15-

edge subgraphs from frequent 14-edge subgraphs. Since 14-edge subgraphs are the

most frequent ones (Table 3), obviously the number of attempts to construct 15-edge

subgraphs from 14-edge subgraphs reaches the maximum for the FSG approach. Also,

Fig. 4 shows that all the curves reach their peaks near 15-edge subgraphs.

The numbers of the detected frequent (k+1)-edge subgraphs are the same for FSG

and SEG because both methods generate complete sets of frequent subgraphs.

However, they use different mechanisms to construct higher order subgraphs with

different numbers of attempts. MaxSEG also generates same number of (k+1)-edge

subgraphs from the list of k-edge subgraphs during its execution. But after extending

a k-edge subgraph, MaxSEG removes it from the subgraph-document matrix if this

particular k-edge subgraph has generated all (k+1)-edge subgraphs having the same

support as this k-edge subgraph. This is the reason why numbers of generated left

subgraphs are different in MaxSEG approach than the FSG or SEG. Fig. 4 (b) shows

that the SEG approach is slightly faster than the MaxSEG approach. This is due to the

fact that MaxSEG requires additional checks to verify the supports of the newly

generated (k+1)-edge subgraphs in order to remove their immediate k-edge parent

subgraph. Table 3 shows the exact number of the detected frequent k-edge subgraphs

by the SEG and the number of maximum subgraphs detected by the MaxSEG. It also

shows the percentage of the subgraphs removed by the MaxSEG approach. It shows

that the MaxSEG approach removes 50% of the 14-edge subgraphs during the

generation of 15-edge subgraphs

Although the MaxSEG approach removes a lot of smaller subgraphs, our results

show that it does not cause the same decrease of clustering quality. Table 4 shows that

FSG, SEG and MaxSEG result in much better clustering than the vector space

models. Note that while SEG offers faster execution than FSG, the clustering results

are the same since they both generate the same set of subgraphs. Additionally,

although the MaxSEG approach removes approximately 45% of all the total

discovered subgraphs, it is not penalized during the clustering process in this ratio.

Table 4 shows that the F-measure for MaxSEG is just slightly lower than the F-

measure of the SEG approach. Since MaxSEG reduces the number of subgraphs, it

offers faster construction of the dissimilarity matrix during the clustering phase

compared to the FSG and SEG driven approaches. Table 4 also shows the side-by-

side comparison between dissimilarity matrix construction times using different

approaches.

Table 4. Dissimilarity Matrix construction times and the results of clustering

presented via Supervised Measures: entropy, purity and F1.

 Time

(sec)

Supervised Evaluations

 Entropy Purity F-measure

FSG 768 0.84 0.81 0.77

SEG 768 0.84 0.81 0.77

MaxSEG 462 0.87 0.81 0.76

Traditional VSM 160 2.46 0.26 0.28

Concept VSM 95 2.46 0.25 0.26

Our GDClust-based approach to document clustering shows more accurate results

than the vector space models of document clustering. Table 5 shows experimental

results with different numbers of total keywords. It shows that the purity and F-

measure have the tendency to become better and better while using our SEG and

MaxSEG-based document clustering with an increasing number of keywords. In

contrast, the vector space model based approaches do not guarantee more accurate

results with inclusion of more keywords. This suggests that the GDClust is more

robust than the vector space model based approaches.

Table 5. Results of clusterings, based on the different numbers of keywords.

Min.

TFIDF

Num. of

Keywords

SEG MaxSEG Traditional VSM Concept VSM

Purity F-meas. Purity F-meas. Purity F-meas. Purity F-meas.

0.50 964 0.68 0.70 0.69 0.72 0.27 0.30 0.28 0.34

0.45 1340 0.70 0.71 0.70 0.72 0.28 0.30 0.29 0.33

0.40 1867 0.71 0.73 0.70 0.72 0.27 0.31 0.29 0.30

0.35 2544 0.73 0.73 0.73 0.73 0.27 0.31 0.27 0.29

0.30 3443 0.77 0.76 0.75 0.73 0.26 0.30 0.26 0.27

0.25 4807 0.81 0.77 0.81 0.76 0.26 0.28 0.25 0.26

4.2 Clustering Results with the Complete 20 Newsgroups Datasets [25]

In this subsection, we describe the clustering results with the complete 20

Newsgroups dataset of 19997 documents. Table 6 shows the entropy, purity, F-

measure and Average Silhouette Coefficients (ASC) by the hierarchical

agglomerative clustering of the 20 Newsgroups dataset. It shows that the best

clustering is found using the SEG approach. Although the MaxSEG approach offers

slightly faster dissimilarity matrix construction than the SEG based clustering, SEG

dominates over MaxSEG in terms of accuracy. The traditional vector space model

based approach does not show good structures. ASC=0.04 for 6 clusters indicates that

the vector space model fails to provide clear separation between clusters.

Furthermore, the concept based vector space model provides even worse separation

between clusters, which indicates that the inclusion of background knowledge alone is

not enough to provide good results

Table 6. Measures of clustering validity.

 Entropy Purity F-measure ASC

SEG 0.84 0.81 0.78 0.76

MaxSEG 0.85 0.81 0.77 0.63

Traditional VSM 2.47 0.25 0.26 0.04

Concept VSM 2.47 0.25 0.21 -0.07

5 Conclusions

GDClust presents a valuable technique for clustering text documents based on the

co-occurrence of frequent senses in documents. The approach offers an interesting,

sense-based alternative to the commonly used vector space model for clustering text

documents. Unlike traditional systems, GDClust harnesses its clustering capability

from the frequent senses discovered in the documents. It uses graph-based mining

technology to discover frequent senses. Unlike chemical compounds, our document-

graphs may contain thousands of edges which results in a slow generation of frequent

subgraphs during the discovery process using pre-existing graph mining techniques.

We have introduced the Subgraph-Extension Generation and the Maximum

Subgraph-Extension Generation techniques of frequent subgraph generation, which

outperform the previous FSG strategy by a high magnitude by taking advantage of the

constraints coming from our knowledge about natural-language. We have shown that

our proposed approaches perform more accurately than a vector space model based

system. GDClust is an automated system and requires minimal user interaction for its

operations. In the future, we want to develop a more intelligent system to

automatically determine the dynamic minimum support curve from the dataset and

incorporate subgraph-weights in terms of size and importance to provide more

accurate clustering results.

References

1. M.S. Hossain, R. Angryk, “GDClust: A Graph-Based Clustering Technique for Text

Documents”, Proceedings of the 7th IEEE International Conference on Data Mining

(ICDM-IEEE ’07), Workshop on Mining Graphs and Complex Structures, Omaha, NE,

USA, October 2007, pp. 417-422.

2. M. Kuramochi and G. Karypis, “An efficient algorithm for discovering frequent subgraphs,”

IEEE Trans. on KDE, vol. 16, no. 9, pp. 1038-1051, 2004.

3. F. Sebastiani, “Machine learning in automated text categorization,” ACM Comp. Surveys,

vol. 34, no. 1, pp. 1-47, Mar. 2002.

4. C. D. Manning and H. Schutze, Foundations of Natural Language Processing. Cambridge,

MA: MIT Press, 1999.

5. C. Cleverdon, “Optimizing convenient online access to bibliographic databases,”

Information Survey and Use, vol. 4, no. 1, pp. 37-47, Apr. 1984.

6. Cognitive Science Laboratory Princeton University, “WordNet: A Lexical Database for the

English Language,” [Online]. Available: http://wordnet.princeton.edu/

7. G. Miller, R. Beckwith, C. FellBaum, D. Gross, K. Miller, and R. Tengi, Five papers on

WordNet. Princeton, NJ: Princeton University, 1993.

8. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, in Proc. of the

20th Intl. Conf. on Very Large Data Bases, 1994, pp. 487–499.

9. R. N. Chittimoori, L. B. Holder, and D. J. Cook, “Applying the SUBDUE substructure

discovery system to the chemical toxicity domain,” in Proc. of the 12th Intl. FLAIRS Conf.,

1999, pp. 90-94.

10. D. A. L. Piriyakumar and P. Levi, “An efficient A* based algorithm for optimal graph

matching applied to computer vision,” in GRWSIA-98, 1998.

11. D. Dupplaw and P. H. Lewis, “Content-based image retrieval with scale-spaced object

trees,” SPIE: Storage and Retrieval for Media Databases, vol. 3972, pp. 253-261, 2000.

12. M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol.

45, no. 2, pp. 167-256, 2003.

13. X. Yan and J. Han, “gSpan: graph-based substructure pattern mining,” in IEEE ICDM,

2002, pp. 721-724.

14. C. Moti and G. Ehud, “Diagonally Subgraphs Pattern Mining,” in 9th ACM SIGMOD

workshop on Research issues in data mining and knowledge discovery, 2004, pp. 51-58.

15. N. Ketkar, L. Holder, D. Cook, R. Shah, and J. Coble, “Subdue: Compression-based

Frequent Pattern Discovery in Graph Data,” in ACM KDD Workshop on Open-Source Data

Mining, 2005, pp. 71-76.

16. R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger, “The Quest Data

Mining System,” in KDD’96, 1996, pp. 244-249.

17. H. Mannila, H. Toivonen, and I. Verkamo, “Efficient Algorithms for Discovering

Association Rules,” in AAAI Workshop on Knowledge Discovery in Databases, 1994, pp.

181-192.

18. J. Han and Y. Fu, “Discovery of multiple-level association rules from large databases,” in

21th Intl. Conf. on VLDB, 1995, pp. 420-431.

19. J. Tomita and G. Kikui, “Interactive Web search by graphical query refinement,” in 10th

Intl. WWW Conf, 2001, pp. 190-191.

20. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “Yale: Rapid Prototyping

for Complex Data Mining Tasks,” in Intl Conference on KDD, 2006, pp. 935-940.

21. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method

for Very Large Databases,” in ACM SIGMOD Intl. Conference on Management of Data,

1996, pp. 103-114.

22. R. White and J. Jose, “A study of topic similarity measures,” in 27th Annual Intl. ACM

SIGIR Conf. on Research and Development in Info. Retrieval, 2004, pp. 520-521.

23. F. Lin and C. M. Hsueh, “Knowledge map creation and maintenance for virtual

communities of practice,” Information Processing and Management: an International

Journal, vol. 42, no. 2, pp. 551-568, 2006.

24. P. N. Tan, M. Steinbachm, and V. Kumar, Introduction to Data Mining. Boston, MA:

Addison-Wesley, 2005, pp. 539-547.

25. J. Rennie, “Homepage for 20 Newsgroups Dataset,” [Online]. Available:

http://people.csail.mit.edu/jrennie/20Newsgroups/

