
How to Understand Connections Based on Big

Data: From Crisp Granules (e.g., Cliques) to

Flexible Granules

Ali Jalal-Kamali, M. Shahriar Hossain,
and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso

El Paso, TX 79968, USA
ajalalkamali@miners.utep.edu, mhossain@utep.edu,

vladik@utep.edu

Abstract

One of the main objectives of science and engineering is to predict
the future state of the world – and to come up with actions which will
lead to the most favorable outcome. To be able to do that, we need to
have a quantitative model describing how the values of the desired quan-
tities change – and for that, we need to know which factors influence this
change. Usually, these factors are selected by using traditional statistical
techniques, but with the current drastic increase in the amount of avail-
able data – known as the advent of big data – the traditional techniques
are no longer feasible. A successful semi-heuristic method has been pro-
posed to detect true connections in the presence of big data. However,
this method has its limitations. The first limitation is that this method
is heuristic – its main justifications are common sense and the fact that
in several practical problems, this method was reasonably successful. The
second limitation is that this heuristic method is based on using “crisp”
granules (clusters), while in reality, the corresponding granules are flex-
ible (“fuzzy”). In this paper, we explain how the known semi-heuristic
method can be justified in statistical terms, and we also show how the
ideas behind this justification enable us to improve the known method by
taking granule flexibility into account.

1 Understanding Connections Based on Big Data
– An Important Practical Problem

What are our main objectives? The role of science and engineering.
We have preferences: we want tasty food, we want a comfortable environment,

1

we want to stay healthy, etc. In general, we have many objectives. We are
making individual and collective decisions so as to satisfy these objectives; to
be more precise, we select actions which maximize our degree of satisfaction in
these objectives.

To be able to select appropriate actions, we need to be able to predict the
consequence of different actions. Crudely speaking, this is what we usually
understand by science: we know the current state of the world, we describe
what actions we plan to perform, and we want to predict the future state of the
world.

Once we can do that, we need to select a sequence of actions which will be
the most beneficial; crudely speaking, this is what we usually understand by
engineering. For example:

• Science predicts what happens to a rocket if we launch it in a certain
direction.

• Based on these predictions, we can solve an engineering problem – find
in what direction we must launch a rocket so that it will, e.g., reach the
Moon.

While praising successes of science and engineering, we need to re-
member that these successes are based on understanding connections.
In the last several centuries, science and engineering achieved many things –
we have successfully overcome many diseases, we drastically increases the life
expectancy, we reached the Moon. These successes are based on complex quan-
titative methods of modern science and engineering.

In spite of all these successes, in some areas – such as economics – we still
do not have good predictive models. The reason is simple. In general, there
are many factors which could potentially affect the desired values. In many
physics problems, we have succeeded in pinpointing a few relevant factors –
and showing that all other factors can be safely ignored. For example, the
acceleration of a rocket is determined by the forces acting on this rocket – gravity
and aerodynamic resistance. Once we know that the desired value depends on
the few parameters, we can use experiments to find the exact quantitative form
of this dependence.

In contrast, in economics, we cannot dismiss any of the factors. As a result,
potentially, we have a function of very many variables. To describe such func-
tions, we need a very large number of parameters – much more parameters than
the number of data points.

In other words, to be able to build a successful quantitative model, we first
need to understand with which quantities the desired quantity is connected
– and with which it is not. In other words, understanding connections is an
important pre-requisite for successes of science and engineering.

This importance can be also illustrated on examples from medicine. For some
diseases – like cholera or malaria – originally many factors were considered: e.g.,
that malaria is caused by swampy air, etc. (not to count such weird hypothesis

2

as witchcraft and divine punishment for sins). When many possible factors
were considered, no easy model of these illnesses existed, and no good cure
was known. Once the scientists succeeded in determining the unique factor
determining each of these diseases – the corresponding bacteria – this opened
the possibility for developing successful medicine.

In contrast, for many types of cancer, we still have too many possible factors
– viruses, pollution, stress, genetic mutations, etc. As a result, for these cancers,
we do not have a good cure.

How connections are determined now. Traditionally, connections are de-
termined by statistical methods; see, e.g., [17]. We observe some relation be-
tween the two processes: e.g., we observe that patients getting a certain medicine
tend to recover faster, that the two DNA samples match, etc. This may be a
random coincidence. So, in order to check whether the observed relation is sta-
tistically significant, we compute the probability p that this observed relation
can happen for two unrelated processes. If this probability is smaller than a
certain threshold p0 (called a p-value), we conclude that there is a statistically
significant connection; if the probability p is larger than p0, then we cannot make
this conclusion. Usually, practitioners take p0 = 0.05 or, sometimes, p0 = 0.01.

The connecting building task has been used in a variety of contexts: entity
networks [5, 8], image collections [6], cellular networks [2, 7], social networks
[4], and document collections [8, 9, 11]. All these research efforts focus on
finding connections between objects that are apparently disjoint. A solution
to the connection building task generally depends on the commonality between
some intermediaries to reach the target object. Swanson refers to the notion of
neighboring commonality as complementary but disjoint (CBD) structures [19],
whereby two arguments may exist separately that when considered together lead
to new insights, but the objects exhibiting these two arguments are unaware
of each other. The proposed solution to connection building in this chapter
leverages a similar principle.

Enter big data. Modern technology has led to a drastic increase in the
amount of possible observations – and in the number of parameters related
to each observation that we can measure and record. In principle, with devices
like Google Glass, we can record everything that we see – and more generally,
everything that is happening in the world. The resulting amount of data is so
huge that not only a single researcher cannot review all this data – even the
existing computer algorithms cannot process all this data. This phenomenon is
known as big data; see, e.g., [3, 14, 18].

Traditional methods do not work well for big data: formulation of the
problem. In the traditional statistical approach, we made few observations,
so observed connections were relatively rare. In the big data, we record so many
parameters that everything appears connected.

3

For example, traditionally, when we had to rely on human witnesses, the
fact that the victim and the suspect were seen together (or could be indirectly
connected by a convincing chain of such seen-together events) was a strong
argument for the suspect’s guilt.

Nowadays, with numerous security cameras recording many moments of our
lives – from walking the streets to attending football games on a stadium – there
are so many pairs of people who happen to be together at the same time in the
same place simply by accident, that it is extremely difficult to separate such
random encounters from true connections.

So, for big data, we need new methods to find out which joint appearances
correspond to true connections and which do not.

What we do in this paper. Our main objective is to study how to detect
true connections based on the big data.

• We start with describing the semi-heuristic methods which have been pro-
posed for solving this problem, as described, e.g., in [8, 9].

• Then, we describe the limitations of the existing methods. Some of these
limitations are related to the fact that the existing methods are based on
using crisp granules (clusters), while real-life clusters are flexible (“fuzzy”).

• Finally, we describe how these limitations can be overcome – in particular,
how we can use flexible granules (clusters) to understand true connections
based on the big data.

Two case studies. The existing method has been tested on two big-data
situations.

First case study: intelligent analysis. The paper [8] deals with intelligence
analysis. Specifically, we have a huge database of documents. Based on these
documents, we need to detect possible true connections between adversaries.
The existing documents provide only possible relation – e.g., if two names ap-
pear in the same document, this may be an indication that the two prsons are
connected. The document may combine the name of the person with the name
of the hotel where this person stayed at a certain night – and if another docu-
ment shows another person staying at the same hotel, this may be an indication
of a true connection between them.

The mere fact that the two names appeared in the same document does not
necessarily mean that these names are actually connected – for example, one of
the authors (V.K.) graduated from the same St. Petersburg University in the
same year as the Russian President Vladimir Putin – but he never met Putin in
person, so there is clearly no true direct connection. However, if there are many
such connecting documents, it increases the probability that the two names are
actually connected – and at some point, we should be able to conclude, with a
reasonable confidence, that there is a true connection.

4

Second case study: biomedical publications. The paper [9] deals with
biomedical publications. The field of biomedical research has become so spe-
cialized that is no longer easy for a human specialist to trace all relevant papers
– or even to find all relevant papers. Finding such relevant papers is extremely
important because in many cases, by combining the ideas presented in related
papers, we can come up with a synergistic effect of an even better cure. Here
also, we have a huge database of documents – this time, of papers. Based on
these documents, we want to find true connections between the papers.

Similar to the intelligence analysis case, we can come up with criteria of when
two papers may be connected: e.g., if they share keywords or share references,
etc. Based on this information, it is necessary to decide when the two papers
are actually connected and when the seeming connection is accidental.

2 General Case: How to Describe Available In-
formation

General situation. In general:

• We have a large set of entities: persons, locations, organizations, dates,
etc. for the intelligence database, biomedical articles, etc.

• We also have a huge database of features: documents for the intelligence
database, biomedical terms for the publications database, etc. – which
enable us to relate some entities.

Based on this information, we have to decide which entities are actually con-
nected and which are not.

Description of the available information. In general:

• we have entities e,

• we have features f , and we have associations between entities e and fea-
tures f : e.g.,

– a name e is mentioned in the document f ,

– a term f appears in a paper e, etc.

For some e and f , we may have several associations – e.g., the name e is men-
tioned several times in the document f , or the term f appears several times in
the paper e.

Some other notations are as follows:

• we will denote the set of all entities by E ;

• we will denote the set of all features by F ; and

5

• for each e and f , we will denote the to number of associations between e
and f by ne,f .

The total number of entities is equal to |E| and the total number of features is
equal to |F|. It is also useful to describe:

• for each feature f , the set e(f)
def
= {e ∈ E : ne,f > 0} of all entities

associated with the feature f , and

• for each entity e, the set f(e)
def
= {f ∈ F : ne,f > 0} of all features

associated with the entity e.

First step of the usual document analysis: describing the weight
V (e, f) of a feature f for the entity e. Based on information about as-
sociations between entities and features, we can decide which features are more
important for a given entity and which are less important.

Intuitively, the larger the number of associations between the entity and
the feature, the more confident we are that this association is meaningful – for
example, one mention of a name in a document may be accidental, but if the
same name appears several times, we become confident that this is a connection
between the name and the document.

Similarly, the fewer entities are associated with the feature, the more con-
fident we are that this association is meaningful. For example, when a phone
book has a listing for a person, this does not mean anything – since the phone
book, by definition, has listings for all the persons. In contrast, a hotel bill
which lists only one person is an indication of a strong connection.

Let us describe this qualitative idea in numerical terms. In situations like
this, when we have several entities associated with a feature, a reasonable idea
is to use the amount of information, i.e., the number of binary (“yes”-“no”)
questions (bits) which are needed to find the desired entity.

In general, if we know that an unknown object belongs to the set of N
elements, then we can divide this set into two halves and, by asking a binary
question, find out which half the desired object belongs to. In other words, each
binary question divides the amount in half. Thus, q binary questions divide the
original number of possible alternatives by a factor of 2q, to N · 2−q. When
we reach N · 2−q = 1, we have pinpointed the desired alternative. Thus, for
the case of N alternatives, the corresponding information (number of binary
questions) can be determined from the equation N · 2−q = 1, and is, thus, equal
to q = log2(N).

Originally, we have |E| entities; the corresponding amount of information is
equal to log2(|E|) bits. Once we know that an entity is associated with the fea-
ture f , we thus limit ourselves to |e(f)| entities; in this case, the corresponding
amount of information is equal to log2(|e(f)|) bits. Thus, the very fact that
the entity is associated with the feature f enables us to reduce the number of
questions by the value

log2(|E|)− log2(|e(f)|) = log2

(
|E|
|e(f)|

)
. (1)

6

Similarly, the effect of multiple associations can be describe by counting how
many additional binary questions we can afford and still keep an association with
the desired entity. We start with ne,f mentions. Each binary question decreases
this number by half; q questions decrease this amount to ne,f · 2−q. As long
as this remaining number is ≥ 1, we still have some association. The largest
number q for which we can still get as association can thus be determined from
the condition that ne,f · 2−q = 1, and is, thus, equal to q = log2(ne,f). To take
into account the fact that we deal with additional questions, we usually add 1,
ending up with 1 + log2(ne,f).

The overall importance of the feature f in entity e can be obtained if we

multiply log2

(
|E|
|e(f)|

)
by the importance factor 1 + log2(ne,f), resulting in the

product

I(e, f)
def
= (1 + log2(ne,f)) · log2

(
|E|
|e(f)|

)
. (2)

This formula is one of the versions of term frequency – inverse document fre-
quency (tf-idf) modeling; see, e.g., [12, 15].

For each entity e, we thus get the importance I(e, f) of different features
f . These values of importance are usually normalized, i.e., multiplied by a
constant so that the mean square importance is equal to 1 (this is known as
cosine normalization). As a result, we get the formula

V (e, f) =

(1 + log2(ne,f)) · log2

(
|E|
|e(f)|

)
√ ∑

j∈f(e)

(
(1 + log2(ne,j)) · log2

(
|E|
|e(j)|

))2
. (3)

From weights to distance between entities. For each entity e, we have
the weights V (e, f) corresponding to different features f . Thus, as a measure
of closeness between two entities e1 and e2, we can take the distance between
the corresponding vectors (V (e, f1), V (e, f2), . . .).

In the usual Euclidean distance d(a, b) =
√

(a1 − b1)2 + . . ., we add the
squares of the differences. Since each value V (e, f) represents the number of
bits, it makes more sense to take the actual differences – since each difference
reflects the number of additional questions. Thus, we take

d(e1, e2)
def
=
∑
f∈F

|V (e1, f)− V (e2, f)|. (4)

This distance depends on the number of features: e.g., if, in addition to
the documents, we store their copies, the distance increases by a factor of two.
To avoid this dependence, the distance d(e1, e2) is usually normalized to the
interval [0, 1] – by dividing by the largest possible value of this distance. When
we only know the upper bound a and b on the two non-negative numbers a and
b, then the largest possible value of the difference is equal to max(a, b). Indeed:

7

• if a ≤ b, then |a− b| = b− a ≤ b and thus, |a− b| ≤ max(a, b);

• similarly, if b ≤ a, then |a− b| = a− b ≤ a and thus, |a− b| ≤ max(a, b).

Thus, in both cases, we have |a− b| ≤ max(a, b).
The bound max(a, b) can be attained:

• if a ≤ b, then it is attained for a = 0 and b = b;

• if b ≤ a, then it is attained for a = a and b = 0.

So, for each f , the maximum possible value of the difference

|V (e1, f)− V (e2, f)| (5)

can be estimated as max(V (e1, f), V (e2, f)). Therefore, the largest possible
value of the sum

∑
f∈F
|V (e1, f)− V (e2, f)| can be estimated as

∑
f∈F

max(V (e1, f), V (e2, f)). (6)

By dividing d(e1, e2) by this bound, we get the formula

D(e1, e2)
def
=

∑
f∈F
|V (e1, f)− V (e2, f)|∑

f∈F
max(V (e1, f), V (e2, f))

. (7)

This formula is known as the Soergel distance.

Comment. It is worth mentioning that the Soergel distance is a metric, in
the sense that it is symmetric D(e1, e2) = D(e2, e1) and satisfies the triangle
inequality D(e1, e3) ≤ D(e1, e2) +D(e2, e3).

Resulting description. As a result of the above preliminary analysis, we
represent the given information as a weighted graph:

• in this graph, nodes (vertices) represent entities, i.e., the set of all the
nodes is the set of all the entities E ;

• for each two entities (nodes) e1 and e2, we know the distance D(e1, e2);
in graph terms, this distance can be represented as the weight of the edge
between e1 and e2.

8

3 A Known Semi-Heuristic Method for Detect-
ing True Connections Based on Big Data: A
Brief Description

Direct and indirect connections. In some cases, we have a direct connec-
tion between the two objects – e.g., when two (or more) terrorist suspects meet
together to plot future attacks.

Sometimes, the two suspects never (or rarely) meet in person, but they are
plotting together via intermediaries – in this case, we have an indirect connec-
tion. In this case, we have a direct connection between the first suspect and the
intermediary, and we have a direct connection between the intermediary and
the second suspect – and we can use these two direct connections to make a
conclusion that the two suspects are indirectly connected.

Detecting indirect connections is based on detecting direct ones. Because of
this:

• we will first describe how direct connections are detected, and then

• we will describe how detected direct connections are combined to detect
indirect connections.

From the original weighted graph to a simpler (non-weighted) one.
In general, for every two nodes e1 and e2, we know the distance D(e1, e2). The
larger the distance, the less probable it is that the corresponding entities are
actually connected.

• When the distance is very small, there is a high probability that the entities
are connected. So, it is possible to conclude that the entities are connected
if we need to make a definite decision about the connectivity.

• When the distance is close to 1, this probability becomes very small. So, we
can conclude that the entities are not connected when a boolean decision
about the connectivity is essential.

As we increase the distance from 0 to 1, there should be a point θ at which
our decision changes from “connected” to “not connected”. Once this threshold
value θ is determined, we can then simplify the original weighted graph into a
simplified non-weighted graph G. In this simplified graph, the nodes (entities)
e1 and e2 are connected by an edge if and only if D(e1, e2) ≤ θ.

Detecting direct connections: idea. As we have mentioned, if we have
an edge between two entities e1 and e2, it is probable that there is an actual
connection, but we cannot conclude this with confidence – since the edge may
be caused by coincidence. If we also have a third entity e3, and every two of the
three entities e1, e2, and e3 have an edge, then the probability that all the three
edges are accidental is much smaller. As a result, our confidence that e1 and e2

9

are connected increases. Similarly, if there is a fourth entity e4 and every two
out of four entities have an edge, the probability increases.

In general, we may have ` entities e1, e2, . . . , e` for which every two entities
have an edge. Such a set of nodes is known as an `-clique. The larger `, the
higher our degree of confidence that e1 and e2 are actually connected. Thus,
there is a threshold value k starting from which this confidence becomes so large
that we can confidently conclude that e1 and e2 are actually connected.

This idea leads to the following algorithm for detecting direct connections.

Detecting direct connections: resulting method. We select a distance
threshold θ ∈ (0, 1) and an integer k. We claim that two nodes e1 and e2 are
actually directly connected in the graph G is there is a k-clique containing both
e1 and e2.

In other words, we claim that the entities e1 and e2 are directly connected
if there exist edges e3, . . . , ek such that D(ei, ej) ≤ θ for all i, j ∈ {1, 2, . . . , `}.

Detecting a general connection: resulting method. A natural idea is
to claim that the nodes e1 and e2 are actually connected if there is a chain of
nodes c1 = e1, c2, . . . , ct, ct+1 = e2 such that for every i, the nodes ci and ci+1

are actually directly connected. This is equivalent to saying that in the graph
G, there is a chain of k-cliques G1, G2, . . . , Gt which connect e1 and e2 in the
sense that:

• the first clique G1 contains the node e1,

• every two neighboring cliques have at least one common node, that is,
Gi ∩Gi+1 6= ∅, and

• the last clique Gt contains the node e2.

How to select parameters of the method. The method described above
used two parameters: θ and k. The values θ and k need to be determined
empirically – e.g., by using examples where true connections are known and
finding the values θ and k for which this method reproduces these known true
connections as accurately as possible.

For example, for intelligence analysis [8], the values θ = 0.93 and k = 6 lead
to a good outcome; see Fig. 1.

J. Escalante C. Morales A. Sufaat O. HanifSeashore Hotel

(a) Clique size, k=2 and distance threshold, θ=0.99: Laboratory technician Jose Escalante is connected to Omar Hanif, a key player of a
possible terrorist attack and an Al-Queda operative. The connection is explained by a story with three junction nodes: Carlos Morales, Ali
Sufaat, and Seashore Hotel.

J. Escalante C. Morales A. Sufaat O. HanifSeashore Hotel

Escalante

Arze

Cuban
Intell.

Feb 22,
2003

Sep 28,
2004

65 Ave.
San Martin

45 Desague
St.

Santo
Domingo 13 Step St.

MI 6
Island Freight

Lines

Sufaat Hanif

BahamasNassau

Freeport
Star Hotel

(b) Clique size, k=6 and distance threshold, θ=0.99: A larger clique size requirement adds more evidence to the story and better explains the
connection.

J.
Escalante

O.
Hanif

W.
Smith

J. A.
Quso

C.
Morales

Escalante Caribbean

1992

S.
Goodman

Arlington

May
2002

Nov 20,
2003

God’s Aryan
militia

Missouri

Isle of Capri
Casino

London

MI 5

Hanif

Bahamas
Cuban
Intell.

Feb 22,
2003

Central
America

77 Ave.
Francis

H.
Lopez

Arze

Columbia

HoustonMexico

Chetumal

ELNFARC

San
Antonio

April
2002 GAM

Quso

Argosy Riverside
Casino

2111 troost
ave.

UK

1993 -
1998 Nassau

Freeport
Star Hotel

C.
Arze

Seashore
Hotel

(c) Clique size, k=6 and distance threshold, θ=0.93. A longer clique-chain with k = 6 provides another detailed explanation of the connection
between Jose Escalante and Omar Hanif.

Figure 2: Different explanations for the connection between two entities: Jose Escalante and Omar Hanif.

from documents whereas these prior projects build stories through
documents directly. This emphasis on entity networks is closer to
how intelligence analysts reason about connections. Second, the
present paper significantly generalizes the work in [10] by incor-
porating the notion of cliques in stories, thus supporting evidence
marshalling and explanation generation. Third, we present a novel
optimization technique for large databases based on concept lattice
mining to support faster story construction.

3 Problem Setting
A story between entities e1 and et is a sequence of intermediate
entities e2, e3, ..., et−1 such that every neighboring pair of entities
satisfies some user defined criteria. We model entities and the doc-
uments they occur in using a traditional vector space model. The
problem of finding a story then can be modeled as a path search
problem in the induced entity-entity graph E , but direct material-
ization of E with hundreds of thousands of entities and billions of
edges is infeasible. What is needed is support for directed explo-
ration of the graph toward desired entities.

Given a start and end entity, our algorithm induces the network
on the fly from the vector space model and finds a path. We allow
the analyst to influence the story construction using two distinct
criteria: clique size and distance thresholds. Given a story connect-
ing a start and an end entity (see Fig. 2(a)), analysts can perform
one of two tasks: they can either aim to strengthen the individual
connections resulting in a longer path (see Fig. 2(b)), or they can
organize evidence around the given connection (see Fig. 2(c)). We
use the notions of distance threshold and clique size to mimic these
behaviors. The distance threshold refers to the maximum accept-
able distance between two neighboring entities in a story. Lower
distance thresholds impose stricter requirements and lead to longer
paths. The clique size refers to the minimum size of the clique
that every pair of neighboring entities must participate in. Greater
clique sizes provide more evidence and tend to provide longer sto-
ries.

We use the term edge to refer to the basic unit of a direct link
between two entities. A k-clique has k entities and is composed of
k(k− 1)/2 edges where every edge satisfies the distance threshold
θ. A clique chain is composed of a number of consecutive cliques
connecting as start and end entity. Clique chains of Fig. 2(a, b,
and c) are respectively composed of 2-, 6-, and 6-cliques. Applied

distance thresholds to these three clique chains are 0.99, 0.99, and
0.93. Each clique chain provides alternative explanations for the re-
lationship between the same pair of entities. We use the term story
to refer to a relation between two entities via the junction entities
of the corresponding clique chain. The stories are highlighted by
thick lines in the clique chains of Fig. 2.

We use the Soergel distance between two entities e1 and e2 to
measure the strength between them:

D(e1, e2) =

∑

f∈F
|V (e1, f)− V (e2, f)|

∑

f∈F
max(V (e1, f), V (e2, f))

where V (e, f) indicates the weight of feature f for entity e. Here,
the features are the different documents in which the entity appears.
Let e(f) be the set of entities associated with feature f, and f(e)
be the set of features associated with entity e. Soergel distance
is a true distance measure: it is exactly 0.0 when the entities e1
and e2 have exactly the same features is symmetric, and obeys the
triangle inequality. For entities in a document collection, the weight
V (e, f) can be defined as

V (e, f) =
(1 + log(ne,f))

(
log |E|

|e(f)|

)

∑|f(e)|
j=1

(
(1 + log(ne,j))

(
log |E|

|e(j)|

))2

where ne,f is the frequency of entity e in document f , |e(f)| is the
number of entities in document f , |e(j)| is the number of entities
in document j, and |E| is the total number of entities. Note that
this is a variant of tf-idf modeling with cosine normalization in the
entity-document space.

4 Approach
Figure 3 summarizes our storytelling framework. The framework
takes a document corpus as input, applies algorithmic approaches
to handle the research issues in story generation, and outputs stories
at the end of the pipeline. We describe the entire process in detail
in this section.

Our overall methodology is based on using a concept lattice frame-
work to structure the search for stories. A concept lattice [31] struc-
tures the membership of entities in documents into sets of overlaps
and relationships between these sets. Recall that the two parameters
influencing the quality of the path—distance threshold and clique

Figure 1: Connection between the two suspects (reproduced from [8])

10

How to implement the above method: need for approximate tech-
niques. At first glance, the above methods can be directly translated into
algorithms.

To find out whether two nodes e1 and e2 are part of a k-clique, i.e., whether
there are k − 2 nodes e3, . . . , ek which form a clique, we can try all possible
combinations of k−2 nodes. If we denote, by N , the total number of nodes in the

graph G, i.e., the total number of entities, then this would require

(
N

k − 2

)
≈

Nk−2 steps.
The problem with this idea is that we are dealing with big data, where

the number N of entities is already huge – for example, the US no-fly list
containing possible suspects has about a million people in it. For the value
k = 6 corresponding to intelligent analysis, we will need N4 computation steps.
For N ≈ 106, this leads to N4 ≈ 1024 computation steps – way beyond the
capabilities of modern computers.

The situation is even worse in the general case, when we look for possible
indirect connections. In this case, to check whether the given nodes e1 and e2
are connected, a natural idea is to try all possible k-cliques containing e1, i.e.,
for all possible tuples of k − 1 nodes e2, . . . , ek which, together with the given

node e1, form a k-clique. We need

(
N

k − 1

)
≈ Nk−1 steps, which, for k = 6 and

N ≈ 106, requires 1030 computational steps.

How the above method is algorithmically implemented: idea. First,
the papers [8, 9] use the concept lattice algorithms to come up, for each entity
e, with a list of the closest ones. Then, for each node e and for each m, we can
find a m-neighborhood of e – i.e., the set consisting of m closest nodes.

Suppose now that we need to check whether the two nodes e1 and e2 are
connected by a chain of k-cliques. According to the above method, we need to
first find a k-clique containing the node e1. Since, as we have mentioned, there
are too many possible sets of k−1 nodes, instead of looking for all possible nodes,
we only look for k-cliques among the m nearest nodes; thus, the value m must
be selected in such a way that the resulting amount of possible combinations(

m

k − 1

)
does not exceed the computational ability of the available computer.

In this manner, we find one or more k-cliques containing the node e1. Ac-
cording to the method, all the nodes in all these k-cliques are thus assumed to
be actually directly connected to e1. One of these nodes should start the next
k-clique. How can we select, out of these nodes, the node c2 which is the most
promising to start the new k-clique?

In order to select this node c2, let us recall that when for some k, we claim
that the existence of a k-clique confirms the existence of a true connection, in
reality, there is still a probability that the observed “connection” was accidental
– this probability is very small but still positive. We then conclude that two
nodes related by a chain of k-cliques are actually connected. For this conclusion

11

to be true, all the k-cliques must be actually connected. If only one the k-
cliques is accidental – the whole conclusion fails. Here, the probability that the
conclusion is false is equal to the probability that either the first k-clique is
accidental, or that the second k-clique is accidental, etc. The longer the chain,
the higher this probability. Thus, it is desirable to construct chains of k-cliques
which are as short as possible.

Intuitively, the larger the distance between the two nodes, the longer the
chains which connect them. To be more precise, we need to take into account
that different links correspond to different distance. What we thus really want
to minimize is the overall distance, not just the overall number of steps. If we
select a node e′ as the nest step c2, then the overall chain-following distance
between e1 and e2 can be estimated as the sum of the distance from e to e′ and
from e′ to e2, i.e., as D(e1, e

′) +D(e′, e2). We therefore select a node for which
this sum is the smallest possible.

A similar greedy-algorithm idea can be used on the next step, etc. As a
result, we arrive at the following algorithm.

How the above method is algorithmically implemented: details. We
want to check whether the given nodes e1 and e2 are actually connected – and
if so, we want to design a chain of events c1 = e1, c2, . . . , ct, and ct+1 = e2 in
which each ci id directly connected to ci+1.

In the algorithm, we start with c1 = e1, and we select the nodes c2, c3,
. . . , ct one by one. For every i, once the node ci is selected, we find m nodes
which are the closest to ci. Out of these m nodes, we test all possible subsets of
k − 1 nodes, and for each subset, we check whether this subset, together with
ci, forms a k-clique. (To be more precise, all m elements have an edge with ci
– otherwise why consider them; thus, it is sufficient to check that the selected
k − 1 nodes form a (k − 1)-clique.) For each subset which leads to a k-clique,
we record all its nodes.

• If one of the recorded nodes is e2, we are done – we have found a chain of
k-cliques between e1 and e2.

• If none of the recorded nodes coincides with e2, then out of all recorded
nodes e, we select, as the next node ci+1 in the chain, the recorded node
for which the sum D(ci, e) +D(e, e2) is the smallest possible.

If, after a certain number T of steps, we do not teach e2, we conclude that e1
and e2 are not actually connected. (This maximum number of steps T needs to
be determined empirically.)

Empirical success. In both applications – to the intelligence analysis and to
the biomedical publications – the above method has led to good results, i.e.,
to the concluded connections for which the high percentage were confirmed by
experts as meaningful.

12

An auxiliary comment: how to gauge our confidence in the results of
the method. In general, as we have mentioned, the larger the clique size, the
larger our confidence that the nodes are actually connected.

Thus, once we have found that the given nodes e1 and e2 are connected by
a chain of k-cliques – and thus, we have concluded that e1 and e2 are actually
connected – we can gauge our degree of confidence in this conclusion by checking
whether e1 and e2 can be connected by a chain of (k+1)-cliques, (k+2)-cliques,
etc. In this manner, we find the largest click size ` for which e1 and e2 are
connected by a chain of `-cliques. The larger this size `, the more confident we
are that e1 and e2 are actually connected.

4 Limitations of the Semi-Heuristic Approach

First limitation: this method is semi-heuristic. The first limitation is
that this method is semi-heuristic: its main justifications are common sense
and the fact that in several practical problems, this method was reasonably
successful. It is desirable to provide a more formal justification for this method
– ideally, a justification which would allow us not only to make conclusions, but
also to provide a reasonable estimate of our degree of certainty in this conclusion.

Second limitation: need for flexible granules. The second limitation is
that the above semi-heuristic method depends on “crisp” granules (clusters) –
namely, k-cliques. As a result:

• If, for some nodes e1 and e2, there is a k-cliques which contains both e1
and e2, then we conclude that e1 and e2 are actually directly connected.

• If no such k-clique exists, then we conclude that e1 and e2 are not actually
directly connected.

From the intuitive viewpoint, this conclusion is too crisp. Intuitively, if we have
a subgraphs G which is “almost” a k-clique – i.e., a k-clique with one (or even
two) edges missing, it may not affect the conclusion. For example, for k = 6,

being a k-clique means that we have
k · k − 1

2
=

6 · 5
2

= 15 edges between k = 6

nodes; what if we have only 14? There should be a threshold, but this threshold
does not necessary mean the threshold between a full k-clique and a graph in
which one edge is missing – maybe it is OK if two or more edges are missing?

Right now, the corresponding numerical characteristic – the size k of the
largest k-clique connecting two nodes – is too crisp:

• This characteristic decreases rapidly (to k − 1) when we delete a single
edge from the k-clique.

• And then, when we delete one more edge between some other nodes, this
characteristic does not change at all.

13

It is desirable to generalize a crisp notion of an integer clique size k into a more
flexible notion of the fractional-valued “degree” of clique-ness (i.e., the degree
of being a granule); see, e.g., [10, 13, 20].

Similarly, for a general connectedness:

• If, for some nodes e1 and e2, there is a relating chain of k-cliques, then we
conclude that e1 and e2 are actually connected.

• If no such chain exists, then we conclude that e1 and e2 are not actually
connected.

Intuitively, if we have a sequence of subgraphs G1, G2, . . . , in which one of the
graphs is “almost” a k-clique, it may not affect the conclusion.

The above degree of certainty – the size k of the cliques – is also too crisp:

• If e1 and e2 can be related by a chain of k-cliques but cannot be related
by a chain of (k + 1)-cliques, then our degree of confidence corresponds
to k.

• If e1 and e2 can be related by a chain of (k + 1)-cliques, then our degree
of confidence corresponds to the level k + 1 (or higher).

What about the situation when we have a chain of graphs G1, G2, . . . , Gt in
which all graphs except one are (k + 1)-cliques but the remaining one is still a
k-clique? According to the above method, we assign, to this case, the degree of
certainty k – the same as if all the graphs are k-cliques. However, intuitively,
we are almost in the case of (k + 1)-cliques, so to this “almost k + 1” case, we
should be able to assign the degree of confidence which is closer to k + 1.

We should also assign different degree of certainty depending on how long
is the chain of k-cliques. As we have mentioned, the longer the chain, the
less confident we are that this chain implies the actual connection. We used
this intuitive idea in designing the algorithm, but this idea is not reflected in
how we estimate our degree of confidence – whether we have a chain of length
1 or a chain of the maximally allowed length T , we assign the same degree
of confidence k to the conclusion that the corresponding nodes e1 and e2 are
actually connected. It is desirable to assign the degree of confidence in such a
way that longer chains would indeed lead to a smaller degree of confidence.

What we plan to do. We provide an uncertainty-based theoretical statistical
framework which enables us, first, to justify the empirical clique approach and,
second, to come up with formulas describing to what degree a given subgraph
is a granule.

5 Analysis of the Problem and the Resulting
Ideas and Formulas

Detecting direct connections based on a graph: analysis of the prob-
lem. Let us start with the first part of the problem – detecting direct connec-

14

tions. We will first analyze it in its simplified form – when we ignore the actual
distances between the nodes and we only take into account whether the corre-
sponding distance is below the threshold θ or not. In other words, we would
like to detect direct connectedness based on a graph G.

As we have mentioned, the fact that there is an edge does not necessarily
mean that entities are actually connected; there is a probability r that the edge
is accidental. This probability r can be obtained, e.g., by analyzing the part
of the graph for which we already know which entities are actually connected
and which are not. If in this part of the graph, out of E edges, Ea of them

correspond to actual connections, then we can estimate r as the ratio
Ea

E
.

We would like to estimate the probability that the given graph G – in which
some entities are linked by an edge and some are not – describes actually con-
nected entities. Let us pick any entity e in this graph. If we already know that
all the other entities from G (i.e., the set G−{e}) are actually connected, then:

• for e to be actually connected to all these entities e′ ∈ G− {e},

• it is sufficient to show that e is directly connected to one of the entities
e′ ∈ G− {e}.

Indeed, if e is actually connected to some e′ ∈ G−{e}, then, since e′ is connected
to every other entity from G−{e}, this would imply that e is actually connected
with all the entities from G − {e} (and thus, that all the entities from G are
indeed connected to each other).

Since at least one actual connection from e to G − {e} makes e connected
to all other entities from G − {e}, the only possibility for e to be not actually
connected to G− {e} is when all edges between e and elements of G− {e} are
accidental. In graph theory, the number of edges between a node e and all other
nodes is known as the degree of a node – and it is denoted by deg(e). In these
terms, e is not connected if all deg(e) edges are accidental.

The probability that each edge is accidental is equal to r. Since we have no
reason to make any conclusion about the dependence between different edges,
we will assume that different edges correspond to independent events. If we
have two independent or more events, then the probability of them happening
together is equal to the product of the corresponding probabilities: e.g., the
probability that the coin falls heads three times in a row is the product of the

three probabilities corresponding to the three coin tosses, i.e., to
1

2
· 1

2
· 1

2
=

1

8
.

Thus, under the independence assumption, the probability that all deg(e) edges
are accidental is equal to the product of deg(e) probabilities each of which is
equal to r – i.e., to rdeg(e). As a result, the probability that e is actually
connected to G− {e} is equal to 1− rdeg(e).

All the entities from a graph G = {e, e′, e′′, . . .} are actually connected if
each of these entities is connected to all others, i.e., if the entity e is connected
to all the other entities, and the entity e′ is connected to all the other entities,
and the entity e′′ is connected to all the other entities, etc.

15

• We already know the probability that the entity e is actually connected
to all other entities from the graph G: this probability is equal to

1− rdeg(e); (8)

• similarly, we know the probability that the entity e′ is actually connected
to all other entities from the graph G: this probability is equal to

1− rdeg(e
′); (9)

• we know the probability that the entity e′′ is actually connected to all
other entities from the graph G: this probability is equal to

1− rdeg(e
′′); (10)

• and so forth.

It is also reasonable to assume that the corresponding events are independent.
Thus, we arrive at the following conclusion.

Detecting direct connections based on a graph: the resulting formula.
For each graph G, the probability P (G) that all entities from the graph are
actually connected is equal to the product

P (G) =
∏
e∈G

(
1− rdeg(e)

)
. (11)

Alternatively, we can describe the probability R(G) = 1 − P (G) that at least
some of the entities from G are not connected. This probability is equal to

R(G) = 1−
∏
e∈G

(
1− rdeg(e)

)
. (12)

As usual in statistical methods, we conclude that all the entities from the
graph G are actually connected if this product is greater than or equal to a
certain threshold P0:

P (G) =
∏
e∈G

(
1− rdeg(e)

)
≥ P0. (13)

Alternatively, this condition can be described as R(G) ≤ p0, where p0
def
= 1−P0.

Towards a simplified approximate versions of the formula (13). Usu-
ally, the probability r is reasonably small, and for each node e, the number of
edges deg(e) is reasonably large; thus, the probability rdeg(e) is small. In this
case, we can expand the expression

∏
e∈G

(
1− rdeg(e)

)
in Taylor series in terms of

these small quantities rdeg(e), and keep only linear terms in this expansion.

16

For two variables, we have

(1− a) · (1− b) = 1− a− b+ a · b ≈ 1− (a+ b). (14)

For three or more variables, we similarly have

(1− a) · . . . · (1− b) ≈ 1− (a+ . . .+ b). (15)

Thus, we arrive at the following approximate formula.

The resulting simplified approximate versions of the formula (13). For
every graph G, the probability R(G) is approximately equal to

R(G) ≈
∑
e∈G

rdeg(e). (16)

Correspondingly, for P (G) = 1−R(G), we have

P (G) ≈ 1−
∑
e∈G

rdeg(e). (17)

Particular case of a k-clique. In the particular case when the graph G is a
k-clique, this graph has k nodes for each of which deg(e) = k − 1. In this case,
the formulas (13) and (14) takes the form

P (G) =
(
1− rk−1

)k
; R(G) = 1−

(
1− rk−1

)k
. (18)

The simplified approximate formulas (16) and (17) take the form

P (G) ≈ k · rk−1; R(G) ≈ 1− k · rk−1. (19)

Resulting natural definition of a degree of clique-ness. Based on the
above formulas (13) and (18), we can define, for each graph, its “degree of
clique-ness” as a real number k for which

P (G)
def
=
∏
e∈G

(
1− rdeg(e)

)
=
(
1− rk−1

)k
. (20)

Comment. If we use the simplified approximate expressions for P (G), the
above equation for the degree of clique-ness k gets a simplified form:∑

e∈G
rdeg(e) = k · rk−1. (21)

17

Example. For p = 0.1, for a 6-clique C6, with k = 6, we have R(C6) =
6 · 10−5 = 0.00006. For a 5-clique C5, we have R(C5) = 5 · 10−4 = 0.0004.

If we delete an edge that links two nodes of the 6-clique, then in the resulting
graph G, we have two nodes e with deg(e) = 4 and four remaining nodes with
deg(e) = 5. Thus, for this graph G, we have R(G) = 2·10−4+4·10−5 = 0.00024.

While this value is larger than the value R(C6) corresponding to a 6-clique, it
is smaller than the value R(C5) corresponding to a 5-clique: R(C6) < R(G) <
R(C5). Thus, for the graph G, the above-defined degree of clique-ness is in
between 5 and 6 – exactly as wanted it to be.

We thus get a flexible degree of confidence. In contrast to the traditional
case, where our degree of confidence was described by a not-very-flexible integer
k, now we are allowing non-integer values as well.

• Thus, e.g., if we delete one edge in a large clique, this leads to a minor
change in P (G) and thus, to a minor change in k. In contrast, for integers,
this was a significant decrease from k to k − 1.

• Similarly, if we delete the second edge, we get a new small decreases. In
contrast, for integers, we had no change.

If we use the simplified approximate formula, we get an explicit for-
mula for the degree of clique-ness. The above equation for the degree
of clique-ness k is similar to the equation that describes Lambert’s W-function
W (z) (see, e.g., [16]): namely, W (z) is defined as a value w for which z = w ·ew.

This formula is similar to the formula that defines k, but it has two differ-
ences:

• first, in the formula that defines the W-function, we raise to the power w,
while here, we raise r to the power k − 1;

• second, in the formula that defines the W-function, we raise e to some
power, while here we raise p to some power.

To reduce the above equation to this form, let us transform our formula so as
to eliminate these two differences.

First, let us reduce raising to the power k− 1 to raising to the power k. For

that, we can use the known relation rk−1 =
rk

r
. Substituting this expression

into the equation that defines k, we get R(G) = k · r
k

r
, or, equivalently, k · rk =

r ·R(G).
To reduce raising r to some power to raising e to some point, we take into

account that, by definition of the natural logarithm, the value r can be described

as eln(r). Thus, rk =
(
eln(r)

)k
= ek·ln(r). Hence, our equation takes the form

k · ek·ln(r) = R(G) · r. Here, e is raised to the power w
def
= k · ln(r), i.e., we have

rk = ew. We can explicitly describe k in terms of w, as k =
w

ln(r)
. Substituting

18

the above expressions for rk and k in terms of w into the equation k·rk = r·R(G),

we conclude that
w

ln(r)
· ew = R(G) · r, i.e., that w · ew = R(G) · r · ln(r). Thus,

by definition of the W-function, we have w = W (R(G) · r · ln(r)), and hence, for

the desired degree of clique-ness k =
w

ln(r)
, we get an explicit formula

k =
1

ln(r)
·W (R(G) · r · ln(r)). (22)

What if we have a chain of subgraphs? In general, we have a chain of
graphs G1, . . . , Gt linking two entities e1 and e2. To be able to conclude that
e1 and e2 are actually connected, we need to be able to conclude:

• that the first graph G1 corresponds to the actual connection,

• that the second graph G2 corresponds to the actual connection,

• etc.

For each graph Gi, we have already estimated the probability P (Gi) that this
graph corresponds to actual connections. Similarly to the above situations, it is
reasonable to assume that the corresponding events are independent. Thus, the
probability C that e1 and e2 are actually connected – i.e., the probability that
all the graphs in the chain correspond to actual connections – can be estimated
as the product of the corresponding probabilities:

C =

t∏
i=1

P (Gi). (23)

Comment. In particular, if we take into account that P (Gi) = 1−R(Gi) and
that the values R(Gi) are small, we can use a similar approximation as above
and get an approximate formula

C ≈ 1−
t∑

i=1

R(Gi). (24)

This enables us to gauge how our confidence that e1 and e2 are con-
nected decreases when the chain gets longer. In the formula (23), our
degree of confidence that e1 and e2 are connected is equal to the product of the
probabilities P (Gi) corresponding to all the graphs Gi in the chain relating e1
and e2. Each multiplication by the number P (Gi) < 1 decreases the product.
The longer the chain, the smaller the product and thus, the smaller our degree
of confidence that e1 and e2 are actually connected.

This solves one of the problems that we mentioned – that, contrary to intu-
ition, in the semi-heuristic approach, the degree of confidence (as described by
the clique size) does not decrease when the length of the chain increases.

19

6 Towards an Algorithm

How to take distance into account when estimating the probability:
idea. As we have described earlier, the existing algorithm for checking when
the two nodes are actually connected uses the distances, not just the graph. We
therefore need to extend the above probabilistic analysis so that it takes into
account the actual distances, not just whether there is an edge or not.

In the graph version, we assumed that there is a probability r that the
edge between the nodes is accidental – and does not reflect the true connection
between the nodes. Since an edge is placed when the distance is ≤ θ, we thus
assign the probability r to all distances D ≤ θ – and this value immediately
jumps to 1 when the distance exceeds θ and therefore, there is no edge. The
true probability should not change that abruptly, especially since the value θ has
to be empirically determined – and may thus change from situation to situation.

In other words, instead of a single probability value r, we should come up
with the value r(D) depending on the distance – and make sure that this de-
pendence on D is continuous, with no abrupt jumps. This function should be
non-decreasing:

• when the distance increases,

• the probability that the entities are not actually connected should also
increase (or at least not decrease),

i.e., D ≤ D′ should imply r(D) ≤ r(D′).
To find such a function, let us consider the situation in which a node e′ is in

between nodes e and e′′, in the sense that D(e, e′′) = D(e, e′)+D(e′, e′′), i.e., the

distance D(e, e′′) is equal to the sum D + D′, where we denoted D
def
= D(e, e′)

and D′
def
= D(e′, e′′). By definition of the function r(D):

• the probability that the entities e and e′ are actually connected is equal
to 1− r(D);

• the probability that the entities e′ and e′′ are actually connected is equal
to 1− r(D′); and

• the probability that the entities e and e′′ are actually connected is equal
to 1− r(D +D′).

The nodes e and e′′ are actually connected if both e is connected to e′ and e′ is
connected to e′′. Similar to the previous parts of this chapter, it is reasonable
to assume that the corresponding events are independent. Thus, we get

1− r(D +D′) = (1− r(D)) · (1− r(D′)). (25)

Thus, a non-increasing function p(D)
def
= 1− r(D) satisfies the functional equa-

tion p(D +D′) = p(D) · p(D′).
It is known (see, e.g., [1]) that all the solutions of such an equation have

the form p(D) = exp(−a ·D) for some constant a > 0. Thus, we arrive at the
following conclusion.

20

How probability depends on the distance. The probability p(D) that two
nodes are actually connected is equal to p(D) = exp(−a ·D) for some constant
a > 0.

The parameter a needs to be determined empirically, based on the part of
our data for which we already know which entities are actually connected and
which are not.

The probability r(D) = 1 − p(D) that there is no connection between the
two nodes is therefore equal to r(D) = 1− exp(−a ·D).

Detecting direct connections: case when we take distances into ac-
count. Similar to the graph case, we first compute, for each node e, the proba-
bility that all connections from e to nodes from G−{e} are accidental. Just like
in the graph case, this probability is equal to the product of the probabilities
exp(−a ·D(e, e′)) that the distance between e and e′ does not imply an actual
connection. This product is equal to

∏
e′ 6=e

exp(a ·D(e, e′)).

This formula can be simplified.

• First, we can easily add e′ = e to the product, since for e′ = e, we have
D(e, e′) = 0 and thus, the factor exp(−a · D(e, e)) = 1 does not change
the overall product.

• Second, we can use the fact that the product of the exponents is equal to
the exponent of the sum. As a result, we get a simplified formula

exp

(
−a ·

∑
e′∈G

D(e, e′)

)
. (26)

Thus, the probability that e is actually connected to G− {e} is equal to

1− exp

(
−a ·

∑
e′∈G

D(e, e′)

)
. (27)

The probability P (G) that all nodes from G are actually connected can be
now estimated as the product of the probabilities corresponding to different
nodes e ∈ G:

P (G) =
∏
e∈G

(
1− exp

(
−a ·

∑
e′∈G

D(e, e′)

))
. (28)

Comment. In the first approximation, we get a simplified formula

P (G) ≈ 1−
∑
e∈G

exp

(
−a ·

∑
e′∈G

D(e, e′)

)
. (29)

21

Towards an algorithm. We start building a chain with c1 = e1. In the
original method, we only considered k-cliques; now, we are allowing graphs
which are “almost” cliques.

For each such graph, we can use the formula (29) to estimate the probability
P (G) that this nodes from this graph are actually connected. For each node e′

from this graph, we probability that it is actually connected to c1 is equal to
p(G) and the probability that it is actually connected to e2 is equal to

exp(−a ·D(e′, e2)). (30)

Thus, the probability that e1 and e2 are connected via e′ is equal to the product
of these two probabilities, i.e., to P (G) · (1 − exp(−a ·D(e′, e2))). As the next
node in the connecting chain, we then select the most probable connecting node
e′, i.e., the node for which this product is the largest possible.

Then, we repeat the same procedure starting with c2, etc., until we reach
e2. As a result, we arrive at the following algorithm.

7 Resulting Algorithm

Formulation of the problem: reminder. We want to check whether the
given nodes e1 and e2 are actually connected – and if yes, we want to design a
chain of events c1 = e1, c2, . . . , ct, and ct+1 = e2 in which each ci is directly con-
nected to ci+1 (and the corresponding chain of connecting graphs G1, . . . , Gt).

We also want to compute the probability P that the corresponding chain
reflects the actual connection.

First preliminary step: finding the parameter a > 0. Based on the part
of the data for which we already know which entities are actually connected and
which are not, we estimate the parameter a > 0 for which the probability p(D)
that nodes at distance D are actually connected decreases as exp(−a ·D).

This value can be estimated, e.g., if for different values d, we estimate, among
all pairs nodes of distance approximately D, the proportion p̃(D) of pairs were
actually connected. Then, we try to find a for which, for all these values D, we
have p̃(D) ≈ exp(−a ·D). To estimate a, we can, e.g., take negative logarithm
of both sides, and use the Least Squares Method (see, e.g., [17]) to solve the
resulting system of approximate linear equations a ·D· ≈ − ln(p̃(D)).

Second preliminary step: finding neighborhoods. Similar to [8, 9], use
the concept lattice algorithms to come up, for each entity e, with a list of the
closest ones. Then, for each node e and for each m, we can find a m-neighborhood
of e – i.e., the set consisting of m closest nodes. For this, we can use, e.g., an
algorithm for computing the concept lattice (as in [8, 9]).

The corresponding value m and the value k (which is used in the main part
of the algorithm) are chosen in such a way that it is computationally feasible to
try all possible subsets of ≤ k − 1 elements out of m.

22

Main part of the algorithm. We start with c1 = e1. Then, we select the
nodes c2, c3, . . . , ct one by one.

When we reach the node ci, we estimate the probability Pi that c1 and ci
are actually connected. We start with the probability P1 = 1 (reflecting the fact
that the node e1 is clearly connected to itself).

For every i, once the node ci has been selected and the value Pi has been
computed, we find m nodes which are the closest to ci. Out of these m nodes,
we test all possible subsets of ≤ k − 1 nodes. To each of these subsets, we
add the node ci and consider the corresponding graph G. For this graph G, we
compute the probability

P (G) =
∏
e∈G

(
1− exp

(
−a ·

∑
e′∈G

D(e, e′)

))
. (31)

Then, for each point e′ ∈ G− {ci}, we compute the product

P (G) · (1− exp(−a ·D(e′, e2))). (32)

Once we have tested all such subsets G and computed the product for all
their elements e′ ∈ G, we select, as the next node ci+1 in the chain, the node
e′ for which the product corresponding to this node is the largest possible. The
corresponding graph G is selected as the connecting graph Gi. We then compute
Pi+1 = Pi · P (Gi).

• If the probability Pi+1 goes below a certain threshold P0, we conclude that
e1 and e2 are not actually connected (or, to be more precise, that, based
on the available information, we cannot make such a conclusion).

• If ci+1 = e2 and Pi+1 ≥ P0, then we conclude that the given nodes e1 and
e2 are actually connected, with degree of confidence P = Pi+1.

• If ci+1 6= e2 and Pi+1 ≥ P0, we continue iterations.

8 Conclusions

In many practical situations, it is important to check which entities are actually
connected and which are not. Usually, this checking is performed by using the
traditional statistical methods – but these methods cannot be applied when
we have a large amount of data points (“big data”). A semi-heuristic method
was proposed to detect actual connections in the case of big data; however this
method has limitations: first, it is justified by experimental results and requires
theoretical justification, and second, the method depends on “crisp” granules
(cliques) to form connections.

In this chapter, we have come up with a theoretical justification of the known
semi-heuristic method, and we have come up with a new, more flexible definition
of almost-granules. However, a lot of work is still ahead: there is still a lot of
room for improvement in how we can effectively process big data to find such
almost-granules and to compute their degree of granule-ness.

23

Acknowledgments. This work was supported in part by the National Sci-
ence Foundation (NSF) grants HRD-0734825 and HRD-1242122 (Cyber-ShARE
Center of Excellence), NSF grant DUE-0926721, and by M. S. Hossain’s startup
grant at UTEP.

References

[1] J. Aczel, Functional Equations and Their Applications, Academic Press,
New York, 1966.

[2] J.-P. Brassard and J. Gecsei, “Path Building in Cellular Partitioning Net-
works”, ACM SIGARCH Computer Architecture News, 1980, Vol. 8, No. 3,
pp. 44–50.

[3] A. Di Ciaccio, M. Coli, and J. M. Angulo Ibanez (Eds.), Advanced Sta-
tistical Methods for the Analysis of Large Data, Springer Verlag, Berlin,
Heidelberg, 2012.

[4] C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast Discovery of Connec-
tion Subgraphs”, Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining KDD’04, Seattle,
Washington, August 22–25, 2004, pp. 118–127.

[5] L. Fang, A. D. Sarma, C. Yu, and P. Bohannon, “Rex: explaining relation-
ships between entity pairs,” Proceedings of the VLDB Endowment, 2011,
Vol. 5, No. 3, pp. 241–252.

[6] K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. Guibas, “Im-
age Webs: Computing and Exploiting Connectivity in Image Collections,”
Proceedings of the 23th IEEE Conference on Computer Vision and Pat-
tern Recognition CVPR’2010, San Francisco, California, June 13–18, 2010,
pp. 3432–3439.

[7] M. S. Hossain, M. Akbar, and N. F. Polys, “Narratives in the Network:
Interactive Methods for Mining Cell Signaling Networks”, Journal of Com-
putational Biololy, 2012, Vol. 19, No. 9, pp. 1043–1059.

[8] M. S. Hossain, P. Butler, A. P. Boedihardjo, and N. Ramakrishnan, “Story-
telling in Entity Networks to Support Intelligence Analysts”, Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining KDD’12, Beijing, China, August 12–16, 2012, pp. 1375–1383.

[9] M. S. Hossain, J. Gresock, Y. Edmonds, R. Helm, M. Potts, and N. Ra-
makrishnan, “Connecting the Dots between PubMed Abstracts”, PLoS
ONE, 2012, Vol. 7, No. 1, Paper e29509.

[10] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

24

[11] D. Kumar, N. Ramakrishnan, R. Helm, and M. Potts, “Algorithms for Sto-
rytelling”, IEEE Transactions on Knowledge and Data Engineering, 2008,
Vol. 20, No. 6, pp. 736–751.

[12] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, Cambridge, Massachusetts, 2008.

[13] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, Chapman
and Hall/CRC, Boca Raton, Florida, 2006.

[14] F. J. Ohlhorst, Big Data Analytics, John Wiley & Sons, 2012.

[15] A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge
University Press, Cambridge, Massachusetts, 2011.

[16] R. Roy and D. W. J. Olver, “Lambert W function”, In: W. J. Olver,
D. M. Lozier, R. F. Boisvert, and C. F. Clark, NIST Handbook of Mathemat-
ical Functions, Cambridge University Press, Cambridge, Massachusetts,
2010.

[17] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, Chapman and Hall/CRC Press, Boca Raton, Florida, 2011.

[18] S. Srinivasa and V. Bhatnagar (Eds.), Big Data Analytics, Proceedings of
the First International Conference on Big Data Analytics BDA’2012, New
Delhi, India, December 24–26, 2012, Springer Lecture Notes in Computer
Science, Vol. 7678, 2012.

[19] D. R. Swanson, “Complementary Structures in Disjoint Science Litera-
tures”, In: A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan
(Eds.), Proceedings of the 14th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval SIGIR’91,
Chicago, Illinois, October 13–16, 1991, pp. 280–289.

[20] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

25

