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Abstract 
In this paper, we present a fully automated spoken dialogue sys-
tem that can perform the Map Task with a user. By implement-
ing a trick, the system can convincingly act as an attentive lis-
tener, without any speech recognition. An initial study is pre-
sented where we let users interact with the system and recorded 
the interactions. Using this data, we have then trained a Support 
Vector Machine on the task of identifying appropriate locations 
to give feedback, based on automatically extractable prosodic 
and contextual features. 200 ms after the end of the user’s 
speech, the model may identify response locations with an accu-
racy of 75%, as compared to a baseline of 56.3%.  

1. Introduction 
Spoken dialogue systems have traditionally rested on a very 
simplistic model of the interaction when it comes to turn-taking 
and feedback. Typically, a silence threshold has been used to 
detect when the user has finished speaking, after which the sys-
tem starts to process the user’s utterance and produce a response. 
Silence, however, is not a very good indicator: sometimes a 
speaker just hesitates and no turn-change is intended, sometimes 
the turn changes after barely any silence [1]. Human interlocu-
tors appear to use several knowledge sources, such as prosody, 
syntax and semantics to detect or even project suitable places to 
give feedback or take the turn [2]. Feedback may often be given 
in the middle of the interlocutor’s speech in the form of back-
channels – short utterances such as “mhm” or “yeah” that are 
produced without the intention of claiming the floor [3]. Re-
cently, there has been a lot of interest in developing spoken dia-
logue systems that model this behaviour. An example of this is 
the Numbers system [4] – a completely incremental dialogue 
system that could give rapid feedback as the user was speaking, 
with a very short latency of around 200ms, partly using prosodic 
information. However, to make the task feasible, the domain was 
limited to that of number dictation.  

In this paper, we present a dialogue system that can perform 
the Map Task [5]. Map Task is a common experimental para-
digm for studying human-human dialogue, where one subject 
(the information giver) is given the task of describing a route on 
a map to another subject (the information follower). In our case, 
the user acts as the giver and the system as the follower. The 
choice of Map Task is motivated partly because the system may 
allow the user to keep the initiative during the whole dialogue, 
and thus only produce responses that are not intended to take the 
initiative, most often some kind of feedback. Thus, the system 
might be described as an attentive listener. Implementing a Map 
Task dialogue system with full speech understanding would in-
deed be a challenging task, given the state-of-the-art in automatic 
recognition of conversational speech. In order to make the task 
feasible, we have implemented a trick: the user is presented with 

a map on a screen (see Figure 1) and instructed to move the 
mouse cursor along the route as it is being described. The user is 
told that this is for logging purposes, but the real reason for this 
is that the system tracks the mouse position and thus knows what 
the user is currently talking about. It is thereby possible to pro-
duce a coherent system behaviour without any speech recogni-
tion at all, only basic speech detection. This often results in a 
very realistic interaction, as compared to what users are typically 
used to when interacting with dialogue systems – in our experi-
ments, several users first thought that there was a hidden opera-
tor behind it. An example video can be seen at 
http://www.youtube.com/watch?v=MzL-B9pVbOE. 

We think that this system provides an excellent testbed for 
doing experiments on turn-taking and feedback in an interactive 
setting. In our initial study presented here, we focus on the task 
of finding suitable places to give feedback as the user is speak-
ing. The study can be regarded as a first step in a "bootstrapping" 
procedure, where we have started by implementing a first itera-
tion of the system and then allowed users to interact with it. A 
classifier has then been trained on automatically extractable fea-
tures. This setup will then allow us to test the derived model in 
interaction with users, using exactly the same setting. 

 

 

Figure 1: The user interface, showing the map. 

2. Timing of feedback 
There are many studies which investigate the cues that may help 
humans determine where it is appropriate to give feedback, and 
thus could be useful for a dialogue system. A common procedure 
is to build and test a statistical model or classifier on a corpus of 
human-human interactions, trying to predict the behavior of one 
of the interlocutors [2,6,7,8]. The cues that turn out to be impor-
tant are often related to prosody or syntax, but some studies also 
look into other modalities such as gaze [8]. Prosodic cues typi-
cally involve a final falling or rising pitch or final low/high pitch 



levels, but duration and energy may also play a role. Besides 
prosody, a very strong cue is syntactic or semantic completeness, 
where non-completeness (e.g., “Then you turn around the...”) 
obviously indicates that it is not appropriate to take the turn or 
give a backchannel. A common feature to use for this is n-gram 
part-of-speech models [7,9]. A common finding is also that the 
combination of different types of features tend to improve the 
model [2,9].  

One should be aware, however, that it might be problematic 
to use a corpus of human-human dialogue as a basis for imple-
menting a dialogue system component. One problem is the inter-
active nature of the task. If the classifier produces a slightly dif-
ferent behaviour than what was found in the original data, this 
would likely result in a different behaviour in the interlocutor, 
which is never evaluated. Another problem is that it is hard to 
know how well such a model would work in a dialogue system, 
since humans are likely to behave differently towards a system 
as compared to another human (even if a more human-like be-
haviour is being modelled). Yet another problem is that much 
dialogue behaviour is optional and therefore makes the actual 
behaviour hard to use as a gold standard. For example, there are 
many places where a human may take the turn or produce back-
channels, but which are never realised. Indeed, many studies on 
identifying backchannel cues based on human-human interac-
tions report a relatively poor accuracy of about 20-35% [6,8,7]. It 
is also possible that a lot of human behaviour that is “natural” is 
not necessarily preferable for a dialogue system to reproduce, 
depending on the purpose of the dialogue system.  

A common approach for experimenting with human-
computer dialogue in an interactive setting without a speech rec-
ognizer is to use a Wizard-of-Oz setup, where a hidden operator 
replaces parts of the system. This might be hard to do, however, 
when the issue under investigation is time-critical behaviours 
such as backchannels. We therefore think that the bootstrapping 
approach presented here is an interesting alternative. A problem 
here is how to know where the system should have reacted when 
training the model. While several sophisticated methods for such 
annotation have been suggested [10], we here rely on manual 
offline annotation. 

In the Map Task dialogue system we have implemented, we 
have not only used backchannels, but also other types of feed-
back, such as clarification requests. A general distinction is often 
made in the literature between the timing of backchannels and 
other types of responses. It is not entirely clear, however, in 
which of these categories the different types of active listener 
responses we explore here would belong (do they claim the floor 
or not?). Thus, we make no such distinction in this study – the 
task is simply to find suitable places for an active listener to re-
spond, regardless of whether a backchannel or clarification re-
quest is deemed appropriate (a choice that should be made de-
pending on the system’s level of understanding).  

Many of the studies cited above use a combination of manu-
ally annotated and automatically extractable features. In this 
study, we want to restrict the model to only use automatically 
extractable features found in the left context (i.e., available for 
incremental processing), in order to be able to test the derived 
model online in an interactive setting. Given that we currently 
use no speech recognition, we can therefore not use any syntactic 
or semantic features. Thus, we will mainly look at prosodic fea-
tures. However, unlike most other studies mentioned above, we 
will also examine the use of contextual features that involve the 
interlocutor’s (i.e., the system’s) behaviour.  

3. Dialogue system components 
The basic components of the system can be seen in Figure 2. 
Dashed line indicate components that were not part of the first 
iteration of the system, but which we have explored offline (as 
described further down) and which we will use in the next itera-
tion. The system uses a simple energy-based speech detector to 
chunk the user’s speech into inter-pausal units (IPUs), that is, 
periods of speech that contain no sequence of silence longer than 
200 ms. Such a short threshold allows the system to give back-
channels (seemingly) while the user is speaking or take the turn 
with barely any gap. Similarly to [9] and [2], we define the end 
of an IPU as a candidate for the Response Location Detector 
(RLD) to identify as a Response Location (RL). We will use the 
term turn to refer to a sequence of IPUs which do not have any 
responses between them. 
 

 

Figure 2: The basic components of the system. 

Each time the RLD detected a RL, the dialogue manager pro-
duced a Response, depending on the current state of the dialogue 
and the position of the mouse cursor. Table 1 shows the different 
types of responses the system could produce. The dialogue man-
ager always started with an Introduction and ended with an End-
ing, once the mouse cursor had reached the destination. Between 
these, it selected from the other responses, partly randomly, but 
also depending on the length of the last user turn and the current 
mouse location. Longer turns often led to Restart or Repetition 
Requests, thus discouraging longer sequences of speech that did 
not invite the system to respond. If the system detected that the 
mouse had been at the same place over a longer time, it pushed 
the task forward by making a Guess response. We also wanted to 
explore other kinds of feedback than just backchannels, and 
therefore added short Reprise Fragments and Clarification Re-
quests (see for example [14] for a discussion on these).  

Table 1: Different responses from the system. 

Introduction “Could you help me to find my way to the 

train station?” 

Backchannel “Yeah”, “Mhm”, “Okay”, “Uhu” 

Reprise Fragment  “A station, yeah” 

Clarification Request  “A station?” 

Restart “Eh, I think I lost you at the hotel, how 

should I continue from there?” 

Repetition Request  “Sorry, could you take that again?” 

Guess “Should I continue above the traffic lights?” 

Ending “Okay, thanks a lot.” 

 
For speech synthesis, we use the CereVoice unit selection syn-
thesizer developed by CereProc (www.cereproc.com). Since 
conversational speech (such as backchannels and fragmentary 
utterances) typically does not come out very well from off-the-
shelf speech synthesizers, CereProc was contracted to comple-
ment the voice with recordings of a range of backchannel 
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sounds, as well as Reprise Fragments and Clarification Requests 
containing the landmarks that were used on the maps in the ex-
periment. 

4. Data collection and processing 
In this study, we want to explore how to improve the Response 
Location Detector, by training it on data collected from users 
interacting with a first iteration of the system. Since we initially 
did not have any sophisticated model for the RLD, it was simply 
set to wait for a random period between 0 and 800 ms after an 
IPU ended. If no new IPUs were initiated during this period, a 
RL was detected, resulting in random response delays between 
200 and 1000 ms.  

4.1. Data collection and annotation 

10 subjects participated in the data collection. They were seated 
in front of the display showing the map, wearing a headset. The 
instructor told them that they were supposed to describe a route 
to the computer. They were told that they should imagine another 
person having a similar picture as seen on the screen, but without 
the route. Each subject did five consecutive tasks with five dif-
ferent maps, resulting in a total of 50 dialogues. 

The users’ speech was recorded and all events in the system 
were logged. Each IPU was then manually annotated into three 
categories: Hold (a response would be inappropriate), Respond 
(a response is expected) and Optional (a response would not be 
inappropriate, but it is perfectly fine not to respond). The annota-
tor was given a tool with which the dialogue was played up to 
the end of the IPU and then paused, so that the annotation could 
be made based on the left context only. To check the reliability 
of this coding, one dialogue from each subject (i.e., 20% of the 
material) was annotated by a second person. For all three catego-
ries, the kappa score was 0.68 – a substantial agreement. There 
were only 6.7% of the instances where one annotator had se-
lected Hold and the other Respond. We then picked out all in-
stances where the first annotator had selected one of these two 
categories, in order to learn a classifier to discriminate between 
them, thus removing all Optional IPUs (about 15%) from the 
data set (whether an Optional IPU is classified as Hold or Re-
spond should not matter much). In total, this dataset contained 
1780 IPUs. 56.3% of these were of the class Respond, which 
constitutes our majority class baseline (i.e., the accuracy of the 
RLD if it would produce a Response Location for each IPU). It 
should be noted that the current model does not allow for feed-
back within an IPU (as in [6]). It is yet unclear how problematic 
this limitation is; none of the annotators felt the need to mark 
RLs at other locations than at the end of IPUs. 

4.2. Extracting features 

Next, a set of features were extracted for all IPUs. As stated 
above, we wanted to test two types of features: Prosodic and 
Contextual. To extract Prosodic features, a pitch tracker based on 
the Yin algorithm [11] was used. The pitch was transformed to 
log scale and z-normalized for each user. The last 200 ms voiced 
region was then identified for each IPU. For this region, the 
mean pitch and the slope of the pitch (using linear regression) 
were used as features, as well as the absolute values for these. 
The mean energy (again on the log scale, z-normalized) was 
also computed for this region. As Contextual features, we used 

the last system response, as well as the length of the current 
IPU and the length of the current turn.  

5. Results 

5.1. Algorithms and feature sets 

The WEKA machine learning software suite [12] was used for 
the classification task. Two different machine learning algo-
rithms were tested (with the default WEKA parameters): CART 
(a decision tree) and Support Vector Machines (SVM). The clas-
sifiers were evaluated using 10-fold cross validation. The accu-
racy (percent correct classifications) for different feature sets are 
shown in Table 2. As can be seen, the best result (75%) is 
achieved with SVM on the full feature set. All results are signifi-
cantly better than the baseline of 56.3% (t-test; p < 0.05). 

Table 2: The accuracy of the different algorithms. Signifi-
cant differences are indicated with “<” (t-test; p<0.05). 

 CART  SVM 
Context 66.1%  66.0% 
 ˄  ˄ 

Prosody 69.4%  69.6% 
 ˄  ˄ 

Prosody + Context 72.6% < 75.0% 

5.2. Effect of response delay 

The classification above, as well as the baseline, is based on the 
assumption that the system should be able to respond in just 200 
ms. This is a much shorter delay than what is most often used in 
spoken dialogue system (typically 500-1000 ms), but might be 
necessary if responses like backchannels should be produced “in 
the middle” of the user’s speech. However, by delaying the re-
sponse, a lot of false positives may be avoided (often short hesi-
tations), as the onset of new IPUs might be detected during this 
delay and stop the system from responding. While it will also 
introduce some false negatives (making the system wait too long 
and miss a RL), this number is much smaller. Figure 3 shows 
how a longer response delay affects the performance of the best 
classifier (the SVM), as well as the baseline. As can be seen, the 
relative improvement of the SVM classifier is not as big as the 
relative improvement of the baseline. Thus, while a naive system 
would clearly benefit from delaying the response, this is not as 
beneficial for the SVM classifier. Another way of looking at this 
is that the SVM classifier can produce a similar performance af-
ter just 200 ms, as compared to a naive system that would simply 
wait for 1000 ms after each IPU before giving a response. 

 

Figure 3: Effect of response delay on the accuracy. 
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5.3. Looking into the selected features 

While the CART classifier doesn’t show the same performance 
as the SVM classifier, it is interesting to look into the decision 
tree that is produced to get an understanding of how the features 
contribute to the classification. This is illustrated in Figure 4. 
The initial split is made between relatively flat pitch (left 
branch), vs. a rising or falling pitch (right branch). The latter 
generally leads to Respond, as typically found in related studies. 
However, there is an exception for very short IPUs with a mod-
erate slope that don’t follow a Clarification Request (CR) (which 
typically trigger a simple “yes”). On the left side, we can again 
see that IPUs following system utterances that often trigger short 
user responses are labelled as Respond. Interestingly, for longer 
turns, an invitation to respond seems to be associated with a low 
pitch region, while shorter turns ends with a high pitch region. 
This nicely illustrates how the contextual and prosodic features 
are combined. Another interesting finding is that the algorithm 
apparently has clustered Intro, Guess and CR as utterances that 
typically trigger very short responses like “yes” (compare with 
Table 1). It is especially interesting to see that Reprise Fragment 
is not found in this category, despite the apparent similarity to 
the Clarification Requests. The difference in the realisation of 
these was mainly prosodic – a rising pitch at the end of a Clarifi-
cation Request and a falling pitch at the end of the Reprise 
Fragment (similar to the patterns described in [13]), which obvi-
ously had an effect on the users’ behaviour. Pragmatically, these 
can be compared to “explicit” and “implicit” verification re-
quests in traditional dialogue systems [14]. Thus, a Clarification 
Request should always require some kind of response, whereas a 
Reprise Fragment should not need a response if it is correct. 
 

 

Figure 4: CART tree for the full feature set;  
solid line = true; dashed line = false. 

6. Conclusions and Future work 
The best classifier, SVM, was able to correctly identify Response 
Locations after 75% of all IPUs, using contextual and prosodic 
features, resulting in a response time of about 200 ms. This is 
similar to the performance of a naive system that would wait for 
1000ms before responding. As stated above, the next step is to 
use the model in the Response Location Detector in the system 
(as illustrated in Figure 2) and test it with users. We may then 
see how much the performance actually improves in an interac-
tive setting, using both objective and subjective measures.  

The two human annotators agreed for 93.3% of the instances, 
which may be regarded as some kind of maximal performance. 
In the current study, the performance of the SVM classifier peaks 
at about 80%, even if a response delay is introduced. To further 
improve the classification, other kinds of features related to syn-

tax and semantics are probably needed, as indicated by related 
studies. A possible extension would be to use an ASR in the sys-
tem to extract such features. Even if the results would be unreli-
able, they could possibly help to improve the performance to 
some extent.  

We think that the system presented here provides an excel-
lent testbed for doing experiments on turn-taking and feedback in 
an interactive setting. While we think the Map Task domain in 
itself provides valuable insights into feedback behaviour, it is 
also similar to many practical dialogue systems, where the sys-
tem needs to understand longer instructions and act as an active 
listener.  
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