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Abstract

In this paper, we present a fully automated spakalogue sys-
tem that can perform the Map Task with a user. Bglément-
ing a trick, the system can convincingly act asattentive lis-
tener, without any speech recognition. An initialdy is pre-
sented where we let users interact with the systedhrecorded
the interactions. Using this data, we have theinétha Support
Vector Machine on the task of identifying approfitocations
to give feedback, based on automatically extraetasbsodic
and contextual features. 200 ms after the end ef uker’s
speech, the model may identify response locatidtis am accu-
racy of 75%, as compared to a baseline of 56.3%.

1. Introduction

Spoken dialogue systems have traditionally restedaovery
simplistic model of the interaction when it comesturn-taking
and feedback. Typically, a silence threshold hasnbesed to
detect when the user has finished speaking, aftéchathe sys-
tem starts to process the user’s utterance andipeca response.
Silence, however, is not a very good indicator: stmes a
speaker just hesitates and no turn-change is iatersbmetimes
the turn changes after barely any silence [1]. Hummgerlocu-
tors appear to use several knowledge sources, aughosody,
syntax and semantics to detect or even projecitdeitplaces to
give feedback or take the turn [2]. Feedback magmobe given
in the middle of the interlocutor’'s speech in tloeni of back-
channels— short utterances such as “mhm” or “yeah” that ar
produced without the intention of claiming the fio[3]. Re-
cently, there has been a lot of interest in devalpgpoken dia-
logue systems that model this behaviour. An exaroplthis is
the Numbers system [4] — a completely incrementalogue
system that could give rapid feedback as the usesrspeaking,
with a very short latency of around 200ms, par#ing prosodic
information. However, to make the task feasible,domain was
limited to that of number dictation.

In this paper, we present a dialogue system thapeaform
the Map Task [5]. Map Task is a common experimeptah-
digm for studying human-human dialogue, where oulgiest
(the informationgiver) is given the task of describing a route on
a map to another subject (the informatfotiower). In our case,
the user acts as the giver and the system as Hosvéo. The
choice of Map Task is motivated partly becauseststem may
allow the user to keep the initiative during theolehdialogue,
and thus only produce responses that are not ietetaltake the
initiative, most often some kind of feedback. Thtle system
might be described as attentive listenerimplementing a Map
Task dialogue system with full speech understaneingld in-
deed be a challenging task, given the state-o&ther automatic
recognition of conversational speech. In order akenthe task
feasible, we have implemented a trick: the us@résented with

a map on a screen (see Figure 1) and instructedotee the
mouse cursor along the route as it is being destribhe user is
told that this is for logging purposes, but thel reason for this
is that the system tracks the mouse position amsl khows what
the user is currently talking about. It is thergdmssible to pro-
duce a coherent system behaviour without any spesdgni-
tion at all, only basic speech detection. This roftesults in a
very realistic interaction, as compared to whatsisee typically
used to when interacting with dialogue systems eunexperi-
ments, several users first thought that there waisiden opera-
tor behind it. An example video can be seen
http://www.youtube.com/watch?v=MzL-B9pVbOE.

We think that this system provides an excellentbts for
doing experiments on turn-taking and feedback inngéeractive
setting. In our initial study presented here, weufoon the task
of finding suitable places to give feedback asubker is speak-
ing. The study can be regarded as a first step'fiatstrapping"
procedure, where we have started by implementificsiaitera-
tion of the system and then allowed users to intendth it. A
classifier has then been trained on automaticaitsaetable fea-
tures. This setup will then allow us to test theivid® model in
interaction with users, using exactly the samerggtt

Figure 1:The user interface, showing the map.

2. Timing of feedback

There are many studies which investigate the duegsmhay help
humans determine where it is appropriate to giesltfack, and
thus could be useful for a dialogue system. A commmcedure
is to build and test a statistical model or classiébn a corpus of
human-human interactions, trying to predict theawidr of one
of the interlocutors [2,6,7,8]. The cues that tat to be impor-
tant are often related to prosody or syntax, butesstudies also
look into other modalities such as gaze [8]. Prasaodes typi-
cally involve a final falling or rising pitch orral low/high pitch
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levels, but duration and energy may also play a.r8lesides
prosody, a very strong cue is syntactic or semauatiapleteness,
where non-completeness (e.g., “Then you turn arctned.”)

obviously indicates that it is not appropriate afiet the turn or
give a backchannel. A common feature to use f& ithin-gram
part-of-speech models [7,9]. A common finding iscathat the
combination of different types of features tendirtgprove the
model [2,9].

One should be aware, however, that it might be Iproatic
to use a corpus of human-human dialogue as a fmsisple-
menting a dialogue system component. One problaheimter-
active nature of the task. If the classifier progkia slightly dif-
ferent behaviour than what was found in the origofeta, this
would likely result in a different behaviour in ttterlocutor,
which is never evaluated. Another problem is thas ihard to
know how well such a model would work in a dialogystem,
since humans are likely to behave differently taigaa system
as compared to another human (even if a more huikere-
haviour is being modelled). Yet another problenthiat much
dialogue behaviour is optional and therefore matkes actual
behaviour hard to use as a gold standard. For deatmere are
many places where a human may take the turn omupeotdack-
channels, but which are never realised. Indeed yrsudies on
identifying backchannel cues based on human-humeeraic-
tions report a relatively poor accuracy of about3306 [6,8,7]. It
is also possible that a lot of human behaviour ihéabatural” is
not necessarily preferable for a dialogue systemepyoduce,
depending on the purpose of the dialogue system.

A common approach for experimenting with human-
computer dialogue in an interactive setting withawgpeech rec-
ognizer is to use a Wizard-of-Oz setup, where ddmndoperator
replaces parts of the system. This might be haabtcdhowever,
when the issue under investigation is time-critibahaviours
such as backchannels. We therefore think that deéstrapping
approach presented here is an interesting altgenaii problem
here is how to know where the system should haaeted when
training the model. While several sophisticatedhads for such
annotation have been suggested [10], we here melynanual
offline annotation.

In the Map Task dialogue system we have implemented
have not only used backchannels, but also otherstyyf feed-
back, such as clarification requests. A generairison is often
made in the literature between the timing of baeketels and
other types of responses. It is not entirely clémwever, in
which of these categories the different types divaclistener
responses we explore here would belong (do themdlze floor
or not?). Thus, we make no such distinction in #tigly — the
task is simply to find suitable places for an aetilstener to re-
spond, regardless of whether a backchannel officktion re-
quest is deemed appropriate (a choice that shaailchdde de-
pending on the system’s level of understanding).

Many of the studies cited above use a combinatfananu-
ally annotated and automatically extractable festurn this
study, we want to restrict the model to only usématically
extractable features found in the left context. (isvailable for
incremental processing), in order to be able to ttes derived
model online in an interactive setting. Given thgt currently
use no speech recognition, we can therefore nchmgeyntactic
or semantic features. Thus, we will mainly lookpabsodic fea-
tures. However, unlike most other studies mentioalsolve, we
will also examine the use of contextual features thvolve the
interlocutor’s (i.e., the system’s) behaviour.

3. Dialogue system components

The basic components of the system can be seeigimeF2.
Dashed line indicate components that were not glathe first
iteration of the system, but which we have explooétine (as
described further down) and which we will use ie tiext itera-
tion. The system uses a simple energy-based spkstebtor to
chunk the user’s speech intoter-pausal units(IPUs), that is,
periods of speech that contain no sequence ofcsilemger than
200 ms. Such a short threshold allows the systegivi® back-
channels (seemingly) while the user is speakintpke the turn
with barely any gap. Similarly to [9] and [2], wefthe the end
of an IPU as a candidate for the Response Locddetector
(RLD) to identify as a Response Location (RL). ¥ use the
termturn to refer to a sequence of IPUs which do not hane a
responses between them.
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Figure 2:The basic components of the system.

Each time the RLD detected a RL, the dialogue mengago-

duced a Response, depending on the current stitie dfalogue
and the position of the mouse cursor. Table 1 shibesslifferent
types of responses the system could produce. Ehiegdie man-
ager always started with an Introduction and ensigd an End-
ing, once the mouse cursor had reached the déstinBetween
these, it selected from the other responses, patigiomly, but
also depending on the length of the last userandhthe current
mouse location. Longer turns often led to RestarRepetition

Requests, thus discouraging longer sequences etlsgkat did
not invite the system to respond. If the systenected that the
mouse had been at the same place over a longeritimeshed
the task forward by making a Guess response. Vdenadsted to
explore other kinds of feedback than just backckimnand
therefore added short Reprise Fragments and Cktidh Re-
quests (see for example [14] for a discussion esdh

Table 1:Different responses from the system

Introduction “Could you help me to find my way to the
train station?”

“Yeah”, “Mhm”, “Okay”, “Uhu”

“A station, yeah”

“A station?”

“Eh, I think I lost you at the hotel, how
should | continue from there?”

“Sorry, could you take that again?”

“Should | continue above the traffic lights?”

“Okay, thanks a lot.”

Backchannel

Reprise Fragment
Clarification Request
Restart

Repetition Request
Guess
Ending

For speech synthesis, we use the CereVoice umttsmh syn-
thesizer developed by CereProc (www.cereproc.cogifce
conversational speech (such as backchannels agchdraary
utterances) typically does not come out very welht off-the-
shelf speech synthesizers, CereProc was contréstedmple-
ment the voice with recordings of a range of baekctel



sounds, as well as Reprise Fragments and Clardfit&equests
containing the landmarks that were used on the rirafise ex-
periment.

4. Data collection and processing

In this study, we want to explore how to improve Response
Location Detector, by training it on data collectedm users
interacting with a first iteration of the systenmn& we initially

did not have any sophisticated model for the RIltBvas simply
set to wait for a random period between 0 and 880after an
IPU ended. If no new IPUs were initiated duringstperiod, a
RL was detected, resulting in random response ddiagyween
200 and 1000 ms.

4.1. Data collection and annotation

10 subjects participated in the data collectioreyltvere seated
in front of the display showing the map, wearingemadset. The
instructor told them that they were supposed teriles a route
to the computer. They were told that they shouldgime another
person having a similar picture as seen on theescirut without
the route. Each subject did five consecutive tagikls five dif-
ferent maps, resulting in a total of 50 dialogues.

The users’ speech was recorded and all eventisyttem
were logged. Each IPU was then manually annotatexithree
categories: Hold (a response would be inappropri&espond
(a response is expected) and Optional (a responsé&vmnot be
inappropriate, but it is perfectly fine not to resp). The annota-
tor was given a tool with which the dialogue waaygd up to
the end of the IPU and then paused, so that thetation could
be made based on the left context only. To cheekrd¢hiability
of this coding, one dialogue from each subject,(R8% of the
material) was annotated by a second person. Fthraelt catego-
ries, the kappa score was 0.68 — a substantiabgnet. There
were only 6.7% of the instances where one annotstdr se-
lected Hold and the other Respond. We then pickedab in-
stances where the first annotator had selectedobtizese two
categories, in order to learn a classifier to dsitrate between
them, thus removing all Optional IPUs (about 15%gnf the
data set (whether an Optional IPU is classifiedHatd or Re-
spond should not matter much). In total, this detta®ntained
1780 IPUs. 56.3% of these were of the class Respehith
constitutes our majority class baseline (i.e., dbeuracy of the
RLD if it would produce a Response Location forte#eU). It
should be noted that the current model does nowdibr feed-
back within an IPU (as in [6]). It is yet uncleaswh problematic
this limitation is; none of the annotators felt theed to mark
RLs at other locations than at the end of IPUs.

4.2. Extracting features

Next, a set of features were extracted for all |IPAs stated
above, we wanted to test two types of featuressdlic and
Contextual. To extract Prosodic features, a pitabker based on
the Yin algorithm [11] was used. The pitch was $farmed to
log scale and z-normalized for each user. The2@8tms voiced
region was then identified for each IPU. For thégion, the
mean pitch and theslope of the pitch (using linear regression)
were used as features, as well as the absolutes/éu these.

The mean energy (again on the log scale, z-normalized) was

also computed for this region. As Contextual festumwe used

the last system response, as well as théength of the current
IPU and thdength of the current turn.

5. Results

5.1. Algorithms and feature sets

The WEKA machine learning software suite [12] wadi for
the classification task. Two different machine teag algo-
rithms were tested (with the default WEKA param&te€CART
(a decision tree) and Support Vector Machines (SVIe clas-
sifiers were evaluated using 10-fold cross val@atiThe accu-
racy (percent correct classifications) for differéature sets are
shown in Table 2. As can be seen, the best re36ho) is
achieved with SVM on the full feature set. All réisware signifi-
cantly better than the baseline of 56.3% (t-test;(05).

Table 2:The accuracy of the different algorithn®gnifi-
cant differences are indicated with “<” (t-test; @©<05).

CART SVM
Context 66.1% 66.0%
A A
Prosody 69.4% 69.6%
A A
Prosody + Context 72.6% < 75.0%

5.2. Effect of response delay

The classification above, as well as the baseitnbased on the
assumption that the system should be able to resjpojust 200
ms. This is a much shorter delay than what is rofieh used in
spoken dialogue system (typically 500-1000 ms), toight be
necessary if responses like backchannels shoufatdakiced “in
the middle” of the user's speech. However, by delgyhe re-
sponse, a lot of false positives may be avoidegtifo$hort hesi-
tations), as the onset of new IPUs might be dededteing this
delay and stop the system from responding. Whililit also
introduce some false negatives (making the systaihteo long
and miss a RL), this number is much smaller. Figdirghows
how a longer response delay affects the performahtee best
classifier (the SVM), as well as the baseline. As be seen, the
relative improvement of the SVM classifier is nat laig as the
relative improvement of the baseline. Thus, whileare system
would clearly benefit from delaying the respon$gs is not as
beneficial for the SVM classifier. Another way obking at this
is that the SVM classifier can produce a similarfgrenance af-
ter just 200 ms, as compared to a naive systenwihiald simply
wait for 1000 ms after each IPU before giving oese.
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5.3. Looking into the selected features

While the CART classifier doesn’t show the samefqrarance
as the SVM classifier, it is interesting to lookarthe decision
tree that is produced to get an understanding wof the features
contribute to the classification. This is illusedtin Figure 4.
The initial split is made between relatively flattgh (left
branch), vs. a rising or falling pitch (right brémc The latter
generally leads to Respond, as typically founcelated studies.
However, there is an exception for very short IRith a mod-
erate slope that don't follow a Clarification RequéCR) (which
typically trigger a simple “yes”). On the left sidere can again
see that IPUs following system utterances thanattgger short
user responses are labelled as Respond. Intedgstioglonger
turns, an invitation to respond seems to be aswsatisith a low
pitch region, while shorter turns ends with a hgtch region.
This nicely illustrates how the contextual and pdis features
are combined. Another interesting finding is thHa¢ &lgorithm
apparently has clustered Intro, Guess and CR aesauttes that
typically trigger very short responses like “yegbpare with
Table 1). It is especially interesting to see fRaprise Fragment
is not found in this category, despite the appasémilarity to
the Clarification Requests. The difference in tkalisation of
these was mainly prosodic — a rising pitch at the @f a Clarifi-
cation Request and a falling pitch at the end & Reprise
Fragment (similar to the patterns described in)[28hich obvi-
ously had an effect on the users’ behaviour. Préigaily, these
can be compared to “explicit” and “implicit” verifation re-
quests in traditional dialogue systems [14]. Tlau§larification
Request should always require some kind of resparisereas a
Reprise Fragment should not need a responsesitirrect.

Abs Pitch Slope < 0.295

S false
IPU Length < 0.375

R Ty
[ Respond } [ Turn Length < 1.575 ] [ Abs Pitch Slope < 1.14 ] [ Respond ]

Pitch Mean < 1.22 ] [ Pitch Mean<-0.93 J [ Last Sys Utt = [CR] J [ Respond ]

Last Sys Utt = [Intro|Guess|CR]

Figure 4:CART tree for the full feature set;
solid line = true; dashed line = false.

6. Conclusions and Future work

The best classifier, SVM, was able to correctlyntifg Response
Locations after 75% of all IPUs, using contextuadl grosodic
features, resulting in a response time of about 1280 This is
similar to the performance of a naive system thatildl wait for
1000ms before responding. As stated above, the siegtis to
use the model in the Response Location Detecttidrsystem
(as illustrated in Figure 2) and test it with usaige may then
see how much the performance actually improvesiimgerac-
tive setting, using both objective and subjective@asures.

The two human annotators agreed for 93.3% of thuntes,
which may be regarded as some kind of maximal pmdoce.
In the current study, the performance of the SVhsslfier peaks
at about 80%, even if a response delay is intradlu€e further
improve the classification, other kinds of featurelated to syn-

tax and semantics are probably needed, as inditateelated
studies. A possible extension would be to use aR &She sys-
tem to extract such features. Even if the resutiald/be unreli-
able, they could possibly help to improve the penfance to
some extent.

We think that the system presented here providesxaal-
lent testbed for doing experiments on turn-taking feedback in
an interactive setting. While we think the Map Takkmain in
itself provides valuable insights into feedback dabur, it is
also similar to many practical dialogue systemsengtthe sys-
tem needs to understand longer instructions andsen active
listener.
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