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Abstract
This paper is an initial exploration of how prosody helps coor-
dinate action, based on examination of speech and motion in a
two-player maze game where the players run and jump to avoid
obstacles, and coordinate movements to solve problems. We
use an unsupervised method, Principal Component Analysis ap-
plied to a large set of time-spread features, to discover patterns
of behavior involving both prosodic features and game actions.
These patterns include prosodic constructions involved in as-
sessing, planning, inhibiting, cuing, and synchronizing actions.
Index Terms: dialog, interaction, behavior patterns, multi-
modal, missing pitch values, prosodic constructions

1. Motivation
How people manage joint action is an important scientific ques-
tion [1, 2, 3, 4]. Language often plays an important role; indeed,
echoing the old yo-he-ho theory of language origin, Bangerter
and Clark have argued that “dialogue has its origins in joint ac-
tivities, which it serves to coordinate” [5]. The question of how
this is done is also of practical interest, for example in human-
robot and human-agent interaction [6, 7, 8, 9, 10, 11, 12, 13].

While prosody seems likely to be important in action co-
ordination, to date this has been only peripherally addressed.
Work on collaborative tasks such as the Map Task and the
Columbia Games Corpus has elucidated, among other things,
the prosody of turn-taking [14, 15, 16] and of joint attention
[17, 18]. The role of prosody in coordinating turn-taking and
feedback has also been studied more generally, not only for its
contributions to efficiency but also for its contributions to rap-
port [19, 20, 21, 22, 23, 24].

Examples of using prosody for control already exist, in sys-
tems which directly map user utterance features such as dura-
tion, pitch, and loudness to the motion, duration and speed of
tools or robots [25, 26]. However such methods have not seen
much use, perhaps in part because these mappings are arbitrary
and unrelated to how people use phonetics and prosody in in-
teraction with each other [27]. In addition there is work on how
virtual agents can align prosody with social and communicative
actions, including head nods, eyebrow movements, gaze and
gesture [28, 29, 30, 31], but apparently not on aligning prosody
with action, either by the agent or by users.

Thus no work to date seems to have directly addressed the
question of how people use prosody to coordinate action in the
world. This paper accordingly presents an initial exploration of
this. The contributions are:

1. A novel corpus of action coordination in gameplay,
2. A demonstration that Principal Component Analysis

(PCA) over time-spread features can discover multi-
modal patterns of behavior,
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3. The observation that it is generally easy to identify the
pragmatic roles of patterns discovered in this way,

4. The tentative identification of 24 functions served by
prosodic patterns in this domain,

5. The finding that prosody does indeed have a role in co-
ordinating action, and

6. A description of 6 prosodic constructions intimately in-
volved in action coordination.

2. Domain
Wanting a domain that involved coordinated action and was
easy to instrument, we chose Fireboy and Watergirl, a Flash
game free on the Web. This is an easy-to-learn game for two
players where each has just three actions: move left, move right,
and jump. Nevertheless the gameplay is quite varied, thanks to
interesting maze configurations and obstacles, some of which
require cooperation to overcome.

We auditioned for someone who enjoyed the game and en-
joyed playing it with others, and found one who was alert,
positive, helpful and good at keeping it fun. We recorded 19
games of about 10 minutes each, with this one fixed player
and 19 partners. We asked them to speak only English, al-
though most were Spanish-English bilinguals. Being more ex-
perienced, the fixed player tended to take a guiding role, thus
each dialog involves an “expert” and a relative novice. The
resulting dialogs turned out suitable for our aims. Compared
with, for example, Maptask dialogs, they are fast-paced and the
participants are often highly engaged. Samples are available at
http://www.cs.utep.edu/nigel/watergirl/. As expected, verbal in-
teraction was important to the game, with the participants mak-
ing suggestions, discussing the situation, giving warnings, co-
ordinating joint actions, showing excitement, and so on. Also,
as anticipated, the participants using highly-varied prosody.

For each game we captured five tracks of information,
namely video based on screen captures every 30 milliseconds,
head-mounted microphone recordings of each player’s voices
in separate tracks, and recordings of each player’s keystrokes.
This data is available for research purposes via the first author.

3. Methods
Our analysis strategy was to compute numerous low-level fea-
tures at each point in the recordings, and then use PCA to dis-
cover the underlying patterns [32, 33].

To represent action we use three features: Running fraction
is the fraction of time, in the specified window, during which
either the right-arrow or the left-arrow key is held down. Jumps
is the count of jumps (up-arrow keypresses) during the window.
Motion initiations is the count of keydown events for the right-
arrow and left-arrow keys.

For prosody we chose features to cover the four commonly-



number of features
expert’s novice’s
behavior behavior total

volume 20 12 32
rate 10 10 20
high pitch 14 10 24
low pitch 14 10 24
creakiness 14 10 24
narrow pitch 10 10 20
wide pitch 10 10 20

running fraction 12 12 24
jumps 12 12 24
motion initiations 10 10 20

Total 126 106 232

Table 1: Prosodic and Motion Features

used aspects — intensity, pitch range, pitch height, and speak-
ing rate — plus creakiness. The details of the computation
are described elsewhere [34]. One aspect is worth mention-
ing here, our solution to what Laskowski has called the “miss-
ing values” problem [35, 36]. The problem is the general one
(becoming more common with the increasing use of machine
learning and dimensionality-reduction techniques in the analy-
sis of prosody), that many techniques including PCA, require
features which are defined for all inputs, but of course this re-
quirement is not met for pitch in unvoiced regions and regions
without speech. Our solution is to not use pitch as a direct fea-
ture. Rather, we use pitch information to estimate mid-level fea-
tures, and then use those in the model. Our mid-level features
— pitch highness, pitch lowness, pitch wideness, and pitch nar-
rowness — were chosen as ones that have been implicated in
many functions of prosody. We define these features in ways
that make them robust to unvoiced regions. For example the
value for “high pitch” in a certain window is greater to the ex-
tent that the window contains more pitch points that fall in the
high band of the speaker’s range, and greater to the extent that
these points are higher. If there are no such pitch points, because
the pitch is either low or non-existent, then there is no evidence
for high pitch, and the value is zero. In this way we obtain ro-
bust and meaningful values that are defined everywhere, even in
unvoiced utterances and regions without speech.

To broadly characterize the pattern of activity in the vicinity
of any point in time, t, these features are computed over win-
dows that together tile a span from about 3 seconds before t to
3 seconds after. The window sizes are roughly proportional to
the distance from t, thus for example the most distant volume
window is 1.6 seconds long, from –3.2 s to –1.6 s, and the clos-
est is 50 milliseconds long, from –50 ms to 0 ms. Windows are
fixed in offset from t, rather than being turn-, utterance-, word-,
or syllable-aligned, so that they can be everywhere-computable
and robust. There are windows for features of both players, en-
abling the discovery of joint behaviors.

Table 1 lists the numbers of windows for each feature type.
There are more for the expert player than for the novice be-
cause we wanted to more precisely characterize his prosody in
order to eventually build a speech synthesizer with the same
expressive abilities. Wanting the top factors to be important
ones, rather than those which merely explained the most raw
variation, before applying PCA we z-normalized all features.
Nevertheless the larger number of pitch windows biases factors

which relate heavily to pitch to come out nearer the top, and
similarly for factors involving the expert’s prosodic behavior.
In any case, the exact choice of features to use is not critical to
the method. Indeed, in a preliminary study many of the patterns
found were largely the same as those described below, despite
the use at that time of different pitch-range features, different
feature-computing code, different window sizes and offsets, and
simplistic substitution for “missing” pitch values.

To discover the patterns, we computed these 232 features
at 522,476 timepoints t, sampled evenly every 10 milliseconds
through 87 minutes of gameplay. At each timepoint the features
characterized the activity in that vicinity, and all this data was
fed to PCA to discover the underlying factors.

We then examined the top factors to gain insight into how
prosody and action relate in this domain. Each factor has, of
course, a loading on the underlying features, and from these it
was often possible to directly ascribe a meaning to the factor.
For example, Factor 1 loaded positively on all volume features
and negatively on all motion features. Thus this factor, on the
positive side, describes a pattern in which both players are talk-
ing while neither is moving. Conversely the negative side of this
factor describes a pattern in which neither player talking while
both are moving. Thus this factor reveals two common patterns
of interaction, one present in the data at timepoints when this
factor has a high value, and the other present when it is nega-
tive.

For most factors, however, the loadings are more complex.
To understand the corresponding patterns we therefore consid-
ered not only the loadings but also what was going on in the
game, both at timepoints when a factor had a high positive
value and when it had a highly negatively value. Patterns can be
present to various extents, but we chose to examine only loca-
tions when they were strongly present, thinking that these would
be the most informative. For each such extreme-valued time-
point we considered not only the prosody and the keystrokes,
but also the state of the game, the words said, their apparent
pragmatic intention and effect, and any interesting phonetic as-
pects. While one can imagine more structured ways to do this,
we used a qualitative inductive method, as this was appropriate
for an initial exploration of this kind.

4. Prosodic and Action-Prosodic Patterns
This section concisely describes some of the patterns ob-
served. While each is probably best thought of as a com-
plete configuration of features which function together as
a whole, for reasons of space, we here describe for each
only a few of the the most heavily loaded prosodic and ac-
tion features. The complete loadings for each factor are at
http://www.cs.utep.edu/nigel/watergirl/. For convenience of
reference we give in bold a “tagline” for each pattern, referring
to some of these features or to commonly co-present pragmatic
functions, dialog activities or situational properties. We also
mention other commonly co-occuring aspects of the context,
phonetics, and words used.

Factor 1 explained 12% of the variance. As suggested above,
this involved two patterns or “constructions,” one at times when
the factor was present positively, and one when present nega-
tively:

1negative moving and not talking
1positive talking and not moving

Factor 2 explained 8% of the variance. Unusually, it was purely
prosodic, with negligible loadings on the action features.



Figure 1: Some loadings of Factor 23. Purple and solid lines are for the expert player; green and dashed for the novice. Time is in
milliseconds. The dotted lines are zeros, with points above them positively loaded and points below negatively loaded. The baseline for
the shading is -0.1, chosen just to make the patterns visually clearer. The “pitch height” line shows the difference between the loadings
of the high-pitch and low-pitch features. The darkness of shading in the running-fraction graphs indicates the loadings on the jumps
feature.

2n predictable, self-directed talk, by the expert, which
was loud, modal, and somewhat slow
2p shared emotional response or assessment of an un-
expected event, which was, as always, prosodically the op-
posite of the negative-side pattern, namely creaky, fast, and
rather quiet

Factor 3 explained 5% of the variance.
3n pausing to think and suggest, with high pitch, not loud,
and modal
3p digressing or joking while moving, creaky, fast, with
narrow pitch range

Factor 4 explained 4% of the variance.
4n concentrating, focusing, each mostly in silence
4p moving together wildly while exclaiming excitedly,
with a short burst of high speaking rate

Factor 5 explained 3% of the variance. This also had negligible
loadings on the action features.

5n together making a decision about future action, with
both speakers talking, largely unvoiced or creaky, then slow-
ing in rate for a second, then both falling quiet, speaking
quietly in modal voice if at all
5p digressing to comment on the game or recent per-
formance, involving silence followed by some creaky, loud
commentary, observations, regrets, teasing, etc., with the
novice tending to be moving

Factor 6 explained 2% of the variance.
6n grounding to establish a referent, talking about a fu-
ture obstacle, while the expert is moving but the novice is
still. Both are talking in quick alternation or with overlap,
then the expert’s pitch goes low when he identifies the thing
the novice was trying to describe.
6p tense while the novice executes a tricky move while
the expert is still; both very quiet initially, but with a high-

pitched comment from the expert, of praise or sympathy,
after the novice succeeds or fails

Factor 7 explained 2% of the variance.
7n fail, apology, minimization. This pattern is closely re-
lated to specific game situations, often occuring when ei-
ther the novice fails to make a jump and dies, or by inaction
causes the expert to die. Prototypically, both players show
fear with low pitch, and at the point of failure one or both
produce an affect burst [37], in high pitch. Then they both
laugh, the novice with an embarrassed laugh and the expert
with a sympathetic laugh. They remain motionless waiting
for the level to restart, and the novice says something apolo-
getic, using a wide pitch range. The expert then says some-
thing brief to play down the need to apologize, then says
something louder and more creaky that addresses what to
do next and/or provides encouragement. In the data no sin-
gle sequence exactly matches this prototype, but there are
many cases where most of the elements are present.
7p quiet satisfaction. This pattern often occurs when the
two players have resolved or accomplished something, are
pleased with each other, and now just need to do something
easy and slow to complete a level. They talk quietly, end
in a low-pitched phrase, such as there you go, and then fall
silent.

Factor 8 explained 2% of the variance.
8n mock panic, as for example when the novice is failing
to do something, and the expert draws his attention to it with
raised pitch and often breathy repetitions, as in the gem, the
gem, the gem and ah ah ah, jump jump jump.
8p meeting expectation. This pattern often occurs when
the novice is behaving as the expert wants or expects, and
the expert marks this with a low-pitch utterance.

Factor 9 explained 2% of the variance.



9n short instructions, such as go for it, said with no inten-
tion of taking the floor, with a decrease in speaking rate and
an increase in creakiness.
9p long instructions, such as I need you to push the button
so the, so the ledge goes down, typically with a two-part
structure, where there is a creaky region before the end of
the first part, possibly signalling the intent to keep the floor.

Most of these factors involve both prosody and action. How-
ever their action feature loadings indicate, at best, a moderate
elevation or depression of the frequency of some kind of ac-
tion over some wide region of time. Thus it seems that most of
the major prosody-action linkages are just tendencies, individu-
ally seldom precise or decisive, although perhaps cumulatively
strong. (As these factors are, after all, independent dimensions,
any point in time can have loadings on many; and indeed typi-
cally several patterns are highly involved at any point in time.)

While an interesting finding, we still wanted to find clearer
examples of prosody-action coordination. We continued exam-
ining the lower-ranked factors, scanning the loadings of each
until we found some with complex temporal configurations of
the action features. Coincidentally there were three in sequence:
Factors 23, 24, and 25. Each of these, while explaining less than
1% of the variance overall, and only rarely strongly present, ac-
counted for a lot of what was happening at such times.
For Factor 23, Figure 1 shows most of the loadings.

23n cueing the novice to start moving by production of a
high-pitch phrase by the expert, for example go for it.
23p cueing the novice to stop moving, where the ex-
pert produces a sudden drop in pitch level, followed by the
novice stopping motion, and then immediately by a loud
high pitch region and a motion initiation by the expert. This
sudden drop in pitch level can within a word, for example
a stretched out thennnn or between words said at a normal
rate, for example before the now in okay, so now. This con-
struction may relate to the common downstep pattern of En-
glish [38, 39].

Factor 24
24n figuring something out. This pattern occurs when the
expert is digesting new information, such as a new level’s
configuration or a new type of failure, and has figured out
what to do next or what just happened. He then typically
produces a short phrase like hmm, okay and then explains
what he figured out or just starts moving.
24p getting his bearings. This pattern often occurs when
the game situation has just changed, for example after a new
level has just loaded, or when the other player has moved
into a position enabling the expert to proceed. At times
when it is strongly present, the expert often quietly produces
thoughtful, filler-type words or phrases like so, okay, yeah,
and so, I’m guessing, let’s see with a narrow pitch range.
After this the expert doesn’t move for a few seconds while
he seems to get his bearings.

Factor 25
25n novice and expert jump alternately, novice moving,
often with multiple retries and repeated small adjustments
before making a successful jump
25p expert and novice jump alternately, expert running,
typically building up momentum and simultaneously doing
a couple of rhythm-establishing leaps before performing one
carefully timed jump, with which the novice tends to jump in
synchrony. The expert has a pitch dip and rise, followed af-
ter about 400ms by a pitch dip and rise by the novice, prob-
ably helping synchronize their motion.

5. Summary, Directions for Future Work,
and Potential Value

This paper has shown that prosody and action are linked in this
domain, shown that PCA can discover multimodal patterns of
behavior, and presented descriptions of some prosodic behav-
iors common in a coordination-rich interaction.

These results are preliminary in several respects: PCA dis-
covers statistical correlations but does not tell us anything about
causality; further study is needed to determine whether these
prosodic patterns actually have causal efficacy in the coordina-
tion of action. Our feature set was designed to capture prosody
as it relates to pragmatic and interactional functions; investiga-
tion with other features and other methods is needed to deter-
mine how the patterns found relate to other prosodic elements
and functions.

Future work might also extend this initial exploration in
several directions. First, the patterns this method discovers are
intrinsically joint, accounting for the coordinated behavior of
two speakers, so it would also be interesting to examine these
behaviors with traditional approaches, focusing on the decisions
and productions of one speaker at a time. Second, this study
used PCA as a simple way to decompose the contributions of
superimposed factors, but other models might have additional
advantages. For example Independent Components Analysis
may give a model that is sparser and thus easier to interpret, and
soft clustering could give a model with exemplars that are com-
mon rather than extreme examples [40]. Third, this study used
only prosodic and action features. In this framework it is easy
to include more features. It would be interesting to also incor-
porate lexical behaviors (perhaps using a vector-space model),
game-state aspects, gaze, and actions described at a higher level
than keystrokes, in order to obtain a more comprehensive view
of the behavior patterns. Fourth, it would be interesting to ex-
amine the cross-domain generality of some of the pragmatic-
prosodic mappings identified, regarding for example grounding,
apologizing, and taking the floor.

The potential uses of the patterns discovered here are vari-
ous. They might be useful for language learners, as such behav-
iors are not universal [41]. They could be employed by speech
synthesizers, to make their outputs prosodically more context-
appropriate and effective. They can serve as a list of things that
robots and similar systems should to be able to recognize and
to produce. They could be used for predicting a player’s likely
future actions from his or her prosody, or to help a robot player
choose his actions based on a human player’s utterance prosody.
More generally, models of this kind could be useful for creat-
ing systems better able to coordinate their actions with human
partners[42], for situated-action domains and beyond.
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