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Abstract

Previous studies show that immediate and long range prosodic context provide beneficial

information when applied to a language model. However, the fact that some features

provide more information to the prediction task should be considered. If the information

contribution of each feature can be determined, then a well-crafted feature set can be built

to improve the performance of a language model.

In this study, I measure the contribution of different prosodic features to a baseline

trigram model. Using this information, it should be possible to build a language model

that uses the most informative resources and ultimately performs better than a language

model that includes prosodic information naively. Using this information, I build a prosodic

feature set of 103 prosodic features from past and future context computed for both speaker

and interlocutor. Principal component analysis is applied to this feature set to build a

model that achieves a 25.9% perplexity reduction relative to a tri-gram model. However,

this model falls short of performance improvements achieved by a similar model without

proper feature selection by –1.2%.

iv



Table of Contents

Page

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapters

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Language Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Prosody and Language Modeling . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Conversational Speech Applications . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Prosodic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Feature Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

v



3.1.2 Using Non-adjacent Features . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Using Longer Context Features . . . . . . . . . . . . . . . . . . . . 11

3.2 Use in a Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Combination with N-grams . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Evaluation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Initial Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Feature Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Non-adjacent Feature Models . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Longer-Width Window Feature Models . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Past speaker features . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Future speaker features . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.3 Past interlocutor features . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.4 Future interlocutor features . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 Speaker Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.2 Interlocutor Features . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.3 Selected Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Principal Component Language Model . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 PC Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi



7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 Model Benefit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2 Dimension Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



List of Tables

3.1 Prosodic Feature Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6.1 Top 15 components and their respective perplexity reductions to the trigram

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Perplexity reduction for combined PC model. . . . . . . . . . . . . . . . . 60

6.3 Perplexity reduction for tuned combined PC models. . . . . . . . . . . . . 61

7.1 Examples of mock-quoting oh. . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Example utterance of model failure. . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Example for dimension 89: Low dimension values. . . . . . . . . . . . . . . 66

7.4 Example for dimension 89: High dimension values. . . . . . . . . . . . . . . 66

7.5 Example for dimension 89: Low dimension values. . . . . . . . . . . . . . . 67

7.6 Example for dimension 89: High dimension values. . . . . . . . . . . . . . . 68

7.7 Example for dimension 99: Low dimension values. . . . . . . . . . . . . . . 68

7.8 Example for dimension 99: High dimension values. . . . . . . . . . . . . . . 69

7.9 Example for dimension 10: Low dimension values. . . . . . . . . . . . . . . 70

7.10 Example for dimension 10: High dimension values. . . . . . . . . . . . . . . 70

7.11 Example for dimension 3: Low dimension values. . . . . . . . . . . . . . . 71

7.12 Example for dimension 3: High dimension values. . . . . . . . . . . . . . . 71

viii



List of Figures

3.1 Offset prosodic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Feature calculation over increasing window sizes. . . . . . . . . . . . . . . . 12

4.1 S-Ratios for word I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 S-Ratios for word and. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 S-Ratios for left pitch height context. . . . . . . . . . . . . . . . . . . . . . 20

4.4 S-Ratios for left pitch range context. . . . . . . . . . . . . . . . . . . . . . 20

4.5 S-Ratios for left speaking rate context. . . . . . . . . . . . . . . . . . . . . 21

4.6 Offset S-Ratio Mean Absolute Difference . . . . . . . . . . . . . . . . . . . 22

5.1 Perplexity reduction for non-adjacent volume models. . . . . . . . . . . . . 25

5.2 Perplexity reduction for non-adjacent pitch height models . . . . . . . . . . 26

5.3 Perplexity reduction for non-adjacent pitch range models . . . . . . . . . . 28

5.4 Perplexity reduction for non-adjacent speaking rate models . . . . . . . . . 29

5.5 Perplexity reduction for past volume models . . . . . . . . . . . . . . . . . 31

5.6 Perplexity reduction for past pitch height models . . . . . . . . . . . . . . 32

5.7 Perplexity reduction for past pitch range models . . . . . . . . . . . . . . . 33

5.8 Perplexity reduction for past speaking rate models . . . . . . . . . . . . . . 34

5.9 Perplexity reduction for future volume models . . . . . . . . . . . . . . . . 35

ix



5.10 Perplexity reduction for future pitch height models . . . . . . . . . . . . . 36

5.11 Perplexity reduction for future pitch range models . . . . . . . . . . . . . . 37

5.12 Perplexity reduction for future speaking rate models . . . . . . . . . . . . . 38

5.13 Perplexity reduction for interlocutor past volume models . . . . . . . . . . 40

5.14 Perplexity reduction for interlocutor past pitch height models . . . . . . . 41

5.15 Perplexity reduction for interlocutor past pitch range models . . . . . . . . 42

5.16 Perplexity reduction for interlocutor past speaking rate models . . . . . . . 43

5.17 Perplexity reduction for interlocutor future volume models . . . . . . . . . 44

5.18 Perplexity reduction for interlocutor future pitch height models . . . . . . 45

5.19 Perplexity reduction for interlocutor future pitch range models . . . . . . . 45

5.20 Perplexity reduction for interlocutor future speaking rate models . . . . . . 46

5.21 Speaker past volume features . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.22 Speaker future volume features . . . . . . . . . . . . . . . . . . . . . . . . 50

5.23 Speaker past pitch height features . . . . . . . . . . . . . . . . . . . . . . . 50

5.24 Speaker future pitch height features . . . . . . . . . . . . . . . . . . . . . . 50

5.25 Speaker past pitch range features . . . . . . . . . . . . . . . . . . . . . . . 51

5.26 Speaker future pitch range features . . . . . . . . . . . . . . . . . . . . . . 51

5.27 Speaker past speaking rate features . . . . . . . . . . . . . . . . . . . . . . 52

5.28 Speaker future speaking rate features . . . . . . . . . . . . . . . . . . . . . 52

5.29 Interlocutor past volume features . . . . . . . . . . . . . . . . . . . . . . . 53

5.30 Interlocutor future volume features . . . . . . . . . . . . . . . . . . . . . . 53

x



5.31 Interlocutor past pitch height features . . . . . . . . . . . . . . . . . . . . . 54

5.32 Interlocutor future pitch height features . . . . . . . . . . . . . . . . . . . . 54

5.33 Interlocutor past pitch range features . . . . . . . . . . . . . . . . . . . . . 55

5.34 Interlocutor future pitch range features . . . . . . . . . . . . . . . . . . . . 55

5.35 Interlocutor past speaking rate features . . . . . . . . . . . . . . . . . . . . 56

5.36 Interlocutor future speaking rate features . . . . . . . . . . . . . . . . . . . 56

xi



Chapter 1

Introduction

Today, automatic speech recognition (ASR) systems are widely used. Once limited to dic-

tation systems, ASR is a fundamental part of many systems with speech as a mode of

interaction. From uttering simple voice commands to more complex voice queries, users

and developers have many options for integrating ASR into applications. However, these

systems still have limitations. Aside from signal quality and other problems, current sys-

tems still fail in recognizing words, ultimately leading to user frustration and a negative

perception of such systems. Current systems utilize lexical context as their main source

of information for word prediction, however this is sometimes not enough. In this study,

I use prosody as an additional source of information for a language model. Prosody, or

basically the way a person speaks in terms of features like intensity, pitch, and rate of

speech, is present everywhere in both monologue and dialogue. This makes prosody a

prime candidate as a source of information for ASR systems.
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1.1 Motivation

This thesis focuses on discovering the information contribution of different prosodic features

when applied to language modeling. While previous research shows that prosodic informa-

tion does provide useful information to a language model (LM), these models incorporate

prosodic information in an ad hoc manner. Thus, discovering the relative importance of

features to language modeling enables the selection of the best features. Once selected,

I apply the resulting features to a LM, with the aim of producing a model with better

performance than one with prosodic information, but without proper feature selection.

1.1.1 Language Modeling

There are two ways to improve an ASR system: (1) improve the Acoustic Model (AM) or

(2) improve the Language Model (LM). Conceptually, in an ASR system, the AM takes care

of reducing the speech signal to a series of phonemes that are then matched to phonemes

in a given dictionary. However different words may have similar or identical phoneme

strings. To deal with this ambiguity, a LM assigns probabilities to all the words seen in

training so that the ASR system can pick the most probable word in the LM list that

matches the phoneme string generated by the AM. The probabilities assigned by the LM

are probabilities of words estimated in various ways, including, most traditionally, from

past lexical context using an n-gram model. In an n-gram model, the probability of a word

is conditioned on the past n-1 word tokens. Statistics for such models are generated by

looking at counts for all n-length strings found in a given training corpora that is often

2



domain specific.

1.2 Thesis Statement

The main hypothesis of this research is that a LM that incorporates the objectively most

informative features will produce lower perplexity results than one that incorporates similar

information selected naively. This is novel in that it focuses on finding the set of features

that are important for application to a LM. This set of features can then later be applied

to prediction endeavors for ASR.

The balance of this thesis is comprised of: Chapter 2 presents an overview of previous

research and current state of the art models incorporating prosody. Chapter 3 describes

the methodology used for computing the features used as well as the evaluation procedures.

Chapter 4 presents a preliminary study of the behavior for the probabilities conditioned

on non-adjacent features. Chapter 5 presents the characteristics of the best performing

prosodic features. Chapter 6 presents the results of the features when applied to a LM and

chapter 7 discusses the results. Chapter 8 lays out the conclusions and future work.

3



Chapter 2

Related Work

In this chapter I review past and current research on the use of prosody in language modeling

and its applications on conversational speech domains.

2.1 Prosody and Language Modeling

This study is not the first of its kind to use prosody as a prediction mechanism for lan-

guage modeling. Shriberg and Stolcke [6] surveyed the use of prosodic features as additional

information for a LM. One important aspect that they advocate is that the dependence

relationship between prosodic features and target classes (e.g., dialog acts, sentence segmen-

tation, words, etc.) should be direct, not mediated by linguistically-hypothesized prosodic

elements, such as tones. The target classes can be predicted directly through the use of

prosodic features. Results for this study yielded performance improvements for the predic-

tion tasks (2% relative reduction in word error rate (WER)), showing that using prosody

was a promising avenue. Huang and Renals [5] took this concept further and produced a

model that used prosody to predict words in an n-gram framework. Unfortunately, they

found that their prosodic n-gram model could not deal with the large number of target

4



words to be predicted under this framework. They point out that this may be due to the

lack of characteristic prosodic patterns for each word. While these may be adequate for

prediction of small target class sets (e.g., dialog acts, boundary segmentation, etc.), the

patterns may not be adequate to differentiate between large sets of words. However, this

approach still yielded modest perplexity and WER improvements over a baseline model.

These and other studies [1, 2, 8] have shown that the use of prosody as additional informa-

tion can be beneficial to LMs. However, one thing these studies share in common is that

they are focused on genres (notably radio broadcasts) and languages (notably Hungarian)

where prosody has a set rhythmic pattern tied to the words spoken. The lack of charac-

teristic prosodic patterns described in [5] may be attributable to the atypicality of such

domains. Thus, if the integration of prosody to language modeling can be extended to a

different dialog domain with higher variability in prosodic patterns, then prosody may be

able to provide more beneficial information for the prediction task.

2.2 Conversational Speech Applications

One such dialog domain is conversational speech. In this domain, there is a high variabil-

ity in the prosodic patterns observed due to a conversation’s unrestricted nature. Ward

and Vega [10] applied prosody to condition word probabilities in a conversational speech

domain. In this study they find that using immediate prosodic context with a baseline

3-gram model achieves a 2.6% reduction in perplexity. In an extension to that same model,

combining temporal information reduces perplexity down 8% from baseline [13]. This

5



temporal-prosodic model, when used in an ASR system, achieved a significant 1.0% reduc-

tion in WER (0.4% absolute) when applied to a German dialog corpus. These promising

results using only immediate prosodic context led Ward and Vega [12] to use more prosodic

features to potentially increase the information given to the LM. Within a six-second win-

dow centered at word onset, a feature set including both speaker and interlocutor volume,

pitch and speaking rate features was calculated. Principal Component Analysis (PCA)

was then applied to produce a feature set composed of 76 PCs. Using the top-25 best per-

forming PC models achieved a 26.8% perplexity reduction. This model though makes the

assumption that all features are equally informative. This naive assumption may actually

hurt the overall model, by including features that could not be beneficial to the prediction

task in any way.

2.3 Summary

Evidence from previous research suggests that prosody is a good source of information

for the word prediction. Prosodic features are readily available for calculation from the

voice signal, easily adaptable for use as context, and proven to improve ASR performance.

While state of the art models achieve great perplexity reductions, they may suffer from

the inclusion of features that introduce non-sufficient or noisy information to the language

model. In this thesis, I evaluate the information contribution of prosodic features, choose

the best, and show that a model that incorporates these features performs better than a

model incorporating features in an ad hoc manner.

6



Chapter 3

Methodology

In this chapter, I explain the methodology to achieve the goals set forth in the previous

chapter. The methods for calculating and evaluating prosodic features, the technique for

combination with a n-gram LM, and the application domain are discussed.

3.1 Prosodic Features

3.1.1 Feature Calculation

While the main point of this study is to find the set of most informative features for use

in a LM, the target goal for using this information in the first place remains in line with

the goals set out by Ward and Vega [10]. Prosody here is used as a step towards exploiting

cognitive state information for language modeling. Thus, the features calculated are direct

[6] in the sense that they do not correspond to hand-labeled data. They are also not

syllable-aligned, syllable-normalized, or computed over complete utterance. Rather they

are calculated at 10ms intervals over fixed-size context windows.

The features chosen for this study are defined in Table 3.1. The features are derived

from a basic set of features defined in [13]. The features were chosen out of convenience as

7



Respond, an in-house feature extractor, computes these features. These features also let me

make a direct comparison between this study’s model and the one built in [12]. Volume is

chosen as an indicator of speaker engagement and dominance. This feature captures lexical

stress patterns as well as patterns where loudness is used as a means of communicating

opinion and a stance on a certain topic. Pitch features are strongly associated with a

speaker’s involvement in the conversation. Places where the speaker is laughing or uttering

emotionally colored words are identified by this kind of feature. Speaking rate is able to

identify speaker preparation and confidence. Words after slow speaking rates are found in

areas of speech where the speaker utters fillers as a way to prepare their utterance. Fast

speaking rate contexts characterize areas of speech where high-content words are uttered,

namely place names and numbers [13].

Table 3.1: Prosodic Feature Definition

Prosodic Feature Context Window Size Significance in Dialogue

Volume 50 ms Engagement and dominance

Pitch Height 150 ms Involvement and lexical access

Pitch Range 225 ms —

Speaking Rate 325 ms Degree of preparation/confidence

Context window sizes were found with a hill-climbing approach for each feature in

isolation, seeking to optimize perplexity for a LM incorporating this information. One thing

to note are the rather small context windows over which perplexity was minimized. This

8



suggests that, for the prediction task, a prosodic features calculated over small windows

of context contain relevant information for the prediction task. This is especially true for

volume, the feature with the shortest high-value context window and the largest perplexity

reduction when used in isolation with a LM [13].

After the calculation of the prosodic features, statistics for word occurrences preceded

by a given prosodic context are generated. First, the prosodic features are “binned” from a

continuous scale into four discrete categories (low, low-mid, mid-high and high). However,

the thresholds for binning these features are decided in a different fashion than the binning

process defined in [13]. The thresholds for the volume and speaking rate features are taken

directly from the value distribution, using the quartile values as thresholds, effectively

dividing the distribution of values into four regions. For the pitch features though, an extra

step needs to be taken. The absence of pitch at different points throughout a conversation

makes it more difficult to base thresholds solely on quartile boundaries. As missing pitch

points account for 40% of the data points used for training, they need to be handled

differently. One approach would be to assign these values the average pitch range/height

seen in the data, however this is not realistic as pitch would be assigned to regions where

there might be no speech at all. Setting those invalid points to zero pitch values would

skew the data so badly that most contexts would be binned to the “high” categories, so

that is not a great approach either. Instead, missing pitch frames are directly binned to the

none category and are not taken into account for finding the quartile points of the pitch

height/range value distributions.

9



3.1.2 Using Non-adjacent Features

In Ward and Vega [13] only immediate context information was used to condition word

probabilities. Ward and Vega [12] followed that up by using information from past/future

non-adjacent features in the PCA mixture. Here, non-adjacent features are defined as

features that are offset by one or more feature window sizes from a given time point.

Although words were not conditioned directly on the non-adjacent context in their model,

this information contributed to the probability estimates of a word at different contexts.

Here however, there is a need to condition words on these non-adjacent features to test the

informativeness of a feature. Thus, I introduce offset prosodic models. Figure 3.1 illustrates

these features.

Figure 3.1: Offset prosodic features.

The models from previous studies can be thought of as 0-offset models, where the feature

contributing information is the feature at the immediate context. Thus, n-offset models

can be used to test the information contribution of features that originate at times offset

from word onset.

10



3.1.3 Using Longer Context Features

One aspect of the PC model mentioned earlier that is worthy of study is the use of longer

window sizes for features further away from word onset. In that model, features further

away from word onset were aggregated into larger windows under the assumption that

features further away from onset contain less information than windows closer to the point

of interest. Thus, aggregating adjacent features further from point-of-interest (e.g., word-

onset or word-end) could increase their contribution to a language model.

The method for increasing feature calculation is illustrated in Figure 3.2. The feature

calculation is done by producing features over increasing window sizes. This is done by

using Respond, an in-house prosodic feature extraction tool used for calculating the raw

prosodic features defined in section 3.1.1. To achieve the calculation on increasing window

sizes, features are calculated over context window sizes that grow in 50 ms window size in-

crements. Minimum and maximum window sizes are set to 100 ms and 500 ms respectively.

To create an overlap between windows, as shown in Figure 3.2, windows are referenced in

50 ms window size offsets over the context limit. The context limit is defined as three

seconds from point-of-interest, matching the context used in [12]. The context space is

taken from past context, features calculated on context previous to word onset, and future

context, features calculated on context situated at times future to word-end time. Features

are incorporated from both speaker and interlocutor tracks. Taking features over this space

results in a total feature space of 7104 prosodic features.

11



Figure 3.2: Feature calculation over increasing window sizes.

3.2 Use in a Language Model

The method used to combine prosodic information computed with a LM is the same used

in [9]. This method is summarized in this section.
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3.2.1 Combination with N-grams

Once binned, these discrete categories are used as context tokens to count the number of

occurrences of a word after a given prosodic feature context. Thus, each word has a proba-

bility of occurring at a given prosodic context. For example, I can compute the probability

of the word the happening after silent or high volume contexts, using the statistics over the

training corpus.

These probabilities are then turned into probability ratios. These ratios are given by

equation 3.1. For each word wi at a given prosodic context x, I can compute the prosodic

context probability, Pprsdy(w@x). By taking the ratio of the prosodic context probability to

the word’s overall probability in the corpus, Puni(wi), an estimate of the probability boost

given by prosodic information is given. This ratio I call the R-Ratio. With an R-Ratio

ratio greater than 1 at a given context, a word is more probable. With an R-Ratio less

than one, a word is less probable at that context.

R(wi@x) =
Pprsdy(w@x)

Puni(wi)
(3.1)

However, some problems do arise from this approach. One of those problems is data

sparsity. There are words that do not happen at every prosodic contexts, creating zero

counts when generating the word counts, ultimately creating zero probabilities. To handle

this, I use add-1 smoothing for these words. Another problem is the lack of information seen
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from words that are too infrequent at certain contexts. To avoid this, the informativeness

of a word’s R-Ratio is estimated using the χ2 test. From this test, the p-value of this

hypothesis, p, is computed, and from that the confidence in the hypothesis, q=1-p, is

computed. Finally, the R-Ratio is raised to the qth power, resulting in the S-Ratio, given

by equation 3.2.

S(wi@x) = R(wi@x)q (3.2)

These S-Ratios are then used as scaling factors to the n-gram probability, shown in equa-

tion 3.3. Across the whole vocabulary, each scaling factor is associated with a parameter

k that increases or decreases that given feature’s contribution to the overall combination.

This paramater is fixed for each feature. The scaled values are then normalized to ensure

true probability estimates. Notice that this approach doesn’t limit the amount of informa-

tion that can be applied: the information for multiple prosodic features can be combined

into the LM in the form of multiple scaling factors.

P(wi@x|c) = Plm(wi|c) ∗ S(wi@x)k (3.3)
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3.3 Evaluation Scheme

3.3.1 Corpus

As pointed out earlier, this model is applied to the word recognition task for conversational

speech. The Switchboard corpus is used for LM evaluation. This corpus is a collection

of short telephone conversations on light topics (e.g. movies, music, and light politics)

between mostly unacquainted adults [3]. I retrieve relevant prosodic features using the

ISIP transcriptions of the Switchboard corpus [4]. These transcriptions are time-aligned at

the word level, allowing me to retrieve prosodic feature at or around the points of interest

for each word.

From this corpus, 981 tracks, consisting of about 80 hours of speech and 650,000 words

are used as training for both the baseline LM and the prosodic models. A held out set

of tracks consisting of 35,000 words was used as tuning data to find the optimal set of

meta-parameters, the most important being the k exponents associated with each scaling

factor. Final evaluation is done on a separate set of data. This test set consists of 45 tracks

from Switchboard, containing 28,000 words and making up 4 hours of dialog.

3.3.2 Performance evaluation

To evaluate the performance of each prosodic model, perplexity is the measure of choice.

Perplexity, in layman’s terms, represents the difficulty of recognizing the current word.

Thus, a lower perplexity value is better. The baseline LM is the a back-off trigram model
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implementation from the SRI Language Modeling Toolkit [7]. Vocabulary for this LM is

limited to 5000 words, with other words treated as unknown tokens. Baseline perplexity

for the test set was 109.449. Feature selection is based solely on perplexity reduction, as

will be discussed below.
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Chapter 4

Initial Observations

The S-Ratios not only allow for relatively easy integration for information in a LM, they

also enable a quick way to observe how words behave depending on prosodic context. If

conditioning on prosodic context gave no relevant information, then all ratios generated

would be 1.0, basically saying that prosodic information is no better than using unigram

probabilities.

The probability ratios discussed in this chapter correspond to past speaker context

features for the most frequent words seen in the corpus.
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Figure 4.1: S-Ratios for word I.

Figure 4.2: S-Ratios for word and.
18



Figure 4.1 shows the S-Ratios for the word I when conditioned on the speaker’s left

volume context. Conditioning on immediate context (0-offset) yields the most variation.

Here the word I is more common after none (e.g., silence-level volume), low, and high

volume contexts when compared to the word’s overall probability in the corpus. However,

the model indicates that the word is uncommon at medium volume contexts, where the ratio

falls below 1.0. For offsets preceding immediate context, the trend for the ratios remains

similar, almost converging to the same behavior, where S-Ratio values don’t change much

between offset windows. For the word and, shown in Figure 4.2, there is a similar pattern.
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Figure 4.3: S-Ratios for left pitch height context.

Figure 4.4: S-Ratios for left pitch range context.
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Here, the pattern seen for the word I, where ratios stop changing after a certain offset,

is more pronounced. After the third offset window, S-Ratio values change only slightly

basically keeping the same behavior as they move further away from word onset. Looking

at the pitch features (Figures 4.3 and 4.4) and speaking rate (Figure 4.5) reveals similar

patterns.

Figure 4.5: S-Ratios for left speaking rate context.

Pitch height/range features also exhibit the same offset limit, after which S-Ratios don’t

change. This trend is an interesting one though. If this property holds for other words

as well, then it suggests that there is an offset point for these features where conditioning

on farther contexts yields little additional information than the closer information. To see
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if this notion holds or not, the S-Ratios for all words in the vocabulary were analyzed.

Mean absolute difference was used as the measure of change between S-ratios. Figure 4.6

summarizes the results.

Figure 4.6: Offset S-Ratio Mean Absolute Difference

The graph shows the mean absolute difference between offset S-Ratios for all corre-

sponding words in the vocabulary when conditioning on volume. Differences from zero

to one offsets are larger compared to all differences between other offsets, showing that

S-Ratio values between those offsets do change. However, moving away from zero offset

those differences decrease. Once past the third offset window, differences become smaller.

When reaching the fifth or sixth offsets, differences, although not zero, are virtually the

same, indicating that conditioning on farther context is almost as beneficial as conditioning
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on nearer non-adjacent features.
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Chapter 5

Feature Evaluation

In this chapter, the results of conditioning word probabilities on prosodic features in the

context space is presented. I present an analysis for the information contribution of these

features to the word prediction task.

5.1 Non-adjacent Feature Models

As discussed in section 3.1.2, I calculate scaling factors by conditioning word counts on

non-adjacent offset features for both past and future context, and both on speaker and

interlocutor context. Models are generated and evaluated for each non-adjacent feature

that contained in the defined context limit. Models are evaluated in isolation on the tuning

set.
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Figure 5.1: Perplexity reduction for non-adjacent volume models.

Figure 5.1 shows perplexity reductions relative the baseline trigram model when using

volume information for each of the first 10 non-adjacent feature windows. Previous studies

[13] show that same-speaker volume features provide the largest perplexity benefit over

baseline. The same thing is seen here when using non-adjacent windows close to the point-

of-interest, both for past and future context. Future speaker context in particular seems to

provide largest amount of benefit as the benefit given at further offsets constantly remains

above other features at the same time offset. While future speaker context exhibits this

behavior, past speaker context does not. Past speaker context only performs well for the

first four offset for the first 200 ms. After that point, perplexity benefits degrade below
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the 0.3% reduction point, producing benefits well below future context and below those

produced by interlocutor features. Interlocutor volume features from past contexts provide

small benefit at windows close to the point-of-interest. The real benefit from these features

comes at offset windows farther from the point-of-interest, as seen in the figure. This growth

may indicate that there is a period of time between interlocutor features and speaker words

that needs to pass for that feature to be useful enough for the prediction task.

Figure 5.2: Perplexity reduction for non-adjacent pitch height models

For pitch height features, a similar pattern is observed. This is shown in Figure 5.2.

Future speaker features are dominant close to the point-of-interest as compared to other

features. Unlike volume features though, the contribution from interlocutor future context
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becomes large enough to overtake future speaker pitch height past 900ms from the point-

of-interest. Past speaker pitch height readings are still informative at immediate points,

but that contribution degrades below the 0.5% level after approximately 300ms and below

0.1% after 750ms from the point-of-interest. Past interlocutor information performs below

the 0.5% reduction level consistantly along all offsets.

Pitch range features, whose perplexity reductions are illustrated in Figure 5.3, show

similar trends. Although future speaker features have low perplexity reduction immediately

at word end, these features still produce higher reductions within the first 500ms from the

point-of-interest than to the other features. speaker past features are most informative

immediately before the point-of-interest, becoming almost null at 900ms. After that point

though, benefits fall to the 0.2% level past 2 seconds from word onset. Interlocutor features

show most information contribution at 450ms and 675ms for past and future features

respectively.
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Figure 5.3: Perplexity reduction for non-adjacent pitch range models
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Figure 5.4: Perplexity reduction for non-adjacent speaking rate models

speaker future speaking rate features, shown in Figure 5.4, exhibit the second biggest

perplexity reduction of all features at 3.07%, then dropping down to 0.53% at 650ms from

the point-of-interest. Future interlocutor features show different behavior from that in

the previous features. Future interlocutor features are informative at the point-of-interest

(0.5% perplexity reduction) and then drop below 0.2% only to rise up to 0.65% at 975ms

from the point-of-interest.
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5.2 Longer-Width Window Feature Models

As with the non-adjacent features, S-Ratios for features computed over longer window

sizes are calculated for both speakers conditioning on both past and future context. In this

section, I present the results of applying this information to the word prediction task, as a

way to judge the utility of the various possible features.

5.2.1 Past speaker features

In this section, I describe the perplexity reductions obtained by using longer-width speaker

features.

Figure 5.5 shows perplexity reductions for past volume features over a three second

context limit. As also seen earlier, volume features are particulary strong close to word

onset, achieving up to 1.58% perplexity reduction for volume calculated over a 100 ms

window. As the window width increases, perplexity reductions close to the point-of-interest

decrease, suggesting that small, fine grained windows are suitable for contexts close to the

point-of-interest. However, these perplexity reductions fall fast with time. Reductions only

manage to stay above the 0.5% line for about 150 ms from word onset, and they are below

0.2% reduction for earlier contexts as seen in the figure. While there are regions where

larger windows are more informative than smaller windows, the differences between these

perplexity benefits is small and may not be significant.
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Figure 5.5: Perplexity reduction for past volume models

Pitch height features, whose reductions are shown in Figure 5.6, exhibit similar patterns.

Although the reduction benefits over 0.5% last longer than they do for volume features,

the reductions still fall below 0.2% past 250 ms from word onset for all width lengths.

Pitch range features though (Figure 5.7, exhibit other characteristics. Both for windows

from the point-of-interest and on more distant contexts, larger windows are evidently more

informative than smaller widhts. Smaller width features actually hurt the model at contexts

from 250 ms to 1300 ms, reaching perplexities as bad as 0.11% worse than baseline. When

the window width exceeds 200 ms, these features perform better than baseline consistently

within the three second context limit.
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Figure 5.6: Perplexity reduction for past pitch height models
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Figure 5.7: Perplexity reduction for past pitch range models

Speaking rate features, Figure 5.8, exhibit similar behavior to volume features, where

small width features provide better benefits up to 150 ms from word onset. After that

point, reduction stay constantly below 0.2%.

From these and previously seen trends, a pattern starts to emerge. As previously drawn

from the behavior of S-Ratios in Chapter 4, information from past context features seems

to be strong only for a small amount of time before word onset. This is clearly seen in

the perplexity benefits produced over time. The best benefits are seen for features close

to the point-of-interest. As I condition word probabilities on earlier contexts, information

contribution dwindles across all models.
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Figure 5.8: Perplexity reduction for past speaking rate models

5.2.2 Future speaker features

When conditioning on a speaker’s future context, different patterns emerge.

Figure 5.9 shows perplexity reductions when conditioning on speaker’s future volume

context. Here small width contribute most information close to the point-of-interest. For

future volume, perplexity benefits stay above 0.5% for longer. For feature widths of 100-350

ms, volume features produce benefits greater than 0.5% up to 300 ms from the point-of-

interest. Past this point, perplexity reductions again dwindle down to smaller values. While

this behavior is similar to the one seen for past volume features, there is an interesting region

where, for some window sizes, perplexity benefits increase to a local maximum and then
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descend. This is seen for feature widths of 200-300 ms and 400 ms in the region 100-200 ms

from the point-of-interest. For each of these features, perplexity benefits drop from their

global maximum at the point-of-interest and rise for a brief period of time.

Figure 5.9: Perplexity reduction for future volume models

For future pitch-height features, the same rise in perplexity after a steep drop is seen.

Figure 5.10 shows the perplexity benefits. Features close to the point-of-interest do better

than those at farther points. Perplexity benefits drop below 0.5% past 250 ms of future

context, becoming very small past 1.5 seconds. The behavior for feature widths of 300 and

400 ms is interesting in that there is a large region (250 ms for 400 ms wide features) where

perplexity benefits reach a minimum and rise again after 300 ms. For future pitch range
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features, shown in Figure 5.11, conditioning on features past 250 ms produces benefits

constantly less than 0.5% perplexity reduction. Although even within the region of 0-250

ms from the point-of-interest, small widths do best in comparison to features calculated

over larger windows.

Figure 5.10: Perplexity reduction for future pitch height models
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Figure 5.11: Perplexity reduction for future pitch range models
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Figure 5.12: Perplexity reduction for future speaking rate models

Future speaking rate features (Figure 5.12) are only valuable very close to the point-

of-interest. The steep drop in benefits after 100 ms makes it clear that using further rate

context is not beneficial for the prediction task. Calculation over longer windows benefits

perplexity reduction, as seen from the performance produced by calculating over windows

of 350 ms and 450 ms. However this only lasts for the first 100 ms after the point-of-interest,

after this point perplexity benefits stay close to a mere 0.1% reduction

The results shown from conditioning on speaker past and future features confirm one of

this study’s previous observations: Speaker features that are close to the point-of-interest

are best suited for the word prediction task.
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5.2.3 Past interlocutor features

Interlocutor features show different characteristics. First we consider past context features.

Figure 5.13 shows the perplexity benefits when conditioning on the interlocutor’s past

volume features. Here, volume features exhibit something interesting. Perplexity benefits

peak away from the point-of-interest, unlike what was seen for speaker volume features.

Most features, with the exception of those calculated over 400 ms, peak in the region of

250-350 ms from the point-of-interest. While these volume features produce benefits that

are not large, short width features do best, reaching perplexity benefits of up to 0.75%.

Features calculated over 400 ms peak earlier than shorter windows (approximately 150 ms)

and provide benefits above 0.5% up to 350 ms from the point-of-interest. Pitch features

show similar trends.
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Figure 5.13: Perplexity reduction for interlocutor past volume models

Figure 5.14 illustrates the behavior of perplexity benefits when conditioning on inter-

locutor past pitch height features. Although benefits are not as big as those given by volume

features, benefits also peak at points offset away from the point-of-interest. The peak for

small width features happens in the region of 300-600 ms from the point-of-interest. Larger

widht features peak early at approximately 200 ms from the point-of-interest for 350 ms

wide features. After 600 ms, perplexity benefits start decreasing constantly until 1400 ms,

where benefits from features 100 and 150 ms wide rise again. Pitch range features peak

earlier than pitch height features. Shown in Figure 5.15, range features peak from 150-300

ms from the point-of-interest. Interestingly enough, range features calculated over 400 ms

40



do best, reaching 0.4% perplexity reduction at 150 ms from word onset. Features calculated

over smaller windows (e.g. 100 and 150 ms) provide smaller benefits constantly throughout

the three second context space, overtaking longer windows past the two-second mark.

Figure 5.14: Perplexity reduction for interlocutor past pitch height models

Among interlocutor features, past speaking rate provides the lowest benefits for per-

plexity reduction. In contrast to the other features, as shown in figure 5.16, speaking rate

features peak at the point on interest, only to decline constantly after that point.
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Figure 5.15: Perplexity reduction for interlocutor past pitch range models
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Figure 5.16: Perplexity reduction for interlocutor past speaking rate models

5.2.4 Future interlocutor features

Future interlocutor features exhibit different trends.

Volume features in particular show similar behavior to that of speaker volume features.

This is depicted in Figure 5.17. Peaking at the point-of-interest, future interlocutor volume

feature effects drop from their peak over a region of 50-100 ms from the point-of-interest.

After this point, benefits rise again almost to the level where they peaked. This peak

happens roughly at a region 350-650 ms from the point-of-interest. After this point, benefits

begin to slowly fall again. Conditioning on features calculated over smaller windows (e.g.,

100-200 ms) provides the best benefits across the whole three-second context window space.
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Figure 5.17: Perplexity reduction for interlocutor future volume models

Pitch features, whose benefits are shown in Figures 5.18 and 5.19, show similar behaviors

to their past-context counterparts. Pitch height features peak approximately 400 ms from

the point-of-interest and slowly decline after that. Pitch range features gain their peak later,

at around 600 ms, pointing to the possibility that, for interlocutor context, the important

information from these features appears at times that are not close to the point-of-interest.

For future pitch contexts, calculating features over smaller windows seems best as they

consistently provide better benefits over the whole feature space.

44



Figure 5.18: Perplexity reduction for interlocutor future pitch height models

Figure 5.19: Perplexity reduction for interlocutor future pitch range models
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Speaking rate feature benefits, shown in Figure 5.20, peak at the point-of-interest and

rapidly fall below 0.1% after 150 ms for smaller width features. Benefits for longer width

features (features over 250 ms) degrade faster, as they fall below 0.1% past 100 ms from

the point-of-interest.

In general the trends in perplexity reduction produced by conditioning on past and

future interlocutor features support the idea that interlocutor features are more beneficial

for word prediction when they are referenced at times farther from the point-of-interest.

This suggests that words may depend on interlocutor events that happen some time before

or after the word occurs, as one would expect from typical human reaction times.

Figure 5.20: Perplexity reduction for interlocutor future speaking rate models
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5.3 Feature Selection

Given the results from section 5.1 and 5.2, I can now make an informed decision on which

features should be used for a comprehensive language model, as will be discussed in the

next chapter. Taking the feature set of that model as a template for selection, I define a

feature set that has:

• Granularity - Feature window sizes at certain context points are determined by the

amount of information a certain feature contributes to the prediction task. Feature

window sizes in a region of high contribution are generally finer than in regions where

contribution is smaller.

• Zero Gaps - There is no blank space between features in the context space. This

enables the model to capture all the information within the predefined context win-

dow.

• Optimality - When deciding between feature window sizes in a given context space,

the window with better performance is selected.

• Minimized Overlaps - For some context spaces, there may be some overlap due to

how features are selected. Although this may give the feature set some redundant

information, the amount of overlap is kept to a minimum; in any case, redundancy

will be filtered out by PCA when it is performed on the feature set.
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Thus, for this feature set, features spanning regions outside of the high contribution

regions in the context space are coarsely aggregated. The aggregation scheme is the same

as in [12]. That is, after a fine-grained region of features calculated over a given window size,

adjacent features are aggregated in multiples of two. For example, if the fine grain region is

composed of 100 ms wide features, I aggregate and average the next two windows, producing

the next adjacent feature. For the subsequent features, I apply the same operation over

four windows, then eight so on and so forth until I cover the remainder of the context

window space.

Pitch height and range features are treated differently. PCA requires that each feature

has a real value. To avoid invalid pitch points, I simply replace invalid values with the

average pitch range/height value over the corpus. I then apply normalization to the features

and execute the aggregation scheme described above. There are also feature window size

limits that need be imposed for pitch features. Respond appears to require at least 100

ms of context to reliably compute pitch height and range features. Therefore, the pitch

features selected are only those calculated over windows of 100 ms or wider.

5.3.1 Speaker Features

As seen from the perplexity reduction results for speaker features, the majority of infor-

mation lies at contexts close to the point-of-interest. For these features, I confine the

fine-grained regions to range from the point-of-interest to a maximum fine context limit. I

define this context limit for each feature and apply aggregation to features past this context
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limit. For certain features though, I also define maximum context limits that are less than

the predefined three second context window. This is because perplexity benefits seen fur-

ther out are so small (below 0.1%) that they are deemed not important to word prediction.

For these features, I impose a maximum context limit to avoid the introduction of noisy.

Volume

For past volume features, the fine region encompasses context from word onset up to 200

ms to the past. Due to the performance benefits seen from 50 ms windows in this context

space, feature window sizes are taken at 50 ms within this space. For fine grain features,

this results in four fine-grained windows close to the point-of-interest. For 200 ms and

beyond, features are aggregated, resulting in five coarse-grained features. Future speaker

volume’s fine region lasts from 0-100 ms from word end time with features calculated over

50 ms, resulting in two fine windows. Coarse-grained windows after that point total up to

five coarse features as well. The layout of these features in their respective context space

is shown in figures 5.21 and 5.22.

Figure 5.21: Speaker past volume features
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Figure 5.22: Speaker future volume features

Pitch Height

Past pitch height’s fine region lasts up to 150 ms from word onset. Fine-grained features

total up to two with features taken at 100 ms wide windows. Coarse-grained features after

150 ms from the point-of-interest total up to four features. Future height features have

their fine region up to 250 ms producing three fine grain features (100 ms wide), and four

coarse features after this region. The layout of these features in their respective context

space is shown in figures 5.23 and 5.24.

Figure 5.23: Speaker past pitch height features

Figure 5.24: Speaker future pitch height features
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Pitch Range

For past pitch height, the fine grain region happens between zero and 200 ms from word

onset. Taking features at 150 ms wide regions, this produce two fine grain features within

that space. To fill up the remainder of the context space, four coarse-grained features

are produced. Future pitch range has its fine region from 0-250 ms, producing two fine

grain features and four coarse feature in the remaining context space. The layout of these

features in their respective context space is shown in figures 5.25 and 5.26.

Figure 5.25: Speaker past pitch range features

Figure 5.26: Speaker future pitch range features

Speaking Rate

Speaking rate’s fine region lasts 200 ms from word onset, producing two fine grain features

and four coarse grain features after that. The fine region for future speaking rate lasts from

0-100 ms from the point-of-interest. For this feature, I impose a 300 ms maximum context

limit which produces one coarse grain feature 200 ms wide. The layout of these features in
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their respective context space is shown in figures 5.27 and 5.28.

Figure 5.27: Speaker past speaking rate features

Figure 5.28: Speaker future speaking rate features

5.3.2 Interlocutor Features

For interlocutor features, the region of highest contribution appears some time before the

point-of-interest for past features and after the point-of-interest for future features. There-

fore, there exists a context space between the point-of-interest and the fine-grained region

which I fill with a coarse-grained feature. This feature is selected based on best performance

and minimum overlap with the fine feature region. Aggregation is still applied for features

past the fine feature region. For certain features, I also impose a maximum context limit

for features whose contributions are below 0.1% perplexity reduction.
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Volume

For past volume features, the fine-grained region starts at 150 ms and lasts up to 550 ms,

producing four fine grain features. The space between the point-of-interest and the fine

feature region is filled with a 150 ms feature window, and the rest of the context space

is filled by four coarse grain features. For future volume the fine region appears at 0-700

ms, producing seven fine features and four coarse features over the rest over the remaining

context space. The layout of these features in their respective context space is shown in

figures 5.29 and 5.30.

Figure 5.29: Interlocutor past volume features

Figure 5.30: Interlocutor future volume features

Pitch Height

For past pitch height features, the fine feature region appears at 250 ms from word onset

and lasts up to 600 ms, containing two 200 ms wide fine grain features. The space between

the point-of-interest and the fine region is filled with a 250 ms wide coarse feature. Four
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coarse features encompass the rest of the context. Future pitch height, whose fine feature

region spans the space between 400 ms and 800 ms, produce four fine grain features. Coarse

grain features total five, one 400 ms at the point-of-interest and four coarse features after

the fine feature region. The layout of these features in their respective context space is

shown in figures 5.31 and 5.32.

Figure 5.31: Interlocutor past pitch height features

Figure 5.32: Interlocutor future pitch height features

Pitch Range

Past pitch range’s fine feature region appears at the space starting at 150 ms from the

point-of-interest and lasts up to 500 ms from the point-of-interest. Within this region, two

fine features are used. For the rest of the space, a 150 ms wide feature is used at the

point-of-interest and three coarse grain features after the fine feature region. For future

pitch range, the fine feature region appears at 400-800 ms from the point-of-interest and

encompasses two fine grain features. Coarse feature total four features: a 400 ms wide
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window at the point-of-interest and three coarse features after the fine region. The layout

of these features in their respective context space is shown in figures 5.33 and 5.34.

Figure 5.33: Interlocutor past pitch range features

Figure 5.34: Interlocutor future pitch range features

Speaking Rate

Interlocutor speaking rate features exhibit different behavior from volume and pitch fea-

tures. Their maximum benefit comes at the point-of-interest and then dwindles down after

some time. For past speaking rate, the fine feature region lasts up to 400 ms and encom-

passes one fine feature. Two coarse grain features fill the remainder of the context space.

For future speaking rate, I define the fine feature window lasting up to 100 ms from the

point-of-interest and encompassing one fine feature. Four coarse grain features fill the rest

of the context space. The layout of these features in their respective context space is shown

in figures 5.35 and 5.36.
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Figure 5.35: Interlocutor past speaking rate features

Figure 5.36: Interlocutor future speaking rate features

5.3.3 Selected Features

In total, for the six-second context space using both speaker and interlocutor feature, the

feature set includes a total of 103 features. Broken down into each feature type, the set

comprises 36 volume features, 28 pitch height features, 24 pitch range features, and 15

speaking rate features.
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Chapter 6

Principal Component Language

Model

In this chapter, I present the perplexity benefits gained by encoding the feature set defined

in chapter 5 with Principal Component Analysis (PCA). One of the main gains of using

PCA on these features is the production of an orthogonal set of features. The prosodic

features included in the feature set, namely volume and pitch features, have a large amount

of correlation between them. PCA does away with correlations between the resulting PCs,

producing a feature set with no redundant information.

The resulting features are real valued features, thus binning is a necessity. Similar to

the way that I binned feature values for the models in previous chapters, I bin PC values

based on quartile thresholds, thus binning the values into four discrete categories: low,

low-mid, mid-high, and high. Once binned, I can condition word probabilities based on

their corresponding PC context and tweak word probabilities in the manner discussed in

section 3.2.1.

I use Matlab’s implementation of PCA on the prosodic features. Due to Matlab’s local

memory space limitations, I cannot perform PCA on all of the training set. I apply PCA to
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20 different tracks of the Switchboard training set. Taking a sample every 10 milliseconds,

this produces about 600,000 data points. At each of these points, I calculate the prosodic

feature set defined in the previous chapter. PCA applied at each of these points produces

a vector of 103 PCs at every 10 ms in a conversation.

6.1 PC Language Models

Table 6.1 presents the perplexity reduction for the top 15 principal component models when

used in isolation. Contrary to the results from [12], where only three out of the first 10

components appear in the top 15 performing models, a good portion of the top performing

components belong to the first 10 principal components. These first 10 components capture

51% of the variability seen in the data.

I set a 0.5% cut-off point on each PC model for use in the combined model. This results

in the inclusion of 22 PC models. PC8 produced the largest amount of perplexity reduction

at 2.42%, with PC91 close behind at 2.23%. The least performing model included is PC41

with 0.60% perplexity reduction.

Using these top 22 PC models I build a combined PC model that incorporates all of

this information into a tri-gram language model. Table 6.2 shows the perplexity reduction

for this combined model. The table also shows the effect that dataset size has on PC

models that are trained on a smaller set of data. The reduced models models were a

first iteration for PC modeling on the selected feature set. For these reduced models, I

apply PCA to 450,000 data points. Although that is a significant amount of data, the
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Table 6.1: Top 15 components and their respective perplexity reductions to the
trigram baseline.

PC Perplexity Reduction in Isolation Weight in Tuned Combined Model

PC8 2.42% 0.8

PC91 2.23% 0.8

PC99 2.02% 0.7

PC7 1.46% 0.6

PC3 1.46% 0.7

PC10 1.43% 0.6

PC1 1.32% 0.4

PC5 1.26% 0.7

PC34 1.22% 0.4

PC9 1.12% 0.7

PC29 1.00% 0.7

PC49 0.99% 0.7

PC14 0.98% 0.6

PC4 0.91% 0.4

PC2 0.88% 0.5
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models trained on a larger data set produce better perplexity results for individual PC

models and, ultimately, the combined models. When used with default tuning parameters

(k=0.3), the model achieves 19.42% perplexity reduction from its trigram baseline, not

far from the 25.4% reduction one would expect by summing the individual component

reductions. When using the same number of components as [12], the combined PC model

produces reductions closer to the ones seen in that previous study

After tuning, I use the weights defined in Table 6.1 to produce a model that gives a

25.9% perplexity reduction from the trigram baseline. Unfortunately, the model falls short

from the performance benefits produced by the PC model in [12] by a difference of –1.2%

relative to the naive model. This is shown in Table 6.3. If the model is extended to 25

component models, the best that can be done is to match the performance of the naive PC

model.

Table 6.2: Perplexity reduction for combined PC model.

Model Perplexity Reduction

20 components, default weights, reduced 18.4%

22 components, default weights 19.4%

25 components, default weights, reduced 20.2%

25 components, default weights 21.2%

Unfortunately this model does not improve on the perplexity gained by the model in

[12]. Although my model falls short from that of a previous study, it provides benefits for
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Table 6.3: Perplexity reduction for tuned combined PC models.

Model Perplexity Reduction

PC Model (Ward and Vega, 2012) 26.8%

Top 22 components 25.9%

Top 25 components 26.8%

76% of the words in the test data. This, compared to the previous model’s benefit on 66%

of the words on the same data set, points to the possibility that this model’s benefits are

more reliable but not often extreme enough to make a big difference for prediction.

61



Chapter 7

Discussion

In this chapter, I discuss and analyze features of the model evaluated in the previous

chapter. I also take a look at the possible meanings behind each of the principal components

obtained, to see how they are relevant to language modeling.

7.1 Model Benefit Analysis

In this section, I analyze instances in the evaluation where the combined PC model affected

baseline probabilities positively and negatively. This is done in the same manner as in [14].

I listened to 10-second-long audio clips centered around these instances and payed close

attention to speaker and interlocutor actions in these dialogue excerpts.

The combined PC model provides benefit to 76% of the words seen in the Switchboard

test set. Among these instances are spots where the speaker is talking fluently and with little

to no interaction from the interlocutor. The PC models are robust at instances of overlap

between speaker and interlocutor. The PC models even do well at places where the speaker

is disfluent. These instances are mainly self-repeats and self-fixes, places where a language

model usually fails. The combined PC model captures enough information to boost the
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correct word probabilities at these places. Among the instances that were benefitted are

filler words, backchannels and content words like privacy, couple and football.

On the remaining 24% of the cases there are some interesting patterns. The combined

PC model is sensitive to the use of the mock-quoting oh. The quoting oh here is defined

as the use of the word oh to start a story from previous experience. An example of this is

illustrated in Table 7.1. In the first sample utterance, the PC models penalize the use of

this word in that particular context. Only five PC models provide S-Ratios that are 1.00

or greater. The rest of the PC models give lower S-Ratio estimates, sometimes as low as

0.59.

Table 7.1: Examples of mock-quoting oh.

Utterance samples

. . . and I’ll say oh about eight kilometers . . .

. . . and you know oh golly it’s a metric . . .

. . . find out you know oh this kid may have a . . .

In terms of lexical context, the mock-quoting oh is problematic because it is a word that

can appear at any point in conversation where a previous experience is told. The lexical

context before these instances is varied and is often not discriminative enough to pinpoint

the places the quoting oh will appear. The same can be said for the prosodic context

around these instances. The prosody around the word may not be discriminative enough,

leading the PC models to give low probability ratios to this word, ultimately hurting the
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baseline model at these points.

Another place where the model penalizes words is where content words are used in one-

word utterances or as the first word in an utterance. One-word utterances like management

or utterances starting with lawn or great were among the instances where the model did

not do well.

Table 7.2: Example utterance of model failure.

Speaker Utterance

Interlocutor . . . at being active he will go into uh

Speaker Management

Interlocutor managing and yeah you know . . .

7.2 Dimension Analysis

A feature of PCA is that it is able to capture information relevant from the features

to which it is applied. Although each component may have captured information about

speech, the nature of that information is unknown. To understand the dialogue state

characteristics that influence the occurrence of particular words in spoken dialogue requires

further analysis.

To try and identify this information, I listened to points in the corpus that are de-

scribed by high and low points in each of the dimensions relevant to language modeling.
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This method is the same as the one in [11]. My interpretations of these dimensions are

completely inferred from the data, however there is a good amount of subjectivity in these

interpretations.

The process for inferring these definitions is the following. I listened to the six seconds of

audio surrounding the point of interest, taking into account the actions of the speaker, the

actions of the interlocutor and the prosody produced by both speakers. The interpretations

discussed in this section were done on a set of dimensions generated on a reduced data set

for PCA, hence the numbering of the dimensions is unrelated to the ones mentioned in the

previous chapter.

Dimension 89 - Interlocutor Engagement

Low points in this dimension characterize speech that is dominated by the speaker of

interest. An example is shown in Table 7.3. These points are characterized by instances

of speech where the speaker is in a monologue, either making a point or telling a story.

The interlocutor has little to no involvement at these points in the conversation. Their

only role at these points is strictly that of a listener whose only contributions are back-

channels. At high points, while the speaker of interest is still owning the turn, these areas

of speech follow interlocutor actions (Table 7.4). The interlocutor often makes a question

or statement to which the speaker responds accordingly. Thus, I identify this dimension as

one that characterizes interlocutor engagement in the conversation.
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Table 7.3: Example for dimension 89: Low dimension values.

Speaker Utterance

Speaker . . . bad team and they were mean we had so many

penalties and it gets really you just

Interlocutor (back-channeling)

Table 7.4: Example for dimension 89: High dimension values.

Speaker Utterance

Interlocutor I do I work for the school system

Speaker ah

Interlocutor Richardson school

Speaker well that’s a pretty large corporation

Interlocutor yes it is
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Dimension 8 - Speaker Floor Grab

Low points in this dimension characterize speech were the speaker of interest makes re-

sponses to interlocutor points and statements. These responses are short in nature and go

straight to the point. The speaker’s intention at these points is to produce the response and

yield the floor back to the interlocutor so that he/she can keep on talking. High points in

this dimension though, show the opposite. At these instances, the speaker grabs the turn

and holds it for a longer amount of time. Some of these points show the speaker taking

the turn at a point where he did not expect to be talking. Another instance shows the

speaker reinitiating a previous topic, as the topic at hand expires. Thus, this dimension is

identified with the speaker’s intention to keep on talking. Examples are shown in tables

7.5 and 7.6.

Table 7.5: Example for dimension 89: Low dimension values.

Speaker Utterance

Interlocutor . . . things either

Speaker oh [laughter]

Interlocutor so

Speaker what uh what kind of

Interlocutor well I just finished . . .
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Table 7.6: Example for dimension 89: High dimension values.

Speaker Utterance

Interlocutor I’ll tell you another good book do you like scary things?

Speaker um well . . .

Dimension 99 - Information Addendum

Low points in this dimension are characterized by areas of speech where the speaker of

interest adds information relevant to the topic at hand. The nature of this information is

such that it advances the conversation further. These speech excerpts include points where

the speaker states information that contradicts a point made earlier by the interlocutor.

High points are also characterized by the addition of the information by the speaker; How-

ever, the nature of this extra information is different. This information is usually just extra

information, mainly for the sake of drawing out the speaker’s own turn or keeping the

floor for a bit longer. Thus, I identify this dimension as one where the speaker contributes

redundant vs. new information. Examples are shown in tables 7.7 and 7.8.

Table 7.7: Example for dimension 99: Low dimension values.

Speaker Utterance

Interlocutor . . . you know something in

Speaker you know the plano newspaper each each day in fact has a a little list
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Table 7.8: Example for dimension 99: High dimension values.

Speaker Utterance

Speaker somewhere and look at it but uh i don’t seems

like it takes too much time or something

Interlocutor well that’s true

Dimension 10 - Showing Interest

Low points in this dimension characterize areas of speech where the speaker of interest seems

withdrawn from the conversation. These instances include parts of the conversation where

the interlocutor shows concern for the safety of family members, to which the speaker

responds with a flat and quiet “well good”, shown in Table 7.9. Another point in the

conversation shows the speaker going back to a previous topic after the interlocutor tries to

make a joke. The high points describe parts of the conversation where the speaker makes

a joking statement out of their own experience (Table 7.10), in an attempt to increase the

atmosphere of the conversation. Thus, I identify this dimension as showing interest on the

conversation.

Dimension 3 - Speaker Engagement

Low points in this dimension are described by points in conversation where speaker sounds

disinterested and inactive in the conversation. High points describe areas of conversation
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Table 7.9: Example for dimension 10: Low dimension values.

Speaker Utterance

Interlocutor . . . they’re either on their way back or just got back from Georgia so

Speaker well good

Interlocutor hopefully they missed most of the rain

Table 7.10: Example for dimension 10: High dimension values.

Speaker Utterance

Speaker we grew up on a farm so we just had to play with each other

cause there was no one else out there [laughter]

Interlocutor [laughter] oh yeah
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where the speaker is confident about his words and is clearly engaged in the conversation

with the interlocutor. Examples are shown in tables 7.11 and 7.12.

Table 7.11: Example for dimension 3: Low dimension values.

Speaker Utterance

Interlocutor . . . huh

Speaker but they did something a little different with it yeah

Interlocutor uh-huh well that I would be interested in

Table 7.12: Example for dimension 3: High dimension values.

Speaker Utterance

Interlocutor well I guess they would I don’t know why they wouldn’t

Speaker well I’ve never seen one

Interlocutor oh you haven’t?

Speaker I’ve never seen one

Interlocutor I just thought it was my set that . . .
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Chapter 8

Conclusions and Future Work

The work done in this thesis shows that careful selection of prosodic features had no positive

effect on the performance over a model that incorporates this information naively. Although

no improvements were made in terms of performance, I have discovered which features

contribute the most information to the word prediction task for language modeling. The

redeeming quality of this model is that it benefits a larger fraction of the words in the

evaluation corpus than the naive PC model. This fact says that basing feature selection on

this information may be a step in the right direction. Thus, it is worthwhile to refine the

approach in this thesis.

The only problem left to solve is to figure out how to capture this information effectively

in a feature set. The naive model provides benefits of greater magnitude than the model

in this study does. This could be due to the inclusion of noisy data in the coarse-grained

regions, due places where the selection method was not refined. Once refinement is done,

this information can then be applied to the selection of prosodic features for future research

efforts. Although my work for this thesis ends here, there is ample room for improvement

and extension of techniques for the application of prosodic features to language modeling.
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8.1 Improvements

For this thesis, I used percent perplexity reduction as the sole factor for assessing the

information contribution for a given prosodic feature. While it is good indicator, other

factors can be used in the process for defining that a prosodic feature is good. One of

these factors is word benefit percentage. I can use the ratio of words benefitted to total

words to determine if a given feature hurts the language model more than it benefits word

probabilities.

Feature aggregation is done for features calculated past fine-grained regions so that

information included in contexts further from point of interest is included in the model.

The inclusion of such features is done in hope that they would add some normalizing

information. However, their utility is not known for sure. Thus, an anlysis of the worth of

these features should be done to determine their contribution to the word prediction task

to improve the model proposed in this thesis.

8.2 Future Work

In this study, I set a maximum size for the MCW to be 500 ms. However, it seems

worthwhile to evaluate MCWs that are longer than 500 ms. The results on conditioning

word probabilities over longer MCW features will provide insight on the effect of longer

context windows at further points in the context space.

As mentioned previously, PCA has the ability to encode information not directly seen
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by each of the prosodic features individually. These components may capture information

that may be beneficial for their use not only on the word prediction task, but also for other

aspects of dialog (e.g., end pointing, word spotting, hot-spot discovery, etc.). Analysis on

the remaining top PCs to find their meaning in dialog space is left for future work.

Although perplexity is a good indicator of the performance of a language model, real

performance gains produced by a modified model are better measured when the model is

used in a speech recognizer. Thus, the application of this model in a speech recognizer

should determine the model’s real contribution to an ASR system.

Although the main goal in this work was not met, a big first step into effectively

capturing prosodic information for language modeling has been taken. With this work

as a stepping stone, future research can improve on this work and find the best way of

incorporating this information to improve language models, automatic speech recognition,

and, ultimately, systems that make use of speech technology.
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