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Abstract—In spoken dialog, speakers are simultaneously en-
gaged in various mental processes, and it seems likely that the
word that will be said next depends, to some extent, on the states
of these mental processes. Further, these states can be inferred,
to some extent, from properties of the speaker’s voice as they
change from moment to moment. As a illustration of how to
apply these ideas in language modeling, we examine volume and
speaking rate as predictors of the upcoming word. Combining
the information which these provide with a trigram model gave
a 2.6% improvement in perplexity.

I. INTRODUCTION

The field of language modeling, like much of linguistics,
has historically had a “written language bias” [1]: a tendency
to focus on language as sequences of symbols, rather than as
human products used for human purposes. While recent work
has made incremental progress towards overcoming this bias
— developing practical ways to improve and extend language
models to better handle various phenomena of spontaneous
language and dialog — we propose an extreme, alternate view,
focusing on language behavior in dialog as the product of the
speaker’s cognitive processes. This suggests the strategy of
using information about the speaker’s cognitive state, at each
moment, to enable better prediction of the word he or she is
likely to say next.

To infer the mental state of a speaker we can use prosodic
features computed over his or her recent speech. Previous
research has demonstrated that it is possible to infer, at the
utterance level, what sort of dialog act the speaker is doing and
whether her or she is engaged, frustrated, pleased, confident,
and so on, from the prosody. Less work has been done at the
sub-utterance level, although it is more important for language
modeling, but [2] showed that it is possible to identify disfluent
states in speech, and to use this information to reduce word
perplexities, and [3] showed that characterizing the context in
terms of superficial states, such as “being 3–10 seconds into
an utterance,” can also help prediction of the upcoming word.

The exploitation of cognitive state information for language
modeling can be approached in various ways. An interesting
long term research program would be to first categorize the
relevant cognitive states of speech, then build classifiers to
detect those states from prosodic features, and finally relate
the words of English to the states in which they tend to occur.
Doing so will be difficult, not least because the number of pos-
sible states is large, as a person participating in a conversation

has to do many many things (including processing what the
other person just said, deciding when to respond and what sort
of contribution to make, retrieving information from memory,
and monitoring his own speech, among others [4]), and each
of these cognitive processes has its own set of states.

In this paper we use a simpler approach: we do without
explicit representations of cognitive states, instead directly
relating recent prosodic features to the upcoming words. We
consider two prosodic features: speaking rate and volume.

Section 2 illustrates how the probabilities of words vary with
the speaking rate and volume of the immediately preceding
context. Section 3 explains how this information can be com-
bined with n-gram probability estimates. Section 4 presents the
improvement obtained by doing so, and Section 5 discusses
what should to be done next.

II. INITIAL OBSERVATIONS

We used the ISIP transcriptions of the Switchboard corpus
[5], [6], a collection of telephone conversation of spontaneous
topics between unacquainted adults.

A number of previous studies have used prosody in language
modeling and speech recognition, as surveyed in [7], [8] and
[9]. Our choice of prosodic features is different from that
of previous work, reflecting our goal, of exploiting informa-
tion related to cognitive states. Thus we use speaking rate,
which may indicate degree of preparation and confidence, and
volume, which may indicate engagement or dominance, for
example.

The details of how we computed such features also reflect
our aim. Our features are direct ones, in Shriberg’s sense,
not hand-labeled nor inferred to match hand-labeled tags. In
contrast with the use of prosody for language modeling to
capture syntactic and lexical-accent regularities, our prosodic
features are not syllable-aligned nor syllable-normalized [8].
In contrast with uses of prosodic information related to task
structure or dialog acts, our features are computed over local
contexts, not over entire utterances.

A. Speaking Rate

Each token in the corpus was characterized as fast, slow, or
of middling speaking rate. Specifically, a token less than 0.89
of the average duration for that word was considered fast,
more than 1.11 of the average duration slow, and otherwise



previous
speaking rate characteristic words . . . . . . uncharacteristic words
fast sixteen, carolina, o’clock, kidding, forth, weights, familiar, half, science, process, careful, matter, grand, doubt . . .

. . . hm, uh-huh, ah, huh
middling direct, mistake, mcdonald’s, likely, wound, repairs, purchased, immigration, director, troops, lawyer, wears . . .

. . . uh-huh, hi, um-hum
slow goodness, gosh, agree, bet, let’s, uh, god, um, grew, huh-uh, although, neat, either, definitely, true, am . . .

. . . experience, yourself, ago

(none) um-hum, uh-huh, hum, hm, oh, yep, yeah, wow, huh, yes, ah, right, okay, well, exactly, no, sure, which . . .
. . . guess, know, mean, lot

TABLE I
CHARACTERISTIC AND UNCHARACTERISTIC WORDS IN VARIOUS SPEAKING-RATE CONTEXTS

lead-in characteristic words . . . . . . uncharacteristic words
silent um-hum, hum, hm, uh-huh, yep, ooh, oh, yeah, hi, ah, yes, wow, huh, okay, right, well, gee, exactly, huh-uh, um . . .

. . . wear, hand, percent, own, ago

quiet bet, know, mean, y[ou]-, although, seems, gosh, mostly, well, bye-bye, true, what’s, eighty, which, let’s, tend, looks . . .
. . . hand, working, credit, ago

moderate forth, francisco, hampshire, extent, colors, corps, dakota, trend, bag, whatnot, underneath, penalty, seats, minutes . . .
. . . ooh, hm, um-hum, okay, hum

loud sudden, opinions, hills, box, hand, restrictions, reasons, union, scale, industry, unusual, favorite, sorts, hook, hole . . .
. . . uh-huh hm, um-hum, lunches

TABLE II
CHARACTERISTIC AND UNCHARACTERISTIC WORDS AFTER REGIONS OF VARIOUS VOLUME LEVELS

middling. Each token then was classified as after-slow, after-
middling, after-fast, or after-silence, depending on the duration
of the previous word, if any (tokens immediately preceded by a
silence of at least 1.2 seconds, the value which we have found
best for defining utterances for language modeling purposes,
were considered to be “after-silence”). These characterizations
were done from the transcripts, without reference to the actual
speech signal.

We then calculated which words tended to occur in which
contexts: Table I shows the most characteristic and most
uncharacteristic, that is, words which are most and least
likely to appear in the specific rate context, relative to their
general frequency, as determined by the S ratio [3]. Examining
the words in each category suggests some general patterns.
Common after fast regions (words of relatively short duration)
are high-content words, especially place names and numbers.
Common after slow regions (words of relatively long duration)
are assessments, disfluency markers, social expressions (bye-
bye, thank [you]), expressions of belief (definitely, unless,
well, yes, [of] course, but, consider, absolutely, okay, must,
generally, certainly, totally), and the word I.

B. Volume

Volume information was computed over fixed-width re-
gions, rather than over words, of 50 milliseconds, since this
width gave best performance on the tuning data. The volume
was normalized for each track, more for the sake of adapting
to the recording conditions than for adapting to the speaker.

Specifically, for each dialog side we took at a large sample
of regions and used EM to find the mean volume of silence
regions and the mean volume of speech regions. Regions with
an energy closer to the silence mean than to the speaking
mean were considered “silent,” those with an energy within
one standard deviation of the mean as “moderate,” those less
as “quiet,” and those more as “loud.” Each word was then
associated with the loudness label over the 50 ms immediately
preceding the word onset.

Table II shows the words most and least common after
each volume tag. Common after quiet regions are expressions
of belief ([I] bet, [I] know, y[ou know], true), of types and
degrees of belief (although, mostly, definitely, might, usually,
tend, looks, guess, mostly), and clause connectives (well, then).
Common after middling-volume lead-ins are the tail ends
of multi-word expressions ([and so] forth, [San] Francisco,
[New] Hampshire, [to some] extent). Common after loud lead-
ins are general content words, and, to a lesser extent, words
pronounced while laughing.

Thus, as expected, these prosodic features do seem to reveal
cognitive states, as seen by the types of words occurring
in each context. Of course, one could also interpret these
patterns of occurrence as reflecting communicative situations:
for example, the tendency for expressions of belief to come
after low-volume regions may reflect a communicative strategy
of preceding important words with a quiet lead-in to give
them more impact. For practical language modeling purposes,
the interpretation we ascribe doesn’t matter; what matters is



whether regularities exist, and whether the regularities are non-
redundant to the regularities captured by standard language
models, which is the topic of the next section.

III. COMBINATION WITH AN N-GRAM MODEL

Thus the local prosodic context does provide useful infor-
mation. However it is clear that this information does not
obviate the need to exploit local context dependencies. Thus
we integrate this information into an existing language model.
The methods described in this section could be used with
any language model, but for concreteness, we describe them
as being applied to a trigram model, specifically the SRILM
implementation of a backoff model [10].

Using prosodic context information to improve an existing
model is a special case of the problem of language model
adaptation [11], [12], for which many techniques are known.
As our aim here is not to determine the best adaptation
technique, but merely to determine whether the local prosodic
context has useful information at all, we used only the very
simple methods we developed for conditioning on time since
various reference events [3], [13]. Here we recapitulate briefly.

The basic idea is to use probabilities based on the local
prosodic context merely to tweak the backoff probabilities.
For example, for a word occurring in context x, if the data
indicates that the word is more common in that context than
at other times, then we multiply the backoff probability by a
scaling factor to reflect this. This gives the estimates:

Pt(wi|c, x) = S(wi|x)Pbackoff(wi|c) (1)

where c is the local context (for trigrams specifically, just the
preceding two words) and S is the scaling factor.

The computation of S is somewhat ad hoc and complex,
but it is based on the ratio R of the frequency of wi in
context x to the overall frequency of wi. The complications
include smoothing and the application of a weight k to adjust
the strength of the contribution of the prosodic information:
specifically S is derived from R raised to the power k, as
described in [3].

Tweaking is omitted in two special cases: first, if the speed-
context is “none”, that is, if a word appears after no previous
word, since in that case the bigram <s> wi is perfectly
adequate to represent this information, so tweaking can add
no useful information; and second, if the speed-context is
middling, since we found that tweaking in such cases hurts
performance on average. Thus tokens in such contexts are
excluded when computing the S ratios from the training data;
similarly no tweaking is done for such tokens in the test data.

Finally there is a normalization step, so that the probability
estimates for all words in the vocabulary in fact add to 1.

IV. PERPLEXITY RESULTS

The training, tuning, and test data were all subsets of
Switchboard. The training data was 1000 tracks, consisting
of about 652K words. Tuning of k was done using a separate
set of tuning data consisting of 34K words. The best values
for k were .99 for the rate information and .49 for the

perplexity
baseline 107.8
speaking rate 105.0
volume 105.1

TABLE III
PERPLEXITY ON SWITCHBOARD

volume information. The test set consisted of 16 tracks from
Switchboard, containing 10441 words and representing about
75 minutes of speech. The evaluation ignored end of sentence
tags and out-of-vocabulary words.

Conditioning on speaking rate gave a 2.8 point decrease
in perplexity, which is a 2.6% improvement. Overall, the
words which gave the maximum benefit were um-hum, yeah,
uh, oh, I, uh-huh, and you, all of which are more common
in slow contexts. We also tried a measure of speaking rate
that was adapted to the current speaker, but this slightly hurt
performance, to our surprise.

(Out of curiosity, we also examined whether conditioning
on the speaking rate of the current word would also give
an advantage (although including middling-rate tokens this
time). This gave a perplexity of 107.6, a small improvement.
The main source of the benefit is the fact that the model
distinguishes words which tend to vary greatly in duration
from those which don’t. Of course, here we are trespassing
on the domain of the acoustic model: since information about
the likely durations of word may be represented, implicitly or
explicitly, in the acoustic models, this perplexity improvement
may not be indicative of better recognition in this case.)

Conditioning on volume gave a 2.7 point decrease in
perplexity. Overall, the words which gave maximum benefit
were yeah, oh, um-hum, uh-huh, well, and, to, and of. The first
five of these words were more common in the after-silence
condition; the last two were less common in this condition.
Predictions were improved for words in all contexts, but most
of the contribution was due to words in the after-silence
context, notably those mentioned above. Words in the after-
loud condition also contributing strongly, mostly due to words
like to, a, it, have, and of, which tend to be more common
after loud regions.

These perplexity benefits are larger than those seen in
previous work [2], [3], probably because of the use of features
that relate well to cognitive states (c.f. [3]), and because of the
direct predictions of words from the local prosodic context,
without reliance on hidden variables representing inferred
cognitive state (c.f. [2]).

V. SUMMARY AND FUTURE WORK

This paper has shown that word probabilities vary with
prosodic features of the local context, and that incorporat-
ing this information in a language model can decrease the
perplexity on casual dialogs. Despite the use of features and
techniques which are simple and ad hoc in many ways, a
reasonable perplexity improvement was obtained. From this



we conclude that a cognitive perspective on language modeling
does indeed have promise.

The potential for further perplexity improvements is large.
We know from experiments with people that the most promis-
ing direction for improving language models is the use of
information beyond just the words said [14], but in this work
we have only scratched the surface. Other predictive factors
to consider include pitch height, pitch range, creakiness, and
voicing fraction [13]. We also plan to use prosodic features of
the interlocutor’s recent behavior, as the cognitive processes
and actions of the interactants in spoken dialog are often
tightly coupled. We would like to develop a way to compute
the scaling factors without discretizing speaking rate, etc. into
categories. We may explore clustering of words or other
dimensionality reduction techniques to combat sparseness.

We also need to demonstrate the value of these features for
speech recognition. Technically this will be easy: the volume
over the previous 50ms is easy to compute, the duration of
the previous word hypothesis is available in the recognizer
(although possibly with some inaccuracy), and augmenting a
recognizer to include tweaking based on such features can be
done trivially [15]. We expect that the perplexity improvements
we found will be matched by reductions in word error rate,
since the types of knowledge used are different from those
captured by standard language models or acoustic models.

It is also worth noting that modeling the relation between
local prosody and words may also be useful for applications
other than speech recognition. For example, language genera-
tion and speech synthesis may be improved by better language
modeling [16], and we expect that speech will be more natural
and intelligible if the prosody is locally adapted to suit the
upcoming words.

Creating a truly cognition-based language model remains a
long-term project. Although cognitive-state modeling was our
inspiration, and the features chosen do appear to be reflecting
cognitive states, we still have a lot of work to do to create a
cognitive model of human language production. The next step
will be to identify the relevant cognitive states and use them as
hidden variables. This could be done by boot-strapping from
hand-labeled cognitive states, as suggested in the introduction,
or perhaps by doing bottom-up clustering or factor analysis
on the contexts predictive of words from various kinds. A
subsequent step would be to augment this with mechanisms
for modeling the transitions among states over time, perhaps
initially by conditioning superficially on elapsed time [3], to
create an actual cognitive process model.

Building such models should have benefits beyond the tech-
nical: many researchers have pointed out that dialog behaviors

offer a unique window into human cognition and human social
interactions [4], [17], [18], and predictive models of dialog
behaviors and cognition over time may be of great value
for improving our understanding of the dynamics of spoken
dialog.
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