Inferring Stance in News Broadcasts from Prosodic-Feature
Configurations

Nigel G. Ward, Jason C. Carlson, Olac Fuentes

Computer Science, University of Texas at El Paso
500 West University Avenue, El Paso, Texas 79968 USA

Abstract

Speech conveys many things beyond content, including aspects of appraisal, feeling, and
attitude that have not been much studied. In this work we identify 14 aspects of stance
that occur frequently in radio news stories and that could be useful for information retrieval,
including indications of subjectivity, immediacy, local relevance, and newness. We observe
that newsreaders often mark their stance with prosody. To model this, we treat each news
story as a collection of overlapping 6-second patches, each of which may convey one or more
aspects of stance by its prosody. The stance of a story is then estimated from the information
in its patches. Experiments with English, Mandarin, and Turkish show that this technique
enables automatic identification of many aspects of stance in news broadcasts.

Key words: information retrieval, attitude, broadcast news, prosody, American English,
Mandarin, Turkish

1. Introduction

People use language not only to convey factual information but additional information
such as attitudes, opinions, feelings, judgments, categorizations, and so on. Aspects of this
have been studied under many names, including sentiment, attitude, feelings, appraisal, and
stance (Read and Carroll, 2012; Rambow and Wiebe, 2015; Chindamo et al., 2012; Biber
and Staples, 2014; Elfardy and Diab, 2016; Mohammad et al., 2016). This article will use
“stance” as an umbrella term for such information, including all the nuances and subtleties
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of attitudes and related functions that people display in the course of pursuing various
communicative goals.

Stance is richly present in many genres of language use, and especially in spoken language.
Such information can be useful for information retrieval and filtering, among other purposes.
Previous work has explored how, in speech data, stance can be inferred from the speaker’s
prosody, but so far only for a handful of aspects of stance. Building on this work, this
paper examines 14 aspects of audio documents as they occur in English, Mandarin, and
Turkish radio news, showing how they can be automatically detected from prosody. The
contributions® include:

a. a description of 14 aspects of stance, extending the inventory of computationally-
modeled aspects of sentiment and attitude (Section 3)

b. the finding that stance is commonly present in news stories (Section 4)

c. a model of how prosody conveys stance (Sections 6 and 9)

d. a demonstration that this model is able to infer stance, in three unrelated languages
(Sections 6 and 11)

e. evidence that the prosodic expressions of stance include configurations of diverse
prosodic features, and illustrations of such configurations (Sections 7 and 10)

f. the finding that the significance of a prosodic-feature configuration can depend on
where it occurs in a story (Section 11)

g. the finding that the prosodic expressions of stance are extremely language-dependent
(Section 12)

2. Motivation and Related Research

Stance can be useful for information retrieval, information filtering, and information
extraction (Larson and Jones, 2012; Lee et al., 2015; Purver et al., 2007; Freedman et al.,
2011; Wollmer et al., 2013). Although there has been a fair amount of research on stance,
so far it has been mostly limited to expressions of sentiment, positive or negative, with also
some work on presence of or strength of opinion (Liu and Zhang, 2012; Freese and Maynard,
1998; Pillet-Shore, 2012; Wilson et al., 2005; Freeman et al., 2015). In this paper we examine
many more aspects of stance.

Although most computational models of stance so far has been for text, there is also some
exemplary work on stance in spoken language. For example, Morency et al. (2011) found,
in product-review videos, that valenced utterances, in comparison to neutral utterances,
have wider pitch range and fewer pauses. Using this information with lexical and video
information in a HMM-based model enabled good classification of positive/negative/neutral
opinions. Mairesse et al. (2012) similarly found and exploited prosody-sentiment mappings,
such as a correlation between low pitch variability and negativity. Levow and colleagues
studied stance in dialog and found, among other things, that yeah when expressing stronger

!Compared to our earlier paper on this topic (Ward et al., 2017), the current paper adds full detail on
the methods and experiments, additional observations and findings, and new contributions: e, f, and g.
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stances tends to have higher intensity and pitch, and when expressing positive stance tends
to be longer, quieter, and higher-pitched (Freeman et al., 2015; Levow and Wright, 2017).
In this paper we study more specifically how prosody expresses stance.

We were inspired to study stance in spoken language by a practical problem: making
humanitarian assistance and disaster relief more effective. After a disaster, whether natu-
ral or anthropogenic, the international community often mobilizes to help. However, this
involves many challenges, including, as described in the Lorelei scenario (DARPA, 2014),
enabling a person planning a relief mission to obtain a clear picture of what is needed and
what should be done. Today mission planners rely heavily on news broadcasts and social
media communications to obtain relevant information. However, the large volume of such
data makes this difficult, and there is the need for better tools to help filter and organize
such inputs. A further challenge is that disasters can happen anywhere, and the information
sources can be in any language, including low-resource languages, for which there may be
neither tools (speech recognizers, machine translation systems, etc.) nor adequate resources
for building tools. In such cases even imperfect filtering can be of value. Moreover, given the
typically large volumes of raw information, mission planners may use information obtained
from statistics and tendencies across many items, and for this they may use tools where the
categorization of any specific item is only probabilistically accurate.

Stance is relevant to this domain because mission planners frequently need not only
actionable information but also big-picture information relating to situational awareness
(Verma et al., 2011) — such as indications of where the flooding situation is worse, what
needs are most immediate, which relief organizations are being evaluated positively by the
local population, and so on — which often relate to stance. Thus stance is potentially useful,
both by itself and as a complement to more traditional methods such as classification by
topic. Moreover it may be possible to develop stance detectors rapidly for a suddenly-relevant
language, without requiring substantial resources. This is because stance is often conveyed
by prosody, and prosody is in some respects simpler to process than lexical information,
especially for low-resource languages, where we may lack even fundamental knowledge of the
phonology and syntax. In addition, while vocabularies differ arbitrarily across languages,
there are universal tendencies for some prosodic features to express certain things across
language (Gussenhoven, 2002; Vaissiere, 2008), so a prosody-based approach could be useful
for previously-unstudied languages.

To make stance information available for such purposes is one aim of this work; the other
is to use this domain to investigate how prosody conveys stance.

3. Fourteen Aspects of Stance

Table 1 shows the 14 aspects of stance considered in this work. Developing this list was
a long process, described more fully elsewhere (Ward, 2016). In summary, we considered
both what information is available and what is useful, and sought the interesection.

In terms of what is available, we drew from two previous lines of basic work. The
first was an investigation of what people find interestingly similar in dialog data (Ward
et al., 2015) and what they might be likely to search for, besides of course topic. The
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second was an ongoing project to inventory the principal functions expressed by prosody
in various languages. We found that, across languages, many of the same functions were
being expressed, and many of these related to some kind of stance. We also consulted the
literature on stance in various genres of speech.

In terms of what is useful, we started with the the Lorelei operational scenario, and
then, regarding various disaster-relief activities learned what aspects of information could
be relevant to analysts and mission planners.

These considerations led us to formulate an initial list of 28 stance aspects, organized
as 14 binary oppositions. We then winnowed this list considering three things: first, likely
utility for the scenario, as judged by conversations with Lorelei stakeholders, second, non-
redundancy, both among stance aspects and with respect to what topic-based filtering may
provide, and, third, inter-annotator agreement, and thus the ability for predictions to be
reliably evaluated. Thus we aimed to find a set that is mostly non-redundant, fairly reliably
annotatable, and likely useful.

Over the course of three pilot annotations we refined the descriptions and culled the list,
to arrive at the 14 stances in Table 1. In this list there are no explicit pairings of stances;
rather each stance is taken to have its own independent existence. Thus an annotator could
label a given segment, for example, as both deplorable and praiseworthy, if it mentioned
both a deplorable act and a praiseworthy one.

In no sense is this a definitive list of stance items; it is a compromise between these
various considerations. Despite the limitations, this list provides a much broader view of
stance than any previous work.

4. Stance in Radio News

To investigate the manifestations of these stance aspects, considering relevance to the
scenario, we chose to work with radio news broadcasts, local news when possible. The
section describes the data and the annotation, and what we learned about the pervasiveness
of stance.

To support study of possible universals, we chose to use three unrelated languages:
English, Mandarin, and Turkish.

The American English data set is 488 minutes selected from radio broadcasts at archive.org,
consisting mostly of local news from three radio stations, WMMB, KBND, and CHEV, but
including others chosen to increase the coverage of disaster-related topics, including shoot-
ings, protests, earthquakes, floods, power outages, hurricanes, various storms, epidemics,
and wildfires. We also experimented with a single-speaker subset, consisting of 125 minutes
from WMMB.

The Mandarin data set is the first 279 minutes of the KAZN subset of the Hub4 collection
(Huang et al., 1998), comprised of local, national, and international news and a variety of
other things. Compared to the English data, the KAZN data had more prosodic variety,
including more acoustic variation between segments and more segments that were not simply
read news, including spontaneous speech and interactions among announcers.
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1. Bad Implications - information with undesirable consequences, such as a raise
in taxes, an approaching storm, or a flood. Events with more severe implications
will rate higher on this scale

2. Good Implications - the opposite, such as a peace agreement, a good harvest,
or nice weather

3. Deplorable Action - something bad done by someone or some organization

4. Praiseworthy Action - the opposite: something good done by someone or some-
thing

5. Controversial something people can or could disagree about, such as a bold
action by some person or group, or new government policy

6. Factual Information information presented as facts

7. Subjective Information - the opposite, such as opinions, either the presenter’s
or someone else’s, or information reported skeptically or speculatively

8. Unusual or Surprising - something quirky, odd, or unexpected

9. Typical or Unsurprising - something expected

10. Local - personally relevant to the listening audience, like local weather or close-by
rioting

11. Something Prompting Immediate Action - something that may motivate
the listening audience to do something, like take shelter from a storm or vote in
today’s election

12. Background - conversely, information useful just as background, such as an
explanation of the causes of a situation

13. New Information - new information or description of a recent development
(rather than a repetition or rehash of something previously reported)

14. Relevant to a Large Group - something affecting many people
Table 1: Descriptions of each stance aspect, as given to the annotators

For Turkish we were unable to obtain local news data. Instead we used the first 672 min-
utes of a Lorelei-program data set, LDC catalog number 2014E115, consisting of 5 broadcasts
from China Radio International and 22 from Voice of America.

Each news broadcast was divided into news stories or segments, with topics like: weather,
hockey, parenting, bicycle race, jazz festival, hospital donation, erosion, evacuation, highway
closing, drug arrest, job fair, burglary, and so on. Segments vary in length from tens of
seconds to a few minutes. The Turkish data was further subdivided mechanically so that
no segment exceeds 2 minutes. In all, the English data had 981 segments, including 267
segments in the single-speaker subset, the Mandarin 307, and the Turkish 1038.

We then obtained stance annotations for each dataset. We chose to do this at the
segment level, rather than at the utterance or entity level, for two reasons: making the
annotation task more tractable, and alignment with the Lorelei program, which in the first
phase focused on segment-level classifications. While in reality stances are almost certainly
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continuous-valued phenomena — for example, a news story can be more or less local, or
more or less surprising — for the sake of having a feasible annotation task, we chose to use
discrete labels. Thus annotators labeled each segment for each stance aspect as 0 (absent),
1 (weakly present) or 2 (strongly present). Annotation was outsourced. For each language
it was done by three native speakers working independently, using the definitions in Table 1
and a small set of sample annotations. More information on the broadcasts and segments,
and the annotations themselves, are available at http://www.cs.utep.edu/nigel /stance/ .

We examined the annotations in three ways. First, we computed inter-annotator agree-
ment. For this we used the average pairwise weighted Kappa, giving partial credit, 0.5, for
close matches, for example, a rating of 2 by one annotator and a 1 by another. As seen
in Table 2, interannotator agreement was excellent for some stances and poor for others,
depending also on the language. Second, we computed the correlations among stances, more
specifically, among the three-annotator averages for each stance, across all segments. Over-
all the correlations were low (the most related pair in English, bad and good, correlated at
only —0.59), indicating that these 14 stances are largely mutually non-redundant. Third, we
examined the frequency of expressions of stances. Table 2 shows, in the rightmost columns,
the percent of news stories annotated with a 1 or 2. Overall the stances are fairly common,
with some understandable exceptions, such as the lack of local and immediate stances in the
Turkish data. While it is sometimes thought that news should be purely objective, in fact,
newsreaders strive to contextualize and humanize the news (Cotter, 1993), and the variety
of stances frequently expressed confirms this.

Agreement Presence

Eng. Man. Tur. Eng. Man. Tur.
1 Bad 0.72 0.55 0.36 33%  15% 18%
2 Good 046 045 0.35 34%  19% 5%
3 Deplorable 0.74 037 0.60 14% 3% 1%
4 Praiseworthy 0.35 0.46 0.36 14% 8% 6%
5 Controversial 0.53 0.56 0.40 4% 5%  25%
6 Factual Information 0.25 0.59 0.41 9%6%  94% 46%
7 Subjective Information 0.36  0.55 0.45 1%  46% 39%
8 Unusual or Surprising 0.22 0.69 0.30 6% ™% 18%
9 Typical or Unsurprising 0.81 0.59 0.14 31% 9% 11%
10 Local 0.39 0.66 0.05 0%  46% 8%
11 Prompting Immediate Action 0.69  0.74 0.06 20%  32% 5%
12 Background 0.47 0.60 0.21 36%  23% 29%
13 New Information 0.30 0.92 0.19 41%  48% 8%
14 Relevant to a Large Group 047 0.83 0.28 8% 21% 1%

Table 2: Statistics on stance in the three collections: inter-annotator agreement for, and presence of, each
stance, in English, Mandarin, and Turkish.



5. Task and Metrics

Below we present models able to automatically predict the stances present in any new
news story or segment; this section describes how we evaluate the quality of such predictions.

Because we assume that stances are continuous-valued phenomena, we use the average
of the three annotators’ labels as the ground truth, target value. This is computed indepen-
dently for each stance, for each segment. A model is better to the extent that its predictions
are closer to these true values, as measured by squared error.

Thus we can test whether one predictor outperforms another by generating predictions
and evaluating them, where each news segment is an independent sample. We judge sta-
tistical significance using one-tailed matched-pairs t-tests, one test for each stance, with a
significance level of p < .05.

We measure the overall quality of a model using mean squared eror (MSE). This enables
comparison to human performance. As the annotators do not agree perfectly, we can esti-
mate how well a human would perform at this task. Specifically, we estimate this as the
mean squared error of his or her judgments, that is, the square of how much one annota-
tor’s labels diverge from the average of all three annotators. (This is a slightly optimistic
estimate.)

Further, we wanted a summary performance metric, a single number to represent the
overall performance. For this we used the global MSE, computed across all stances; this is
what we sought to optimize.

Finally, as the MSE depends not only on the method but also on the data set, we also
wanted a data-independent metric. For this we use the percent reduction in error, that is,
the difference between baseline MSE and model MSE divided by the baseline MSE. This
measures how much of the actually-possible prediction power was achieved. In the range
from 0 to 100%, this is meaningful for comparisons across datasets. As the baseline we use
the performance of a knowledge-free method: predict-the-average. This average of course
differs for each stance and for each reference set.

6. Initial Experiments

The first fundamental question is whether prosody bears information useful for inferring
these stances. Expecting this to be the case, we hypothesized that using prosodic information
will enable prediction of the stance aspects present in news stories better than a baseline
predictor. This section describes our test of this hypothesis.

6.1. Approach

We based our models on one observation and two working assumptions.

The observation is that news segments are heterogeneous in terms of what is said and
how. A stance, when present, is not necessarily expressed, or even relevant, continuously
throughout a news story; rather, it may be indicated mostly in a few specific regions. For
example, in a news story containing the sentence Two SQ constables are being credited with
saving three people from a burning house in Rowdon, the prosodic indications that this was
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“praiseworthy” are present more on the subject and predicate than on the village name, let
alone on the subsequent descriptions of the fire’s origin. Thus this problem is different from
classification tasks where something is assumed to be broadly present across an input, either
because it is a direct indication of a mental or physical state or trait, or because each input
is short: a single utterance or a single word (Schuller, 2011; Mairesse et al., 2012; Freeman
et al., 2015).

Thus we need a way to use locally-present stance information to infer story-level stance,
as annotated. Ideally we would use a model of the rhetorical and discourse structures of
news to locate the most informative regions for any specific type of stance, but no current
model is suitable (Cardoso et al., 2013; Liu et al., 2015). Accordingly, we use a simple
estimate-locally-then-aggregate method (Shen et al., 2014; Schmitt et al., 2016).

Thus, for every small region we estimate the strength of each stance there. Following
computer-vision terminology, we will refer to these regions as “patches.” For simplicity, we
do this for each patch independently.

The first working assumption is that stance is expressed by configurations of prosodic
features within each patch. This implies that patches similar in prosody will be similar in
stance.

The second working assumption is that many of these stance-expressing feature config-
urations are limited in scope, so that patches of about 6 seconds will work well.

6.2. Initial Model

Given these assumptions, it was natural to base our initial model on a k-nearest-neighbors
algorithm. Although more sophisticated algorithms would likely perform better, for the ini-
tial investigation we preferred simplicity. One advantage of k nearest neighbors is in making
minimal assumptions about the distributions. Another advantage is that it is interpretable,
enabling us to examine successes and diagnose failures to learn abut the nature of the prob-
lem, as will be seen below.

We implemented nearest neighbors straightforwardly. For each patch in the segment to
classify, we find the k most similar patches in the reference data set. For each of these
k neighbors, we then look up, in the annotations, how that stance was annotated in the
segment it came from. For example, in classifying a sports segment, the nearest neighbor
of a patch in the middle of snap their losing streak with a win against was a patch in the
middle of partly sunny and a warm day, which was in a segment labeled “local=2, good=2,
new=2." This was thus evidence that the sports segment is also conveying something that is
locally-relevant, good news, and new information. A reference patch is more relevant to the
extent that it is more similar to the new patch, so each neighbor contributes with a weight
proportional to the estimated similarity. Weights are normalized such that the estimates
are not affected by the local density or sparsity of neighbors.

More formally, let the collection of vectors ¢, ¢, . . ., ¢, represent the feature vectors for
each patch 7, and the collection of vectors V' represent the feature vectors of all the patches
from all the segments in the training data. We choose v, 75,3 € V for each ¢ such that
the Euclidean distances d; = ||¢ — ¥;|| for dy, ds, d3 are minimal, or, more formally:
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Figure 1: Overview of the initial model. Given a news segment S to classify, we take overlapping samples
(patches), and represent each as an n-dimensional prosodic-feature vector. For each patch we find the nearest
neighbors, each representing a patch from the reference data, and each inheriting the stance annotations of
the news segment which contained it. The stance of each patch is estimated using the values of its neighbors,
and the overall stance of the news segment is estimated as the average of the estimates for each patch. From

(Ward et al., 2017).

dy,do,ds < |G —0|| VeV \{uv,v,vs}

Let s1, s9, s3 be the three annotator’s average rating for a particular stance for the reference
data segments containing v7, s, U3, respectively. We then find the prediction p; for that
particular stance for each patch i by taking a weighted average of sq, so, s3, using the inverse

squared distance from ¢; to U7, s, U3 as the weights:
W181 + WaSo + W3S3
w1 + Wo + Ws

)

where
1 1 1

W = —5, W = —5, W3 = —
A T R 7 d?
Finally, assuming for now that all patches are equally informative, we estimate the segment-

level stance P as the average of the individual patch predictions:

1 n
P:E;pi
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Figure 1 depicts the method. We use £ = 3 nearest neighbors, based on preliminary
experiments. Currently patches are offset every 100 ms, both in the story to classify and
in the reference data, thus, depending on the length of the segment, there may be tens or
thousands. The 100 ms offset was chosen because it is unlikely that stance often varies faster
than this.

6.3. Initial Feature Sets

To find the nearest neighbors we need a way to judge prosodic similarity. Although
aspects of the perception of prosody and of prosodic similarity have been studied (Reichel
et al., 2009; Rilliard et al., 2011), no existing models are suitable for our needs. Accordingly
we adopt a simple model: we compute distances in a vector space, where each dimension is
given by the values of one prosodic feature, and estimate similarity between two neighbors
as the inverse of their squared distance.

To implement this we need of course a set of prosodic features. Not knowing at first
which prosodic features are important for stance, we started with two feature sets developed
for other tasks. Both broadly characterize the prosody across a region, using a large number
of diverse features.

Our first set, utep-m1, was from a suite originally developed for language modeling and
later extended for other purposes (Ward et al., 2011; Ward and Vega, 2012). The specific
set used was 88 features, taken unmodified from a recent study of prosody of non-native
speakers in dialog (Ward and Gallardo, 2017). This set includes measures of intensity, of
pitch height (high or low), of pitch range (narrow or wide), of speaking rate (using energy
flux as a proxy), and of creakiness. This is a time-spread set: each feature is computed over
various windows, together spanning a patch about 6 seconds long. There is a “foveal region”
in the middle of the patch, where the windows are shorter; that is, the features are more
fine-grained in that region, as illustrated in Figure 3. The complete list is seen in Figure 2.

This set does not include features that are turn-, utterance-, word-, or syllable-aligned,
so that all features can be everywhere-computable and robust. Most features are normalized
to reduce dependence on speaker and recording conditions. In addition, each feature is z-
normalized, across all audio tracks in a dataset, so that each feature contributes equally to
the distance computations.

The implementation details are at (Ward, 2017), from which the code can also be down-
loaded.

The second set of features was the “extended Geneva Minimalistic Acoustic Parameter
Set” (eGeMAPS) (Eyben et al., 2016), designed for emotion recognition. This is an subset
selected from among the thousands in Opensmile (Eyben et al., 2010); coincidentally this
subset also has 88 features. In addition to prosodic features, generally covering the same phe-
nomena as those in utep-ml, the Geneva set also includes spectral features (mel-frequency
cepstral coefficients) and temporal features relating to pause duration and syllable duration.

The Geneva features were extracted using the OpenSmile command-line tool. Since we
need features for a window (patch) spanning approximately 6 seconds, we modified the
eGeMAPS configuration to generate a feature vector for equivalent-sized windows. Again

all features were z-normalized.
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Figure 2: Initial set of prosodic features used, “utep-ml.” Start and end times for each window are in
milliseconds relative to the patch center.

of hospital- acquired infections in  York- region hospitals

narrow pitch i

enunciation i

Figure 3: Ilustration of how features tile a patch. The vertical lines represent window boundaries.

Among the numerous differences in implementation, many related to robustness consid-
erations, two deserve mention. First, the Geneva set was originally designed to work for
inputs that were individual utterances, pre-segmented by hand, whereas the utep-ml set
was designed to be robust for multi-utterance input including regions of silence. Second,
the Geneva set was designed to work for emotions, which probably vary little over a patch,
and so includes many long-term features. In contrast, the utep-m1 set, thanks to the time-
spread windows, may be more sensitive to specific turns of phrase and rhetorical flourishes
that happen over just a few words or syllables.

6.4. Initial Results

Using this model we tested our hypothesis, that prosody is informative for stance. We
did this using a leave-one-out regime, that is, using cross-validation at the segment level.
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English Mandarin Turkish

basln. gen ml. | basln. gen ml. | basln. gen ml.
1 Bad .68 .64  .61% 35 .27F  24% 35 .30%  .31%
2 Good 54 .49*%  46% .38 .40 .32% A5 .14 14%
3 Deplorable 40 41 36% | x .07 .08 .06 49 43*%  42%
4 Praiseworthy x .06 .07 .06 A5 .16 13* A1 .09%  .10%*
5 Controversial x .07 .08 .07 14 15 13* 39 .35%  .35%
6 Factual ... x .09 .05% .07* A3 .08*  .09* .58 .38*  .39*
7 Subjective ... 15 11* 13 .66 .45%  40* A48 .40*%  41%*
8 Unusual ... x .08 .08 .07* A5 15 14* 29 .24*  26%
9 Typical ... .64 .49*%  48* 26 .15%  11%* 23 .19%  19*
10 Local 38 .21*%  .25% a7 .21 23 A5 12% 12
11 Immediate . .. 43 .38*%  .36* 50 .17*  15% | x .05 .05  .05*
12 Background .56 .50*  .50%* 49 .31% 24%* 28 .26 .25
13 New ... 41 .31%  .33% 95 .25%  23* 34 .25%  26%
14 Large-Group ... .58 .46*  .46% 59 .37 31* 37 .30%  .30%*
average 36 .31%  .30%* 40 .23%  20%* 30 .25%  25%

Table 3: Performance in MSE. The scale of values is 0 to 2. “Basln” is the baseline, “gen” is the Geneva
eGeMAPs features, and “m1” is utep-ml. * indicates statistically better than baseline. x indicates low
variance (< 0.10), reflecting highly skewed priors.

Specifically, for each segment and each stance, we predicted the value based on the anno-
tations of that stance in other segments, across each entire dataset. We chose this regime
because our data sets are modest in size.

One slight complication arose from the existence of very short segments, such as brief
weather or stock reports. Because we had difficulty configuring the Geneva features to
produce features consistent in meaning across both segments less than 6 seconds in length
and longer segments, in this initial experiment we evaluated on only the longer segments.
Thus we used subsets of the datasets for these comparisons: for English 877 segments, for
Mandarin 306, and for Turkish 1022.

As seen in Table 3, some stance aspects were predicted fairly well. (The results for English
here differ from those earlier reported (Ward et al., 2017) because at that time several of the
audio files had been incorrectly-downloaded and thus were not identical to the ones on which
the annotators had based their judgments.) For all stances and all languages, the model
using the utep-m1 features had lower error than the baseline. Regarding our hypothesis,
the model often outperformed the baseline by a statistically significant difference, so there
is evidence that prosody does have value for predicting stance. This also suggests that our
working assumptions are appropriate. Regarding features, the overall success of both sets
suggests that this approach is robust and not limited to some specific choices.

Nevertheless, the performance was mixed and sometimes quite marginal. We therefore
began to seek to identify the causes of poor performance in some cases. The first, most
obvious, cause was skewed distributions: for stances for which the distribution is unbalanced,
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performance is generally poor. Indeed, for such cases the annotators also often had difficulty,
as seen in Table 2 by the generally low agreement scores for such stances.

The rest of these paper describes how we exploited this initial model to seek a better
understanding of how prosody conveys stance, and attempts to use this understanding to
build a better model.

7. The Non-Independence of Feature Streams

There are many fundamental open questions regarding how prosody expresses meanings.
Applications-oriented work generally seeks to sidestep such questions, and this can be a
wise choice when adequate training data is available. However, in order to obtain good
performance with little data, as in the current situation, it can be even wiser to seek a
better understanding of the phenomena.

One important question is whether individual prosodic cues independently convey mean-
ing, additively, or whether configurations of cues have supra-additive significance. This is
a classic question in linguistics, both theoretical and applied (Ladd, 2008; Gravano and
Hirschberg, 2011). Most linguistic treatments of prosody have assumed independence. For
example, a fundamental assumption of most work in intonation modeling is that the pitch
is informative by itself, and there has been much work attempting to identify intonation
contours (or pitch-target sequences) that are informative, regardless of how they relate to
other prosodic properties. (The only common exception relates to syllable stress, where the
interactions between intonation contours and stressed syllable locations, marked in part by
intensity and duration, are a topic of recurring interest in phonology.) However, not all
models of prosody incorporate such an independence assumption (Couper-Kuhlen, 1986).
In particular, the recent “prosodic constructions” approach suggests that prosody actually
conveys by means of specific temporal configurations of prosodic features (Ogden, 2010,
2012; Niebuhr, 2014; Ward, 2014).

If configurations are important, then we should use models that can handle them (Kim
and Provost, 2013; Ward, 2014; Ferrer et al., 2007). If they are not, that is, if there is
independence, then we should simplify our models, to potentially obtain good performance
with less training data. (Parenthetically we note that the question of feature-stream inde-
pendence is less important when we have adequate data: in such cases we can feed any and
all features to a powerful model, such as an SVM, random forest, or deep neural network,
that can perform well whether or not the features are independent.)

In practical terms, we want to determine whether it is appropriate to model the individual
prosodic “streams” as independent, where by streams we mean different types of prosodic
features: pitch-related, intensity-related, duration-related, and so on. In other words, we
wish to determine the value of late wvs. early fusion. In general, obtaining independent
estimates of some quantity and then combining them, an “ensemble” approach, can improve
robustness and thus performance. This is because multiple estimates, whose errors will be
uncorrelated if they are truly independent, can enable them to “correct each other” when
averaged, giving better performance. However, we hypothesized that here, because specific

13



prosodic configurations are probably informative, early fusion would outperform late fusion.
The stance-inference task provides an opportunity to investigate this question.

The model described above embodies an early-fusion approach, in that all prosodic fea-
tures are considered at the same time. We therefore built for comparison a late-fusion model,
which first uses each stream to estimate the stance, then combines the stream-based esti-
mates. For this we split our feature set into four streams: intensity, pitch, creakiness, and
speaking rate. We then perform our usual nearest-neighbors computation on each stream,
and then combine them (late fusion) by using the information in the four estimates.

In detail, the late-fusion model first predicts, for each test data segment and each stance,
the value using the 3 nearest neighbors from the training data, for each stream, that is, using
only the features of that stream. Thus we were, overall, considering 12 nearest neighbors
instead of 3, though each one was found using only part of the evidence. We combined
the four estimates, one from each stream, using two different methods. In the first we used
no weights, for each patch simply averaging the per-stream estimates. In the second we
tried to account for the fact that for some inputs one stream may be more informative than
another, for example, when in one stream the training data includes very close neighbors for
a testset patch. Specifically, for each patch, we estimated the informativeness of a stream
as proportional to the inverse of the average distance from the test patch to the 3 nearest
neighboring patches, as a fraction of the overall inverse average distance for that stream, as
estimated from the 3 nearest neighbors for 1000 random patch samples from the training
data. This normalization was important since different streams have different numbers of
features, and thus the typical distance varies from stream to stream.

‘English Mandarin Turkish

early fusion 292 198 .250
late fusion, unweighted .344 276 270
late fusion with stream weights 374 .285 .269

Table 4: Performance in MSE, averaged over all stances.

The results, averaged across all stances, are seen in Table 4. (This and subsequent results
are computed over the entire corpora, including short segments. This is why the early-fusion
results differ slightly from those in Table 3.)

We see that early fusion outperformed late fusion, both weighted and unweighted. In fact,
early fusion performed best for all 42 language-stance pairings. This suggests that specific
multi-stream configurations of prosodic features are indeed meaningful. As far as we know,
this represents the first corpus-based finding regarding the relative merits of independent-
stream and multistream modeling of prosody.

8. Feature Set Improvements

Our initial experiments used two off-the-shelf feature sets. This section describes how we

improved on these, both for the sake of better understanding how prosody expresses stance
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and for the sake of improving prediction accuracy.

8.1. Feature Selection

Studies with the different streams, each tested in isolation, suggested that the intensity
and pitch features were the most valuable, with creakiness contributing little or nothing.
The low value of creakiness here, despite its importance in dialog for interpersonal and turn-
taking functions, probably reflects the fact that creaky voice negatively affects intelligibility,
and so is avoided in radio.

In order to more thoroughly investigate the usefulness of the various features, we con-
structed decision-tree models of the data and examined the frequency with which each
feature was used in the splits. (Although it can be more informative to consider also how
high in the trees each feature tended to appear, here we only considered the frequency of
appearance.)

Specifically we trained 42 decision trees, one for each of the 14 stances in each of the 3
languages. Despite a good deal of variation, some tendencies were broadly present across
all trees. Intensity features were the most frequently used, and the creakiness features
consistently ranked at or near the bottom. Further, across all feature types, shorter windows
generally ranked lower than wider ones, and in particular the 50 ms windows for pitch
highness and pitch lowness were very infrequently used.

We also investigated the value of reducing the feature space using Principal Component
Analysis (PCA). PCA is known to be useful for discovering meaningful underlying factors
underlying complex prosodic variation (Ward, 2014). It is also, in many cases, effective at
separating useful dimensions of variation from lower-ranked dimensions that mostly represent
unhelpful noise. We accordingly transformed the raw 88 features to 88 PCA dimensions,
and experimented with dropping the lower-ranked dimensions, as a possible way to add
noise robustness. However this did not help; we believe this suggest that all dimensions
of prosodic variation are sometimes useful for some stances. We also experimented with
dropping some of the highest-ranked dimensions, as a possible way to overcome irrelevant
contextual variation (Belhumeur et al., 1997). This also gave no benefit, probably because
our features are designed to be well-normalized already.

Based on the decision-tree observations we dropped one feature type and for others
modified the window sizes used. Specifically, we dropped all of the creakiness features and
we replaced the 50 ms windows with wider windows, for all feature types except intensity.

8.2. Augmenting the Feature Set

To gain further insight regarding the adequacy of the features we examined some seg-
ments where the model’s predictions were most incorrect. Poor predictions at the segment
level are due to poor predictions for some component patches, which in turn can be due to
reference-data patches which are close neighbors, by our metric, but which are different in
some stance.

We found that our utep-m1 feature set was sometimes inadequate to distinguish patches
which were, perceptually, clearly different. There was, for example, a somber-sounding
patch that our features considered to be prosodically similar to a clearly upbeat one, and



we attributed this to the absence of features able to catch the difference in emotional tone.
We also found a patch clearly expressing a deploring tone that matched one with a positive
tone, and attributed this to the lack of a feature able to represent that only one of these
had onset lengthening. Together with the fact that the Geneva features outperformed the
utep-ml set in some cases, these observations motivated us to try additional features.

As our initial set, utep-m1, provided decent coverage of the big-three aspects of prosody
— pitch, intensity, and timing — we chose to focus on features of other types. Because
previous work has said little about what other features might convey stance, and because
we lack intuitions about this, we choose features for non-redundancy and variety. However,
we chose to exclude purely spectral features, as those could lead to a model that was sensitive
to the presence of specific lexical items, which would likely be less robust across languages.

First we added a feature for syllable lengthening, to complement our energy-flux estimate
of speaking rate. Lengthening is estimated as high in windows over which the frame-to-
frame spectral change is low, as for example occurs in lengthened vowels. Specifically, it
is the inverse of the squared sum of the cepstral differences, multiplied by the energy in
that window, to reduce misdetections due to silent regions. Lengthening is known to be
important in turn-taking and in marking high-entropy words (Bell et al., 2009).

We added a late-pitch-peak feature. Late pitch peak is the phenomenon in which the
pitch peak occurs after the energy peak of a syllable; that is, later than its normal time
(Barnes et al., 2012). While various measures of late peak exist, we developed a new,
automatically-computable proxy, disalignment, that measures the extent to which there are
salient pitch peaks and energy peaks which are close but not aligned. (The vast majority
of non-aligned peaks are in fact late peaks.) Late pitch peaks are known to be involved
in expressing politeness, attitudes like incredulity, and topic starts (Wichmann et al., 1997;
Zellers et al., 2009).

We added the voiced /unvoiced intensity ratio, a measure of the difference between the
average intensity over voiced frames and the average intensity over speech-containing but
unvoiced frames. This is known to be important in emotion detection.

We added enunciation and reduction, to represent the degree to which the speech is
carefully articulated versus slurred. While various measures exist, we developed new, fully-
automatic features. These take the average cepstum across all voiced regions as an estimate
of the neutral sound — presumably nearly a schwa or other central vowel — and then in each
window compute the average distance of the frames’ cepstrums from this neutral cepstrum.
When high this indicates enunciation, and when low reduction. Articulatory precision is
known to vary with information predictability, and hyperarticulation to mark opinions and
urgency (Freeman, 2014; Hodoshima, 2016).

Figure 4 shows the improved set, utep-m4. After the various deletions, modifications,
and additions, this coincidentally also has 88 features.

As seen in the second and third lines of Table 5, this new set outperformed utep-m1.

Curious about the relative contributions of the new features, we did an additional post-
hoc experiment. Most discussions of prosody focus on big-three features, but we thought
that the additional features would bring a sizeable benefit. To explore this we built a “big-

three” featureset by including all intensity, pitch, and lengthening features from utep-m4.
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high pitch, low pitch
narrow pitch, wide pitch

energy flux, lengthening enunciation
intensity late pitch peak, v/uv intensity — reduction
(16) (8 each) (4 each)
-3200 — -1600
-1600 — -800 -1600 - -800 -1600 — -800
-800 — -400 -800 — -400
-400 — -300
-300 - -200 -400 - -200
-200 - -100
-100 - -50
-50 -0 -200 - 0 -800 - 0
0—-50 0 - 200 0 — 800
50 — 100
100 — 200 200 - 400
200 — 300
300 — 400
400 — 800 400 — 800
800 — 1600 800 — 1600 800 — 1600
1600 — 3200

Figure 4: Final set of prosodic features used, “utep-m4.” Start and end times for each window are in
milliseconds relative to the patch center.

Then we added features, one-by-one. As seen in the bottom half of Table 5, the contributions
of the various features were small and variable, contrary to our expectation. The only new
feature consistently giving a benefit was the reduction feature. We conclude that most of the
advantage of our new utep-m4 set comes not from the additional features but from the other
improvements: adjusted window sizes, deletion of the creaky feature, and the improved rate
(lengthening) feature.

While utep-m4 improved on utep-ml1, we must add a caveat: because of our numerous
exploratory experiments, some knowledge of the specific properties of these datasets leaked
in to our process of developing utep-m4. Thus the increases in performance seen here
may overestimate what we would see on new data, although we lack pristine held-out data
available to confirm this.

Nevertheless utep-m4 does seem to be well-suited for stance inference. While we ex-
pect that further improvements are possible, at this point we stopped experimenting with
features, to instead work on improving the model.
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English Mandarin Turkish

baseline .362 .395 .305
utep-m1 292 198 .250
utep-m4 .268 .193 244
big three 277 .190 .245
+ creak 283 193 .249
+ vvir 274 198 .246
+ late peak .280 .190 244
+ enunciation 275 191 .243
+ reduction 270 187 243

Table 5: Performance of various feature sets, MSE

9. Model Improvements

This section briefly describes three ideas, one of which substantially improved perfor-
mance.

Our first idea was to more effectively use the information provided by the nearest neigh-
bors. Thus, to estimate the stance at each testset patch, we built a model based on some
similar training data patches. Specifically we tried locally-weighted linear regression, using
up to 100 neighbors for each testset patch. As this gave about the same level of performance,
we did not pursue this further.

Our second idea was based on observations that some stories seemed to have distinctive
prosodic indications of the overall stance on the very first words. This led us to suspect that
the same prosodic configuration occurring early in a news story might have a different signif-
icance from when occurring a little later or in the middle or near the end. We implemented
this simply, within the nearest-neighbors framework, by simply adding temporal features:
thus obtaining a model that tended to find neighbors that were not only prosodically similar
but also in roughly the same temporal zone in the story. Thinking that this would be most
important for patches very early or very late in stories, we chose to use log time, and accord-
ingly added two new features: log of the time since the start of the segment and log of the
time until the end of the segment. We also tried other temporal features, such percent of
time into a segment, but these gave little or no benefit. The two log features, however gave
a large improvement, so to better exploit this we tried giving them larger weights, obtaining
best performance for English when each had a weight 4 times that of the other features.
Table 6 shows the resulting performance. The last, best-performing combination we will
refer to as utep-m4t.

Our third investigation was motivated by the observation that speakers differed in their
prosodic behavior. We therefore experimented to see whether performance would improve
with matched data, where all the reference data was from same speaker as the to-be-classified
segment. For this we used the single-speaker subset of the English data. Table 7 shows the
results. Comparing to the general (multi-speaker) case, matched data gave better perfor-

mance, even with only a quarter of the data. Comparing to a same-size subset, selected
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English Mandarin Turkish

utep-m4 .268 193 .244
+ log(time-since-start) and log(time-to-end) .246 179 232
+ log(time-since-start) and log(time-to-end), x 4 .202 162 .230

Table 6: Performance with and without temporal features, MSE

baseline model percent

MSE  MSE reduction

all speakers (488 minutes) .36 20 44%
mixed speakers (126 minutes) 37 .24 33%
single speaker (125 minutes) .35 17 50%

Table 7: Performance as a function of training-data size and similarity, English.

at random, matched data boosted performance (reduced error) by a factor of 1.5. However
in practice single-speaker models would be useful only if speaker identification were reliable
and if adequate samples of the speaker were present in the reference data, conditions that
rarely hold, so we did not pursue this further.

10. How Prosody Conveys Stance

This section illustrates specific prosodic configurations that do or do not convey stance.
It further discusses attempts, so far unsuccessful, to use these observations to build better
models.

While examining poor predictions we discovered some prosodic configurations unrelated
to stance. For example, the prosody at one appositive-comma pause strongly resembled the
prosody at an appositive-comma pause in a different segment, regardless of the very different
stances in the two segments overall (Wichmann, 2000). As another example, the prosodic
construction indicating contrast (which is the monolog form of the same contradiction con-
tour often noted in dialog (Liberman and Sag, 1974; Hedberg et al., 2003)), occurred in
rhetorical structures involving various stances. The existence of such cases is not surprising;
it simply reflects the fact that there are times when prosody is being used to convey things
other than stance. For our pruposes, this means that some patches are not informative, and
should somehow be excluded from consideration.

While patch-based failure analysis can lead to insight, it may lead to outlier phenomena
rather than to more common sources of good or bad performance. Accordingly we next set
out to examine the meanings of prosody using clusters. To do this we first used k-means
over all patches in the English set to find 100 clusters. For this we used the 88 utep-m4
prosodic features. The stance labels were not used in the clustering. Inspired by earlier
work on bag-of-audio-words models (Schmitt et al., 2016), one might think of each cluster
as an appoximation to a “prosodic word,” to the extent that the variation within a cluster
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is less important for meaning than the differences between clusters.

To investigate which stances were being conveyed by which clusters, we built a very
simple predictive model. This model represents each story as a vector of cluster-counts,
based on how many of the patches in that story fall within each cluster, that is, for each
cluster j the count of patches in the to-be-classified segment that are closest to the centroid
of cluster j. For example, if a story contained 7 patches that fall within cluster 1, 3 that
fall within cluster 2, and so on, that story was represented by the vector (7, 2 ...). Thus
we represent each story as a “bag of prosodic words.” We then trained a model to predict
stance. For interpretability this model used linear regression over the cluster counts.

We then examined the coefficients of this model to find clusters that were informative
regarding one stance or another. To give three examples:

e Stories with many patches falling within Cluster 1 tended to be annotated highly on
the “new” stance, that is, to contain new information. To understand what Cluster
1 involves, we plotted the feature values at its centroid, as seen in Figure 5. We
then listened to some patches close to this centroid. While the cluster involves many
prosodic features, a few were clearly salient: there is a brief pause near the center
(the dip in intensity), the sentence before the pause ends with a slightly raised and
somewhat narrow pitch, and the sentence after the pause starts with a high pitch, a
clearly enunciated word or two, and a very salient late pitch peak.

One patch near the centroid was in . . . the plant . . . has had its operations halted . . . [due
to] permit issues. The plant expects to resume operations again in around six months

and another patch was in ... Markham is testing out some new designs ... [for]
wheelchair-accessible picnic tables. Ten accessible tables are being placed in various
parks .... In both cases the newsreader was transitioning from giving background
information to providing new information. Thus it makes sense that a segment with
many patches like this is likely to be conveying new information. As noted above, late
pitch peaks have previously been implicated with new topic start, a related function,
but here, in concert with other features in the local neighborhood, it seems to convey
something more specific. This configuration has two other interesting properties. First,
it spans an utterance boundary, meaning that approaches which try to classify stance
utterance-by-utterance would likely miss it (Perez-Rosas et al., 2013). Second, it can
convey newness even when, as in these examples, there are no lexical indications of
newness.

e Stories rich in patches from Cluster 35 tended to be “local” in stance. At the centroid
this involved about a second of slightly increased articulatory precision and slightly
narrowed pitch range, followed by about 400 milliseconds of moderately high intensity,
quite narrow pitch range, and extreme lengthening. For examples, this was present
on a patch on under partly sunny skies this afternoon, a patch in MS, formerly of
Sweet Home [Oregon/, was shot in the leg ..., and a patch in for local news ... head
over to our website ..., where underlining marks the lengthened word in each case.

Perceptually, in each case it seems as if the announcer is more directly speaking to the
20
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Figure 5: Feature values at the centroid of Cluster 1. Each feature’s values are plotted over that feature’s
time range, thus for example over the window —1600 ms to —800 ms the intensity is slightly below average.
The dotted lines in each case are at zero. All features are z-normalized. For conciseness three pairs of feature
types are combined: the difference between the values of the high-pitch and low-pitch features is shown as
“pitch height,” the difference between wide pitch and narrow pitch as “pitch range”, and the difference
between enunciation and rediction as “articulatory precision.

audience about something of shared interest. Unlike the previous example, this con-
figuration does not appear to be linked to any specific structure — discourse, syntactic
or otherwise — so it may be a relatively free-floating prosodic morpheme, adding a
nuance of “relevant to you, the local listening audience” wherever it occurs.

e Our final example is cluster 36, which is an indicator for stories that are “relevant to a
large group.” Patches in this cluster are fairly low in pitch over about 3 seconds with
a narrow pitch range, and a slight pause in the middle of that region. Examples near
the centroid included a patch at feared ... a release of radioactivity. The government
announcement may signal the danger ..., a patch at ... police officers ... throughout
the county, as a deterrent ..., and a patch at ... fundraising goal is one hundred
fifty nine thousand dollars. .. Thus this configuration can appear when the speaker is
conveying that the situation is not limited or merely local, but covering an large region.
However this configuration is not specific to the “large group” stance, as seen in the
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third example, in which it seemes to convey merely a large amount. This configuration
is easy to understand as a special case of the general tendency for lower pitch to relate
to increased physical size in many ways (Ohala, 1984).

Thus there are clearly configurations of prosodic features that convey stance, supporting
again the validity of our two working assumptions. The existence of such configurations
raises questions for linguistic models of prosody (Ladd, 2008); examining the theoretical
implications would be an interesting topic for future work.

Theoretical issues aside, we tried to use these observations to build a better model.
Because we learned that patches are in fact not all equally informative regarding stance,
we attempted to estimate the informativeness of each patch and use this informativeness to
weight their estimates. We estimated informativeness based on whether the close neighbors
were consistent in stance. However this gave only a modest benefit.

Our next attempt to build a better model used the prosodic bag of words representation.
As described above, the basic idea is to estimate stance via the properties of clusters, where
each cluster center represents the information in hundreds or thousands of patches. Because
some clusters have insignificant correlates with some stances, this representation can handle
the fact that some patches are less informative that others with respect to some stance. To
improve performance, we made two changes to the simple model described earlier. First,
based on the expectation that there would be diminishing returns in informativeness with
increasing counts; we replaced the raw counts ¢; with log(1+c;) for each cluster. Second,
because in the simple model the predictions could be less than 0 or more than 2, we added
postprocessing to clip such values, to force them into the known range of target values.
Preliminary experiments indicated that these changes improved performance, and that the
temporal features were useful in this model also, but performed best without extra weight-
ing. Other preliminary experiments suggested that performance would improve with more
clusters, but for the sake of quick experimentation we chose to use only 200 clusters. Al-
though creating the clusters is time-consuming, after the clusters are fixed and the model
is built, it is very quick to compute predictions for a new story. Preliminary experiments
also showed that the bag-of-prosodic-words representations needed to be language-specific:
a model for Mandarin using English-derived clusters performed only slightly above base-
line. As an alternative to the linear regression over the prosodic bags of words, we also
tried nearest neighbors over prosodic bags of words, where for each segment the estimate
was derived from the stances of the three nearest neighbors in bag-of-prosodic-words space,
distance-weighted as described in Section 6.2.

To evaluate these new models we used five-fold cross-validation. The clustering was done
for all the data, training and test, but the regression model was trained separately for each
fold, reflecting a real-world scenario where there is a lot of data but only a fraction has
been annotated. As seen in Table 8 the prosodic-words models did not outperform the k
nearest neighbors model. We think this indicates any benefit from modeling informativeness
differences was overwhelmed by the loss of information in the clustering step.
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English Mandarin Turkish

baseline .36 .39 31
patches—kNN per patch—average .20 .16 .23
patches—cluster counts (BOPW)—regression 27 .46 .29
patches—cluster counts (BOPW)—kNN .25 22 .29

Table 8: Performance of the two models. BOPW is a bag of prosodic words

11. Final Results

Figure 9 shows the results for each stance and each language for our best model, utep-
m4t. We observe that the performance is good overall: across the three languages the models
do well for most stances, subject again to the caveat regarding the lack of pristine test data.

English Mandarin Turkish

basln  m4t hum. ‘ basln  m4t hum. ‘ basln  m4t hum.
1 Bad .65 41 A1 35 .24 .14 36 .30 24
2 Good b3 .35 .28 38 .28 .19 15 .13 .09
3 Deplorable 3724 .06 .06 .06 .04 48 .39 14
4 Praiseworthy .05 .05 .04 15 .13 .08 A1 .10 .07
5 Controversial .07 .05 .03 A4 13 .05 39 31 .23
6 Factual ... .08 .06 .08 12 .08 .05 .60 .32 .26
7 Subjective ... 14 .08 .08 .66 .28 .26 48 .36 .25
8 Unusual ... .07 .06 .07 A5 14 .03 29 .25 22
9 Typical ... 14 .22 .10 25 .09 .08 23 .18 .30
10 Local 37 .22 .26 7719 .23 15 .10 .38
11 Immediate ... 41 .28 .09 49 .10 .07 .05 .05 .08
12 Background b7 21 27 49 .18 .16 28 .21 .29
13 New ... 41 .25 .32 95 .11 .05 35 .23 .48
14 Large-Group ... .60 .33 .32 b8 .26 .07 38 .28 .35
average 362 .202 151 | .395 .162 .107 | .305 .230 .244

Table 9: Performance of the final models, MSE. m4t is the model averaging patchwise kNN-baed estimates
using the utep-m4t feature set; hum. is human performance.

For some of the stances the model did better than the human annotators. This is possible
because the target in each case is the average of the three annotators’ judgments, and any
individual annotator may diverge from that target, meaning that the average error for the
humans may be higher than the error of the model. This was seen for locally-relevant in
all languages. This was also seen for 6 of the 14 stances for Turkish, although this result
largely reflects the low interannotator agreement for this language.

Nevertheless there is clearly much room to improve. Table 10 puts these results in
perspective, showing what fraction of the stance information present was inferred. Overall
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it is possible to infer on average between 25 and 59% of the stance information present in
news stories. Sampling a few segments which were badly misclassified, most had a disconnect
between the stance as conveyed by prosody and the stance that would be suggested by the
facts. Thus, we think that the major reason why our model performs less well than humans
is, unsurprisingly, that the human annotators were able to consider information beyond
prosody, including the words said, the full context, and their knowledge of the world and
how news readers talk about it.

‘English Mandarin Turkish

KNN utep-mdt | 44% 59%  25%
human 58% 73% 20%

Table 10: Obtained improvement as a percent of the possible improvement, averaged across all stances.

The table also supports an additional observation: performance varies across languages.
However, given the peculiarities of the data sets, as described above, this is likely due more
to genre differences than to language differences.

12. Stance Expressions across Languages

Disasters can occur anywhere, without warning, so a stance-inference system would ide-
ally be able to detect stance in news from any language, even if not previously modeled.
Thus it would be convenient if expressions of stance were universal. To explore this we
did cross-language experiments, in which everything was the same, except that the nearest
neighbors for reference were sought in the data from a different language. Unfortunately,
as seen in Table 11, the cross-language performance was very poor: at or below baseline.
Clearly the prosodic reflections of stance can vary greatly among languages.

13. Open Questions

This section considers some open questions and avenues for future work.

The feature set could doubtless be further improved. One might add aligned features,
aligned with boundaries or with words or syllables. One might try more features (Ferrer
et al., 2010; Slaney et al., 2013; Arsikere et al., 2016; Levow and Wright, 2017), including

Performance when trained on
English Mandarin Turkish

English 44% -11% 0%
Mandarin -1% 59% 1%
Turkish -4% -20% 25%

Table 11: Performance across languages, as above.
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also spectral and lexical features. One could do exhaustive feature selection, and refine the
model to have different weights for all features. Since we know, from preliminary studies,
that different feature sets are advantageous for for different stances, one could also micro-
tune the features independently for predicting each stance.

One might also try new models, including exemplar-based models more sophisticated
than clustering, perhaps with a bag-of-words model based on soft instead of hard clustering
(Muscariello et al., 2009; Kim and Provost, 2013). One might also try to classify patches
using a model more sophisticated than nearest neighbors. One might also abandon the
assumption of independent patches to instead model the temporal relations across wider
ranges (Poria et al., 2017). One might use some kind of attention model to overcome the
simplicity of assuming that all patches are equally informative (Yu et al., 2017).

One might explore the generality of the configurations and models, including the effects
of data size, of speaker differences, of domains, of topics, and of genres, such as read news,
interviews, speeches, dialog, and video soundtracks.

Another way to extend this work would be to model stance in a more fine-grained way
(Yang and Cardie, 2013; Socher et al., 2013). Rather than infering the stance of stories, one
could seek to infer the stance of the speaker towards the various entities, situations, and
activities discussed.

Although the lack of commonality between the prosody-stance mappings of these three
languages suggests that expressions of stance are not universal, future work should examine
generality within language families. It is also possible that there are universal constraints
in how prosody maps to stance; for example, certain types of feature configurations may be
universally irrelevant to stance, and if these can be discovered, we should be able to obtain
good performance on new languages with less training data.

To enable others to also explore these issues, we have made available our code, at
https://github.com/nigelgward/stance/ andhttps://github.com/nigelgward/midlevel/.

14. Summary and Significance

This paper has explored the potential for using stance in information retrieval of spoken
language. It presented a list of 14 aspects of stance that are often relevant properties of
news stories. It showed that specific configurations of prosodic features over 6 seconds or
less are important for conveying stance. It showed how these can be used to infer stance
automatically, from prosodic information alone, performing sometimes as well as human
annotators.
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