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Abstract

A possible way to make video chat more efficient is to only send
video frames that are likely to be looked at by the remote partici-
pant. Gaze in dialog is intimately tied to dialog states and behav-
iors, so prediction of such times should be possible. To investigate,
we collected data on both participants in 6 video-chat sessions, to-
talling 65 minutes, and created a model to predict whether a partic-
ipant will be looking at the screen 300 milliseconds in the future,
based on prosodic and gaze information available at the other side.
A simple predictor had a precision of 42% at the equal error rate.
While this is probably not good enough to be useful, improved per-
formance should be readily achievable.

Keywords: eye gaze, video conferencing, behavior modeling, di-
alog patterns, conversation

Concepts: •Information systems → Web conferencing;
•Human-centered computing→ User models;

1 Motivation

The principal challenge in telecommunications is maximizing the
quality of experience that can be delivered for a given bandwidth.
Real-time adaptation can help: channels where instantaneous qual-
ity varies over time can support a better overall user experience than
constant-rate transmission. To date, adaptation is generally based
on the network state. We propose instead to adapt to the state of the
user, in particular to the user’s attention level.

Specifically, we would like to make video chat more efficient.
Video chat is popular and a significant data hog, especially for
mobile users [Jana et al. 2013]. Like other forms of interactive
telecommunication, it is especially resource-demanding because it
is impossible to buffer significantly. Delays and packet losses are
very noticeable, and to avoid these carriers generally overprovision
bandwidth. This involves significant costs for carriers and, indi-
rectly, users. These resource requirements preclude use entirely in
many situations.

We would like to make video chat more efficient by transmitting
less information for video frames that the remote user is unlikely to
look at, exploiting the fact that people often look away (avert gaze)
during dialog. A video communication channel should be able to
use less bandwidth at such times without much impact on perceived
quality. This paper explores the feasibility of this idea.

Section 2 overviews related research and describes two preliminary
studies on gaze and attention. Section 3 describes the data collec-
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tion, 4 the features and model, and 5 the results. Section 6 discusses
the implications, Section 7 notes directions for future work and 8
summarizes.

2 Background and Preliminary Studies

It has long been known that people in dyadic conversation often
gaze away from their interlocutors [Kendon 1967], with reported
percentages varying from 10% to 91%, depending on the individ-
ual and other factors. In dyadic conversation, work studying the re-
lationship between gaze, dialog activities, and prosody has shown
that gaze aversion is not randomly distributed, but relates to turn-
taking behavior [Cummins 2012; Kawahara et al. 2012; Jokinen
et al. 2013]. For example, in one study, 73% of gaze aversions were
turn-initial, with an average duration of 2.3 seconds [Andrist et al.
2013]. Turn-taking behavior in turn relates to the prosody of the
utterances of the participants [Gravano and Hirschberg 2011; Raux
and Eskenazi 2012], suggesting that we may be able to predict gaze
from prosody.

For telecommunications applications, there have been studies of
gaze in multi-party scenarios regarding the question of who a partic-
ipant will be looking at [Vertegaal et al. 2001]. More detailed gaze
modeling has also been done, but so far only for non-interactive
video [Komogortsev 2009; Yonetani 2012; Feng et al. 2013; Kim
and Kim 2013].

As a preliminary study, we examined the human ability to pre-
dict gaze. For this we made six over-the-shoulder videos of peo-
ple Skyping, in a configuration with a one-way delay of about 600
milliseconds. We then had four untrained observers watch these
using Elan, stopped the video at random points, and had them pre-
dict whether the remote participant would be looking at the local
one 350 ms later. We thus obtained 250 informal predictions. 72%
of the predictions of an upcoming gaze aversion were correct, and
overall only 10% of their predictions were false positives. Thus
gaze appears to be fairly predictable.

We also did a second preliminary study, to investigate the relation-
ship between gaze aversion and the value of the displayed image
to the user. In particular, since the focus of attention is not always
at the gaze point, we need an estimate of how well gaze can serve
as a proxy for attention. While aspects of visual acuity across the
visual field have been well-studied, we are concerned specifically
with viewing faces, and with sensitivity during conversation rather
than in single-task experiments. We therefore investigated the rela-
tion between gaze direction and the likelihood of noticing video im-
pairments. In this two participants communicated over Skype, and
occasionally one closed his or her eyes for about a second. These
stimuli were cued by a silent random-interval timer visible to that
one participant. Immediately afterwards the stimulus-generating
participant said “freeze” and the other froze his or her gaze and
reported the location, to within 10 degrees, by naming the nearest
one of a grid of labeled dots on the screen and wall. They also
reported whether or not they had noticed the closing of the eyes.

With 6 participants and 150 total trials, we found, as expected, that
closings were noticed less to the extent that gaze was farther from
the center of the screen. In particular, when the reported gaze was
greater than 15 degrees away, horizontally or vertically, from the
screen center, the stimulus detection rate was 13%, far less than the
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Figure 1: Participant’s view, with webcam above and gaze tracker
below the screen.

89% when gaze was closer, let alone the 93% when gaze was within
5 degrees of the center. Thus reducing video quality at gaze-away
times should have only a minor impact on users.

3 Data Collection

To investigate predictability we needed data. Since gaze behav-
ior in telecommunications differs from that in face-to-face dialog
[Doherty-Sneddon and Phelps 2005] (for reasons probably includ-
ing the lack of physical presence, poor image and audio quality, and
degraded contingency due to delay), we created a new data collec-
tion. We set up a Skype connection between two quiet rooms in our
laboratory. For each participant the Skype window filled the screen.
Each sat at a comfortable distance and adjusted the gaze tracker ap-
propriately. We asked them to not move too much because of the
gaze tracker limitations. The image of the partner’s face on the
screen typically subtended around 7 degrees horizontally, as sug-
gested by Figure 1.

Each pair of participants had a 4-12 minute Skype conversation, on
any topics they wished to talk about. Each pair was already ac-
quainted and many were friends. All were affiliated with the UTEP
Computer Science department. There were 12 participants and 6
conversations, totaling 65 minutes.

Each participant’s gaze was tracked by a Gazepoint GP3 Eye
Tracker mounted below the monitor. Audio was recorded with
head-mounted microphones with a Tascam DR-40. We recorded
reference signals consisting of three claps in front of the gaze
tracker before the conversation and again afterwards, for each side.
Synchronizing with these gave a global, delay-free view of the be-
haviors. This was not, of course, what the participants experienced.
In Skype the delay is not constant, and audio and video delays may
diverge. In this setup the video delays are around 120 to 150 ms,
and the audio 200 to 250 ms. Video freezes were rare.

We counted as “gaze-off” those frames where either the gaze
tracker reported no gaze detected or when the gaze was away from
the interlocutor’s face. The former were probably mostly hard-to-
predict blinks, and the latter more predicable gaze aversions. “Away
from the face” was operationalized using two heuristics. First, we
estimated the center of interest as the average x and y of the on-
screen fixations. Second, because gaze distance from center was
bimodal, with a minimum around 0.7 screen heights, and based on
the informal perceptual study mentioned above, gaze aversion was
inferred when the current gaze direction was more than 0.7h away
from this center of interest, where h is the screen height. This cor-
responds to about 14 degrees of visual angle.

Using these definitions, the fraction of gaze-off frames averaged
29%, varying across participants from 12% to 45%.

4 Predictive Features

Given this data we investigated features that correlate with future
gaze. In order to decide whether or not to send a packet at time
t, we need to predict whether the remote user will be looking at
the screen at time t + d, where d is the one-way delay. There is
no need to predict the exact moments of eye movement, just the
likelihood of gaze-off. Delay implies that the prediction algorithm
will not have access to any recipient-side features more recent than
t− d. Here we assume d = 300 ms, and accordingly consider only
features that would be available at the local, sending, end when the
prediction must be made.

We first examined prosodic features. As noted above, gaze is re-
lated to turn-taking; we have also observed that participants tend to
look away while laughing, when back-channeling, when closing out
a topic, when thinking, and during affect bursts. Accordingly the
prosodic feature set was designed to capture information useful for
turn-taking, dialog-event, and user-state prediction [Shriberg et al.
2005; Truong and van Leeuwen 2007; Ward et al. 2011; Ward and
Vega 2012; Ward 2015]. Our features were intensity, pitch height,
pitch range, pitch creakiness, and a speaking-rate proxy. Since we
expected gaze to relate to patterns of behavior across time, we used
multiple windows for each feature, together spanning the three sec-
onds up to the prediction point. Thus we had , for example, a win-
dow for the average interlocutor volume over 1900 to 1100 ms be-
fore the prediction point t, a window for the average value over
1100 to 600 ms before, and so on. We included such features for
both participants.

Examining correlations, speaking rate was negatively correlated (–
0.10) with upcoming gaze, perhaps because at turn-ends speakers
tend both to slow down and to look at the interlocutor. Interlocu-
tor volume and speaking rate correlated positively with upcoming
gaze, perhaps because increases in rate and volume tend to signify
important information and attract attention.

We next examined gaze-location features. We used similarly coarse
windows and again included features for both participants. For ex-
ample, it is reported that at turn end the current speaker usually
looks directly at the interlocutor, and that at the subsequent turn
start the new speaker looks away. Since gaze aversions in different
directions may reflect different cognitive activities [Ehrlichman and
Weinberger 1978], we included features for gaze-up, gaze-down,
gaze-right, and gaze-left. For convenient use in our linear model,
explained below, we thresholded these so that, for example, the
gaze-up-distance feature value was zero when the gaze was below
the center point. We also included features for gaze-distance-from-
center, again thresholded, and for the fraction of the time in the
window when there was gaze-on.

The mostly highly correlated feature was, unsurprisingly, the frac-
tion of gaze-on by the speaker during the most recent available 100
ms window, namely that 700 to 600 ms before the frame to predict,
with a correlation of 0.27. Gaze-away features correlated nega-
tively, in order right > down > left > up; perhaps because gaze
aversions to the right tend to last longer. Interlocutor gaze features
correlated in the same ways, although more weakly, probably re-
flecting the fact that gaze tends to be reciprocated. Overall, gaze
features were far more informative than the prosodic features.



Figure 2: Predictor Performance

Gaze: predicted on predicted off sum
actually on 67% 4% 71%
actually off 23% 6% 29%
sum 90% 10% 100%

Table 1: Percent of Frames in Each Condition

5 Prediction Results

As this is initial exploration, we wanted a simple model whose per-
formance would be easy to analyze, so we chose to predict using
linear regression with a threshold. Varying the threshold changes
the aggressiveness of the gaze-off predictions, and thus the trade-
off between reducing transmission and preserving quality. The in-
put was 42 gaze features and 67 prosodic features.

A gaze-off prediction is correct, of course, if it matches the actual
gaze state in the data 300 ms later. We evaluated our predictor by
generating predictions every 10 ms, 707830 in total. We tested, for
each participant’s data, the performance of a model trained on the
other 11 participants. Thus each test was of the predictability of
a participant unseen in the training data. The results reported are
averages across all participants.

Figure 2 shows how the precision, recall, and weighted F-measure
varied with the prediction threshold. The equal-error rate was 42%
that is, there was an operating point at which the fraction of the
gaze-off frames correctly predicted as such was 42%, and so was
the fraction of the gaze-off predictions that were correct. This pre-
cision is significantly above the 29% baseline which would be ob-
tained by random guessing. For the F-measure we weighted the
precision 30 times the recall, for reasons discussed below. Varying
the threshold, the best value for this measure was 49%. The best
operating point varied across speakers, as did the best performance
obtained, from 18% to 86%.

Examining more closely the performance, at the best threshold the
average precision was 53% and the average recall 19%. The confu-
sion matrix at this operating point is shown in Table 1.

We had hoped to obtain decent performance using prosodic features
alone, as they are easy to obtain with any current hardware. How-
ever precision for feature sets without remote-speaker gaze was
barely above chance.

6 Cost-Benefit Analysis

While clearly our method is able to reduce transmission rates, in-
correct predictions will, from the recipient’s perspective, manifest
as a noticeable loss of quality. This section considers when this
tradeoff is likely to be advantageous.

Unfortunately, while there are good quality-of-experience models
for interactive audio and for video transmission, there are no suit-
able ones for video chat. User behaviors and user preferences
in interactive applications such as video chat and teleconferenc-
ing clearly differ from those in passive video viewing [Whittaker
and O’Conaill 1997; Bohannon et al. 2012]. Moreover, different
users have different preferences, especially different cost sensitivi-
ties, and video chat can be implemented and delivered in different
ways [Cermak 2009; Yu et al. 2014].

Nevertheless there is information in the literature from which we
can attempt to roughly characterize the tradeoff. The primary de-
terminants of subjective video quality are packet loss and bitrate
(the product of frame rate and frame quality) [Cermak 2009]. The
benefit of gaze-aversion modeling is a reduction in unneeded trans-
mission, and this can be used to increase the bitrate at times when
transmission is needed. A 30% increase in bitrate appears to gen-
erally provide a Mean-Opinion-Score (MOS) increase of about 0.3
points, according to the graphs in [Cermak 2009]. A 1% increase in
packet loss appears to generally cause a MOS decrease of about 0.3
points, according to the graphs in [Khorsandroo et al. 2012]. The
ratio of these two is the weight of 30 used above.

From this we can estimate the utility of a system operating at the
best threshold identified above. At this point 10% of the frames
are being predicted as gaze-off, implying that, if transmission were
suspended entirely at such times, the transmission reduction will
be 10%. This means that the bitrate in times when transmission
is needed could be increased by 11% without increasing the over-
all bitrate. This would indicate a MOS benefit of 0.12. At this
same point, due to false negatives, 4% of the total frames are actu-
ally gaze-on frames but incorrectly not sent. The number of useful
frames sent is therefore, using the noticing ratios from our prelim-
inary study, 89% * gaze-on-frames-correctly-sent + 13% * gaze-
off-frames-incorrectly-sent, or 65.5%. In comparison, the number
of useful frames if all are sent is 67.1%. Thus there is a 2.4% reduc-
tion in the quantity of useful frames, equivalent from the user’s per-
spective to a 2.4% increase in packet loss, which suggests a MOS
decrement of 0.72 points, far outweighing the benefit. This esti-
mate suggests that the performance of our current predictor is far
from sufficient.

7 Future Work

Direct experimental evaluation of the potential of this technique is
needed. Given the widespread acceptance of video-chat systems
that periodically freeze, it is possible that the calculation above sig-
nificantly underestimates the potential value of this method.

Nevertheless, it seems certain that much better gaze prediction will
be needed to make gaze-adaptive transmission useful for video
chat. This may be achievable. One might try better features, es-
pecially those supporting fine-grained modeling of gaze dynamics
[Komogortsev et al. 2009; Kim and Kim 2013]. One might also try
image features and features of the words spoken, although robust-
ness and computational-complexity considerations may limit the
utility of these in practice. Given the large individual differences,
one might try speaker-specific modeling. Instead of trying to pre-
dict all gaze-off frames with one model, one might try a composite
model that fuses the outputs of individual models trained to predict
different gaze events, such as blinks, aversions while thinking, and



aversions while laughing. One might also try models conditioned
on gender, age, relative status, dialog type, personality, dialect and
language. Finally, future work should obviously use more training
data and a better model.

Other types of attention prediction might also be explored. Rather
than merely predicting gaze on/off, one might try to predict the ac-
tual gaze location, for example to the eyes or the mouth, so as to
devote higher resolution to the predicted current region of interest.
Also, while our data was collected in a distraction-free situation,
people also video chat while reading email, playing games, talk-
ing to side participants, cooking, walking, and so on. Prediction of
attention in non-distraction-free environments may be much easier.

8 Summary

This paper has explored the possibility of using a predictive model
of video-chat participant gaze to reduce pointless transmission. It
identified relevant dialog activities and states, found good predic-
tive features, reported the first study of the predictability of gaze in
dialog, and identified avenues for improvement.
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