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Abstract

Although today most language models treat language purely
as word sequences, there is recurring interest in tapping new
sources of information, such as disfluencies, prosody, the in-
terlocutor’s dialog act, and the interlocutor’s recent words. In
order to estimate the potential value of such sources of infor-
mation, we extend Shannon’s guessing-game method for esti-
mating entropy to work for spoken dialog. Four teams of two
subjects each predicted the next word in a dialog using various
amounts of context: one word, two words, all the words spoken
so far, or the full dialog audio so far. The entropy benefit in the
full-audio condition over the full text condition was substantial,
.64 bits per word, greater than the .54 bit benefit of full text con-
text over trigrams. This suggests that language models may be
improved by use of the prosody of the speaker and context from
the interlocutor.

Index Terms: entropy, perplexity, Shannon’s guessing game,
prediction, context, prosody

1. The Need

Better language models are needed to improve speech recog-
nition. Today most work focuses on the challenges of mining
more information from the word sequence [1], but additional
types of information may also be of use. There have been scat-
tered explorations in improving language modeling for dialog
by use of pitch and energy features, words produced by the in-
terlocutor, and the timing of the words [2, 3, 4, 5], but the results
have not lived up to expectations, and it seems that interest in
using such additional information has waned. This is not sur-
prising, given how labor-intensive it is to build and test a novel
addition to the language modeling repertoire.

However the limited success of past attempts does not tell
us whether the sources of information themselves have little
value or whether the models built were inadequate. Thus we
need a way to estimate the potential value of considering new
kinds of information in language models. This paper reports the
development of such a method, and the discovery that applying
information beyond the simple lexical context has the potential
to greatly improve language models

2. Humans as Language Models

People are far better at speech recognition than machines, and
the psychological literature is rich in studies of how quickly
and accurately people can recognize speech input, as a function
of different kinds of noise and context. However most of this
work pertains more to acoustic modeling than language model-
ing. Even work which does study the effects of context is gen-
erally done to test specific hypothesis about neural pathways,
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using stimuli very unlike spontaneous speech. One exception is
a study of the contributions of dialog context, which found that
scrambling the utterances of a dialog reduced subjects’ ability
to correctly recognize the words [6].

In order to determine what kinds of syntactic knowledge are
most useful for language modeling, Brill and Florian presented
subjects with lists of the n-best hypotheses output by a speech
recognizer, had them pick the one they thought mostly likely,
and then asked them to indicate what type of knowledge they
had used, choosing from a list of syntactic constructions and
constraints [7]. This experiment design directly matches the
way sophisticated language knowledge might be applied during
arecognizer’s second pass.

We set out instead to examine performance in a task resem-
bling that of a language model in the first pass: that of determin-
ing (or predicting) the likely next word given some previous
context. This is of course Shannon’s original guessing-game
method for estimating the entopy of English [8]. This method
has been used previously as a source of insight for language
modeling: Jelinek briefly mentions a study in which “humans
beat the trigram model by factors of 3 or more in perplexity
... mostly based on their ability to use ...information that con-
siderably precedes the currently guessed letters” [9], although
this work was apparently not followed up.

In this paper we present a way to extend Shannon’s method
to spoken dialog, and use this method in various conditions to
estimate the potential for improving language models of signal
and interlocutor-track information.

3. Measuring the Entropy of Speech

While there have been indirect estimates of the entropy of
speech [10], it appears that direct measurement has not pre-
viously been attempted. Shannon’s method of guessing let-
ters is impractical for audio presentation (at least in languages
which have co-articulation or where letters do not map directly
to phonemes), tedious for subjects, and not directly relevant to
speech recognition. So we had the subjects predict words. Thus
the subjects’ task was to use left-context information to predict
the next word.

Following Shannon, we allowed the subjects multiple
guesses. A person who guesses word x before word y is, in
some sense, expressing a higher probability estimate for « than
y. To a first approximation, the best probability estimates are
obtained by taking the probability (over all guesses) that the
subject gets it right after exactly g tries as the probability that
the subject is implicitly assigning to the gth guesses for each
word. For example, if 15% of the time the first guess is cor-
rect, and if the subject’s first guess for the next word in a given
context is cat, then we take this as assigning 15% of the proba-
bility distribution to the word cat. This way of estimating prob-
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abilities is mathematically identical to Shannon’s, although the
justification is different.

In a case where the subject never guesses the word, we still
need a probability estimate; for this, we back off to the (uni-
gram) probability of the word in a disjoint subset of the Switch-
board corpus [11]. Thus we have what we need to compute the
entropy (cross-entropy), which is, of course, the average over
all words 7 of

—pi log gi
where p; is the likelihood of word ¢ in the test data and g; is the
probability estimate of word ¢ according to the model.

4. The Method

Since our motivation is the suspicion that language modeling
has more to gain from exploiting new types of information than
from using better text-based models, our hypothesis is that hu-
man guessers would do much better with audio and interlocutor-
track information than with just more textual context. Thus, our
two key conditions were unlimited textual context and unlim-
ited text + speech + interlocutor’s speech (where “unlimited”
means “all the way back to the start of the dialog”). It is worth
stressing that the different conditions apply, not to the word to
be recognized, but to the previous words. We also included a
bigram condition and a trigram condition to enable a rough cal-
ibration of the method relative to existing entropy estimators.

The detailed design of the experimental method was con-
strained by the nature of dialog and by the need to motivate and
not fatigue our subjects, as explained below.

4.1. Stimulus Ordering

At first we considered a within-subjects design, in which each
subject would first have to guess word n given one word of con-
text, then two words, then all the previous words, then the en-
tire previous speech signal. However this style of presentation
would have several problems. Subjects might lose motivation
to guess thoughtfully in the bigram and trigram cases, know-
ing that they would soon be getting more information. We were
also concerned that the inability to let them go on as soon as
they guessed the correct word (due to the need to have guesses
in all the conditions) would also reduce motivation. Finally, we
thought this method would be unnecessarily time-consuming.

We therefore opted for a between-subjects design, where
each subject made decisions in each condition, but using dif-
ferent tracks. Moving to a between-subjects design allowed in-
cremental presentation. In a pilot study we had subjects guess
every word, in order. Thus, for example, after the first 24 words
of the track, they were asked to guess the 25th. They were then
told what the 25th word actually was and were asked to guess
the 26th, and so on, The ability to follow a conversation as it
unfolded, word by word, made the task interesting. This was
also more efficient than having unrelated guesses, as the over-
lapping of the contexts of the guesses meant that the overhead
of presenting the context was amortized over the guesses.

However word-by-word incremental presentation is incom-
patible with evaluating bigram- and trigram-based prediction
abilities: subjects would get too much context. We therefore
settled on having subjects guess every 10th word, which al-
lowed some economy of context presentation, but made the
bigram- and trigram-based guesses (mostly) uncorrupted by
additional context. To further reduce the leakage of context
into the bigram and trigram conditions, the presentations were
scrambled in these conditions.
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4.2. Stimulus Selection and Preparation

We selected four dialog-sides from Switchboard, choosing four
that appeared to be of roughly similar complexity (as mea-
sured by SRILM-estimated trigram perplexities), and were suf-
ficiently long: tracks 2238B, 2241B, 2260B, and 2168B. From
each we selected 30 words: every 10th word, starting with the
25th: this gave us the four datasets. We prepared the text-based
versions from the ISIP transcriptions [12]. Thus pauses were
indicated with the token “[silence]” and no punctuation was
shown.

In the audio condition, we presented the context up to the
word to be guessed, except that we clipped early enough to re-
move any co-articulation cues to the upcoming word. In some
cases this meant that subjects had to guess word n without being
able to hear the audio for word n — 1 at all; however they si-
multaneously were presented the context as text, so at least they
knew what n — 1 was. (If we were seeking a strict upper bound
on the entropy this simultaneous presentation of text would be a
problem, since it provided the subject veridical information on
words that were acoustically indistinct or ambiguous, but this
was not a problem for the purpose of comparing performance
across conditions.)

4.3. Stimulus Presentation and Response Scoring

We wrote custom software to display textual context on the
screen and to present the audio context in stereo. The soft-
ware was operated by the experimenter. Before each guess,
subjects were allowed to review or re-listen to the provided con-
text as many times as they liked. (Although not representative
of normal human listening (and perhaps also reading), this was
done to make the task more comfortable for the subjects, es-
pecially when they needed to make multiple guesses.) In the
audio condition they were allowed to control how much con-
text they heard on replays. Interestingly, in the text conditions
many subjects repeated the words to themselves out loud; per-
haps to engage some neural circuits accessible only by auditory
presentation.

In order to make the task more fun, subjects were run in
pairs, with the teammates alternating turns, guess by guess. All
teams acted at times competitively and at times cooperatively.
For each prediction, teams were allowed up to 5 guesses. A
guess was counted as correct if it exactly matched the token
in the ISIP transcription [12], including such non-lexical items
as uh-huh, um-hum, uh, and um. Prediction of silence (the
sentence-end symbol) was not done: subjects were informed
where the silences were. The correct words did not include
fragments, [laughter], [vocalized-noise], or similar tokens. The
guesses were typed in by the experimenter and the software
recorded the guesses and checked for correctness.

Since merely recording guesses loses some information, we
considered allowing the subjects to provide more information,
for example a higher probability to a guess they felt sure of, or
equal probabilities if they had no strong preference among two
or three possibilities. More generally, we considered moving
to a betting paradigm [13]. However we felt that most subjects
wouldn’t want to make such sophisticated estimates, and that
the prospects for an increase in accuracy were not good [13],
and probably not worth the time cost.

4.4. Participants and Protocol

The subjects were 8 adult native speakers of English, 18 to 57
years old, six male and two female. Subjects were recruited



Condition, g Entropy
Dataset 1 2 3 4 5 |no

Bigram, 1 1 1 0 0 1126 8.38

Trigram, 2 1 0 0 0 1]27 9.35

Unltd. Text, 3 4 4 4 0 0] 17 8.13
" +Audio,4 |10 2 2 0 0] 15 6.68

Table 1: Number of times Team A required exactly g guesses to
get the right answer; “no” indicates that they didn’t get it at all.

| Team H condition-dataset: entropy [ avg. ‘
A bl: 8.38 t2:935 u3:8.13 a4: 6.68 | 8.14
B tl: 8.09 u2:8.10 a3:6.53 b4:7.61 | 7.58
C ul: 7.67 a2:7.82 b3:894 t4:7.65 | 8.02
D al: 736 ©2:930 t3:8.02 u4:7.06 | 7.93

[avg. | 7.88 8.64 791 7251792 ]

Table 2: Per-Word Entropy, before normalization. b=bigram,
t=trigram, u=unlimited text, and a = unlimited text + audio.

from among family and friends and compensated with $20.
Education levels varied: one was soon to graduate from high
school and the rest had at least some college, several having
Bachelors degrees and one a Masters. Subjects were familiar-
ized with the Switchboard genre and conventions, including the
ISIP spelling conventions, by hearing a short description of the
corpus and viewing a sample dialog transcript.

To allow for corrections for variations in performance —
due to differences in the predictability of the datasets, differ-
ences in the ability of the subjects, and differences due to a
training effect over time — each team saw a different combi-
nation of presentation conditions and datasets. All teams saw
the datasets in the same order, but the conditions varied.

To keep our subjects from getting too tired, we had them
guess only 30 words in each condition and allowed for breaks
between conditions. It took each team about 90 minutes to com-
plete the four conditions. Including the instructions and debrief-
ing period, each session lasted about 105 minutes.

5. Results

Table 1 illustrates the data gathered, showing, for team A, how
many words were guessed correctly on the first guess, on the
second guess, and so on, for each condition. (This is analogous
to Shannon’s Table I, but transposed). The totals add up to 29,
not 30, as one item had to be excluded due to a software error.

From this we computed the entropy, in the usual way, tak-
ing the average over all test items of —log ¢;, where ¢; was com-
puted as explained above. The overall probability of success on
the first guess was 15%, on the second 5%, on the third 4%, on
the fourth 3% and on the fifth 2%. The entropy computation
was done for each dataset for each team, giving the results in
Table 2. It is clear that the teams varied in skill level, and that
the datasets varied in difficulty. There also seems to be a learn-
ing effect as the teams gained experience with the Switchboard
genre and with seeing spontaneous spoken dialog presented tex-
tually, as seen by the fact that 3 of the 4 teams did best on the
last dataset.

These results were then normalized by row and by col-
umn. First we computed how much the average performance
for each team differed from the global average. We then sub-
tracted this difference from all scores by that team, to correct
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entropy per condition
bigram trigram unlimited " + audio
Team A 8.21 8.41 7.92 7.14
Team B 8.61 8.47 7.71 6.88
Team C 8.85 8.21 7.61 7.00
Team D 8.56 8.02 7.71 7.39
[ average [[ 8.56 8.28 7.74 710 ]
Table 3: Per-Word Entropy, Normalized
human SRILM
relative | perplexity | relative | perplexity
entropy | reduction | entropy | reduction
Bigram 0.00 0%
Trigram -0.28 18% -0.18 12%
Unlimited Text -0.82 53% - -
" + Audio -1.46 63% - -

Table 4: Relative Entropies, with bigrams at 0; and perplexity
reductions, relative to bigrams

for their intrinsic skill level. Second, we computed the average
performance on each dataset, and how much this differed from
the global average. We then subtracted this difference from all
scores on that dataset to correct for its intrinsic difficulty. Since
each dataset was always presented in the same position (2238B
always first, 2241B always second ... ), this normalization step
also corrected for order effects. Table 3 shows the normalized
results, re-ordered to have each condition in its own column.

Table 4 shows the benefits seen in each condition, relative
to bigrams. For comparison, the right column shows the ben-
efit of trigrams over bigrams when measured with SRILM run
with default parameters on a large set of data (not the 116 spe-
cific words in the experiments): these figures correspond to a bi-
gram perplexity of 102.9 and a trigram perplexity of 90.7. The
fact that the human-estimated entropies came out higher than
the SRILM-based estimates shows that our method is clearly
not tapping all of the subjects’ ability. The main problem is
of course that subjects only got credit if they hit on the right
word within 5 guesses; any intuitions regarding the likelihood
of other possible words were untapped and unmeasured. How-
ever the fact that the improvement from bigrams to trigrams is
in the same ballpark for humans and for SRILM adds credence
to our estimates of the improvements possible in the other con-
ditions.

6. Further Analysis

Entropy and perplexity measures count all words equally, but
for speech recognition it is better to get the important words
right: the content words matter more than the ums and uhs.
We worried that the benefit of the full audio condition might
be disproportionately due to such words. To see whether this
was the case, we compared two sets of words, those which were
guessed by the team with access to the full audio context but by
no other teams, and those which were guessed by the team with
access to the full lexical context but not by the teams with access
only to the bigram or trigram context. We then roughly split
these words into three categories, content words (north, mis-
managed), function words (like, the, and) and discourse mark-
ers (so, yeah, well). The full textual context condition enabled
the guessing of 22 words, of which 14% were content, 63%




function, and 24% discourse; the audio condition enabled the
guessing of 16 additional words, of which 25% were content,
44% function, and 31% discourse. Thus it does seem that the
added benefit of the full audio condition is not limited to words
that don’t matter.

To better understand the nature of the benefit of the full
context audio condition, we attempted to infer the specific types
of information that enabled the additional correct guess in each
case. After we came up with an explanation for each of the 16
such words, we grouped them into categories.

The first category was 8 cases where the guessers were ap-
parently benefiting from knowledge of the interlocutor’s words.
In 7 of these cases the correct word was a repetition of a word
said by the interlocutor shortly before: yeah, well, right, oh,
over, machine, and live. This is compatible with Ji and Bilmes’
finding that the previous word by the interlocutor is a useful
predictor [4]. Of these 7 cases, 1 was in response to a question
using that word, live, and in 5 the correct word was utterance-
initial: yeah, well, right, oh, over. In the remaining case, point,
there was useful semantic context.

The second category was of 6 cases where the guessers ap-
parently used the speaker’s own prosody. This included 2 cases
of list intonation, enabling the prediction of or and the, 1 topic-
comment contour enabling the prediction of is, 1 continuation
contour enabling the prediction of and, 1 clause-boundary con-
tour enabling the prediction of that, and 1 disfluency context
enabling the prediction of maybe.

Finally there was 1 word, mismanaged, that appeared to be
predicted thanks to a negative tone of voice on the preceding
words, and 1 inexplicable case, /ike.

7. Discussion

Our hypothesis was confirmed: humans do much better at
guessing the next word when provided with all the available in-
formation — the full audio of both interlocutors — rather than
just more textual context. This finding is suggestive but not con-
clusive: we do not know how to actually build language models
that use such information, nor whether such improved language
models will actually give us better speech recognition results.
(Perplexity measures the extent to which the language model
gives a good probability estimate for the correct word, but not
the extent to which it gives appropriately lower estimates for ri-
val words among the acoustic model’s top candidates, which is
also important for speech recognition. )

Nevertheless, this suggests that the current mainstream
modularization of the speech recognition — in which only the
acoustic models use signal information, with the language mod-
els operating purely in the symbolic realm — may need to be
loosened.

As a way to estimate the entropy of spoken English dialog,
our method has serious limitations. For example, our guess-
ing game does not always elicit a probability estimate for the
correct word, but it could probably be extended to do so, per-
haps by presenting the word-to-guess partly obscured by noise,
or by having subjects try to pick it out of a set with distrac-
tors. However, as our aim here is only to compare performance
in different conditions, and there is no reason to think that addi-
tional information of various kinds would only benefit estimates
for the 5 most likely words, it seems likely that the results do
provide a useful estimate of potential overall benefit.

In passing, it is worth noting that to fully adapt Shannon’s
method for entropy estimation to work for spoken dialog, sub-
jects would need to predict all the information-bearing aspects
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of the upcoming word, including its prosody and precise pho-
netic realization; this would be another interesting extension
to develop. Doing so might cast light on problems of audio
compression, by helping quantify the specific factors that are
currently preventing us from compressing speech signals down
from the kilobyte per second range to the tens of bits per second
needed for the lexical content alone.

Although this paper has focused on language modeling for
speech recognition, the lessons may also apply to dialog sys-
tems: language models used in the generation of the system’s
next utterance may also benefit from using more than just lexi-
cal context.

The methods developed will also be useful for more fine-
grained future evaluations. We would like to tease out the spe-
cific contributions of the other track and of the speaker’s track,
and within that of the contributions of the phonetic details and
of the prosody, and within prosody, of pitch, timing, rate, pause
duration, energy, etc. Applying the method developed here to
conditions where only such features are present, or only such
features are masked, would enable us to identify the features
with greatest promise for future language models.
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