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Abstract

Most language models treat speech as simply sequences of
words, ignoring the fact that words are also events in time. This
paper reports an initial exploration of how word probabilities
vary with time-into-utterance, and proposes a method for using
this information to improve a language model. This is done by
computing the ratio of the probability of the word at a specific
time to its overall unigram probability, and using this ratio to
adjust the n-gram probability. On casual dialogs from Switch-
board this method gave a modest reduction in perplexity.
Index Terms: dialog, Switchboard corpus, time-based lan-
guage model, perplexity

1. Introduction

Speaking is a cognitive process in time and also a commu-
nicative process in time [1], but these processes are not di-
rectly modeled by today’s language models, which generally
treat speech as consisting merely of sequences of words. How-
ever, cognitive and communicative considerations can affect
when various words are likely to appear. For example, the fact
that the production of speech involves mental effort leads us to
expect fillers and semantically light words early in utterances,
with words referring to complex concepts or thoughts involving
memory retrieval or reasoning tending to appear later. The fact
that speech is typically organized so as to be readily compre-
hensible by the listener also provides expectations, for exam-
ple, grounding is likely to happen early in utterances [7], with
complex content or disaffiliating phrases delayed to later.

Thus we expect certain words to be relatively more com-
mon early in utterances, and others more common later. If
so, this may be useful for speech recognition, incorporated in
a language model in combination with other information. Al-
though the idea of conditioning word probabilities directly on
time-into-utterance is novel as far as we know, this idea fits in
with other attempts to improve on n-gram models by allowing
wider contextual information, e.g. [2, 3, 4, 5, 6]. Also of note is
Ma and Meteer’s attempt to exploit a communicative principle,
that given information generally precedes new information, for
language modeling [7].

This paper reports an initial exploration of how word prob-
abilities vary over time and how this can be used to improve
a language model. Section 2 illustrates how word probabili-
ties vary with time-into-utterance, Section 3 explains how time-
based probabilities can be combined with n-gram probabili-
ties, Section 4 presents and discusses the results, and Section
6 points out directions for future work.

2. Initial Observations

We used the ISIP transcriptions of the Switchboard corpus, a
collection of short telephone conversations on light topics be-
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tween mostly unacquainted adults [8, 9]. We split each track
into utterances, arbitrarily defined as sequences of words delim-
ited by at least 1 second of silence both before and after, using
the regions labeled [silence] in the transcripts and merging ad-
jacent silence regions. We then tagged each word by the time
from the start of utterance to the start of that word: conceptu-
ally each utterance was split into buckets. For example, words
which began between 0 and 0.1 seconds into the utterance were
tagged as belonging to bucket 0, those beginning between 0.1
and 0.2 seconds as belonging to bucket 1, and so on.

We computed the bucket probability (time-based probabil-
ity) Pp(w;@t) for each word as its count in the bucket for ¢
divided by the total in that bucket:

count(w;Qt)
Po(wi@t) = 2>, count(w;Qt) M
Using the counts in 1000 Switchboard tracks, Table 1 shows
that the most common words do indeed vary with time-into-
utterance.
The difference between a time-based probability and the
standard unigram probabilities can be conveniently expressed
by their ratio:

Rb (wz @t)
Punig'r'am (wz)
Figure 1 illustrates how this ratio can vary over time.
These facts suggest that an improved probability estimate
may be obtained for a hypothesized word at time ¢ by using
the bucket probability of that word at ¢ instead of the general
unigram probability. Initial experiments in our laboratory by
Shreyas A. Karkhedkar showed that this was the case when suf-
ficient data was available. In combination with back off to gen-
eral unigrams in cases of insufficient data, time-based probabil-
ities gave a reduction in perplexity on Switchboard data from
481.6 to 470.4.

R(w;@Qt) = 2)

3. Combination with Trigrams

Thus it seems that conditioning on time-into-utterance can pro-
vide useful information. The next question is whether this in-
formation is non-redundant to that captured by a more powerful
model, trigrams. As our baseline model we used the default
SRILM order 3 (trigram) backoff model [10].

Our first attempt to use time-based information combined
it with the backoff model by interpolation, using a simple
weighted average. However this performed poorly; as the tri-
gram probability estimates were generally quite good, crudely
averaging them with a weaker model was counterproductive.

Instead we decided to use the time-based probabilities
merely to tweak the backoff probabilities. We use a scaling
factor derived from R to determine how much to tweak. For ex-
ample, for a word occurring at time ¢, if the bucket probability
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Table 1: The Five Most Frequent Words in Selected Buckets. Times are in seconds.
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Figure 1: Frequency ratio R vs. Time-Into-Utterance for the Three Most Common Words. Words at utterance start (time-into-utterance
=(.0) are excluded. The rightmost points represent the range 9.5 seconds and up.

bucket high-S words low-S words
e-0.1s don’t, that’s, know, think, well, you, was, yeah, do, have ... with, out, or, on, be
0.1-0.2s | okay, yes, that’s, sure, yeah, really, haven’t, don’t, think, can’t ... over, money, every, care, anything
0.2-0.3s | okay, right, yes, yeah, no, see, that’s, sure, i-, well ... minutes, [laughter-okay], home, everything, dear
0.3-0.4s | great, right, uh-huh, yes, well, okay, no, that’s, haven’t, yeah ... day, school, things, year, bit
0.4-0.5s uh-huh, great, right, okay, well, yes, yeah, that’s, no good ... come, stuff, her, every, day
0.5-1.0s | um-hum, uh-huh, agree, yeah, huh, yes, definitely, okay, heard, well ... program, jury, child, whether, weeks
1.0-1.5s | uh-huh, huh, bye-bye, bet, um-hum, yeah, exactly, isn’t well, oh ... man, everybody involved education during
1.5-2.0s | bye-bye, huh, friends, talked, yes, problem, funny, age, tell ... basically, education, change, twelve, hand
2.0-2.5s | today, night, huh, though, mine, supposed, while, Texas, remember, i[t]- ... together, places, might, couldn’t, moved
2.5-3.0s Texas, times, program, huh, high, movie, insurance, system, enjoy, name ... feel, life, best, whatever, stay
3.0-3.5s | until, college, usually, basically, ago, try, gone, lived, made, fact ... isn’t, person, percent, thinking, thirty
3.5-4.0s | thirty, myself, huh, week, part, lived, last, state, spend, run ... um-hum, fun, thinking, great, enjoy
4.0-4.5s | call, month, took, usually, movie, called, child, Texas, ten, someone ... being, um-hum, own, goes, huh
4.5-5.0s | movie, since, system, started, life, working, might, point, doing, different . .. great, um-hum, may, love, am
5.0-5.5s | couple, college, years, times, bit, whatever, money, year, both, Dallas . .. okay, still, gets, away, idea
5.5-6.0s | ago, somebody, times, year, try, college, actually, least, i’ll, being . .. great, okay, may, interesting, love
6.0-6.5s | country, own, does, while, pay, need, everything, husband, went, stuff ... trying, started, great, anyway, yes
6.5-7.0s | few, look, house, care, away, why, watch, hundred, couple, enough ... four, didn’t, sometimes, um-hum, started
7.0-7.6s | ago, week, has, always, being, whatever, try, times, six, wasn’t ... area, oh, also, yes, uh-huh
7.5-8.0s | four, wasn’t, usually, different, better, take, most, few, after, two ... yeah, um-hum, yes, another, uh-huh
8.0-8.5s | whatever, everything, having, through, being, come, stuff, first, either, need ... interesting, too, did, uh-huh, um-hum
8.5-9.0s | dollars, come, were, house, five, twenty, these, last, first, before ... okay, oh, live, interesting, um-hum
9.0-9.5s | his, hard, these, different, doesn’t, sort, before, back, school, live ... right, yeah, okay, will, um-hum
9.5s-00 authority, shirts, obvious, whereas, pants, corn, losing, bottle, percentage, match ... hi, minutes, [laughter-okay], dear

Table 2: Characteristic and Uncharacteristic Words in Various Buckets, that is, words with the highest and lowest .S values.



word ‘ start‘ bucket ‘ R ‘ S ‘Pbackoﬁ”‘

Pys ‘ P, ‘beneﬁt‘

well 0.00 - - - .056 | .056 | .056 —
I 0.15 | 0.1-0.2s | 2.18 | 1.26 201 | 254 | 221 +042
hadn’t | 0.25 | 0.2-0.3s | 1.08 | 1.00 .001 | .001 | .001 —-.049
either | 0.55 | 0.5-1.0s | 2.65 | 1.34 .005 | .007 | .006 | +.102
we 1.39 | 1.0-1.5s | 0.98 | 1.00 .004 | .004 | .004 | +.000
hadn’t | 1.51 | 1.5-2.0s | 0.29 | 1.00 .001 | .001 | .001 —-.001
you 1.88 | 1.5-2.0s | 0.95 | 0.99 .007 | .007 | .007 | -.016
know | 1.97 | 1.5-2.0s | 0.82 | 0.94 A54 | 427 | 438 | -.015
like 2.19 | 2.0-2.5s | 1.11 | 1.03 .018 | .018 | .018 | +.014
I 241 | 2.0-2.5s | 1.08 | 1.02 .086 | .088 | .088 | +.009
said 252 | 2.5-3.0s | 1.27 | 1.06 278 | 295 | 291 +.086
we 2.66 | 2.5-3.0s | 0.93 | 0.98 .023 | .023 | .023 | -.008

Table 3: Example of the Computation of P, on a Fragment of an Utterance. The “benefit” is the log of the ratio of P, t0 Ppackof-

indicates that the word is more common at ¢ than at other times,
then we multiply the backoff probability by a scaling factor to
reflect this. This gives the “bucket-scaled” backoft probabili-
ties:

Pbs(wi@t|c) = S(wi@t)Pbackuﬂ(wi\c) (3)

where c is the local context, specifically here the preceding two
words, and S is the scaling factor, explained below.

The scaling factor is based on R, but we do not use R di-
rectly as the scaling factor, for two reasons. First, R is less
informative in cases where the bucket probability is based on
sparse counts, as for infrequent words or in those in late buck-
ets. To estimate the informativeness we use the x? test to evalu-
ate the hypothesis that the number of occurrences of the word in
the bucket differs from that expected from the bucket size and
the unigram probability of the word. We compute the P-value
of this hypothesis, p, and from that our confidence in the hy-
pothesis: ¢ = 1 — p. (If the expected count of the word in the
bucket is less than 5, then we have no confidence, and we set g
to 0.) We then raise R to the qth power; thus, if the confidence
in the bucket probability is low, then .S will be close to 1 and
the time-based information will have little effect.

The second complication in the computation of .S is because
the time-based estimate and the backoff estimate are not inde-
pendent. We therefore raise R to a constant power k less than
1 to attenuate the impact of the bucket-based probability on the
backoff probabilities. Empirically 0.3 is a good value for k,
although the results are not that sensitive to this parameter.

Thus,

S(w;@t) = R(w;@t)* 4)

One necessary detail is smoothing: if the count in some
bucket for some word is 0 we replace it with 1. This ensures
that R is never 0, which is required to make equation 4 well-
behaved. No explicit discounting is done, since discounting
happens as a side-effect of normalization. Table 2 shows words
with extreme S values in each bucket.

Finally there is a normalization step to ensure that all the
probabilities across the vocabulary add to 1 in each bucket. This
is done at runtime: when looking up the probability for a word,
the bucket-scaled backoff probabilities for all the words in the
corpus are computed, and the bucket-scaled backoff probability
of the word of interest is divided by the sum. This gives the
normalized combined probability, P, :

) o Pbs (wi@t\c)
P,(w;@t|c) = S Po(w,01l0)

Since the values of P,s depend on the preceding words as
well as the time-into-utterance, they cannot be pre-computed:
they must be calculated for each word in the vocabulary. This
normalization phase, needed here for the sake of fair perplex-
ity calculations, makes the amount of computation non-trivial;
however this might not be needed in a speech recognizer.

Bucket-based scaling is not applied if a word occurs at the
start of an utterance. The reason is that in this position the prob-
ability is accurately modeled by the bigram <s> word: the fact
that the word is also in bucket O brings no new information. As
time-based scaling thus has nothing to offer such words, they
are not used for training either. Specifically they are not in-
cluded in the bucket O counts nor in the unigram counts, thus
they do not contribute to the computation of P or anything
else.

For test purposes we used a model with 24 buckets: 5, each
0.1 seconds in width, from 0 to 0.5; 18, each 0.5 seconds in
width, from 0.5 to 9.5; and one from 9.5 seconds out to infinity.

For the experiments computation time was an issue, so the
vocabulary was limited to 5000 words; other words were treated
as unknown and excluded from all computations. The time-
based adjustments were implemented as a wrapper around the
function NgramLM::wordprobBO in the SRILM toolkit [10].
Table 3 illustrates how these computations work.

&)

4. Results

The test set was 24 tracks from Switchboard, representing
about 115 minutes of speech and including 10174 words. For
evaluation purposes we ignored out-of-vocabulary words and
sentence-end tags. As seen in Table 4 the perplexity was
lower for the normalized combined model, indicating that the
time-based probabilities are improving the model. Overall the
bucket-based scaling benefited the estimates for 5124 tokens
and hurt 3649.

Pending systematic analysis, we scanned through the ef-
fects of time-based scaling and found some recurring patterns.

In general, utterances which seemed to be typical of the ca-
sual small talk genre dominating Switchboard were often scored
higher, and those less typical were often scored lower. For ex-



perplexity
Standard, Pyuckoy | 127.833
Time-Based, P, 127.495

Table 4: Evaluation Results

ample, the estimates were hurt for every word in the fluent,
grammatical and swift utterance he does that every year, es-
pecially for the word every occurring at 0.48 seconds in, since
in Switchboard every more typically occurs late in utterances.

Sometimes there are words which appear to start a new ut-
terance, in some sense, but which are not preceded by a second
of silence. These include words that seem to occur more as a
response to something said by the interlocutor than as a result
of the progress of the speaker’s own cognitive and production
processes. For example, in ... sometimes ten to fifteen percent
of the an[d]- yeah and and you know the one of the things I
remember ..., the word yeah was not preceded by a second of
silence. In such cases the bucket-scaling typically decreases the
probability of the “initial” word, here yeah, decreasing perfor-
mance. A more sophisticated definition of utterance start, using
information about the behavior of the interlocutor, may be able
to overcome this problem. Another possibility is to use prosodic
information, for example whether the previous word was drawn
out, fading off, or in a low flat pitch.

Sometimes there are words which are much better modeled
by trigrams, the word know in Table 3 being an example. Here
the scaling factor decreases the probability because know is un-
common around 2 seconds in. What the model is failing to cap-
ture is that the bigram you know is in fact common around this
time. It may be possible to alleviate such problems by basing
the scaling factor not only on the bucket-based unigrams but
also on bucket-based bigrams, although the sparseness problem
would limit this to the most frequent bigrams.

5. Summary and Future Work

Observing that word probabilities depend on time-into-
utterance, we proposed a way to use this information to improve
a standard trigram model. The resulting improvement in per-
plexity shows that time-into-utterance brings information which
a standard trigram model does not capture.

Our model clearly could be refined. In many cases the way
that probability varies with time-into-utterance seems to be sim-
ilar across a number of words, suggesting the use of a class-
based model. A small study by Nisha Kiran in our laboratory
found that words in the first half second of utterances have sig-
nificantly higher affect [11] on average than words occurring
later, suggesting a model using the semantic or pragmatic com-
ponent dimensions of words. We could also optimize various
details of the model, such as the widths of the various buckets,
the length of the pause used in the definition of utterance, and
the computation of the scaling factor. It may also be worth-
while to build an adaptive model, adapting to speaking rate, to
speakers or to genres.

The techniques developed here may be useful for time-
based language modeling more generally. Beyond time-into-
utterance, other features may be useful, such as time since the
most recent end of an interlocutor’s turn, time since disflu-
ency recovery, time since last content word, time since various
prosodic features, time-into-dialog, or time until end of utter-

ance.

We hope that this model, or other time-based language
models, will have practical utility for, e.g. improving speech
recognizer performance, supporting the generation and synthe-
sis of more natural and comprehensible utterances, and improv-
ing speaker recognition.
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