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Abstract
We aim to improve the suitability of speech synthesis output
for applications that are situated, embodied, and/or involve rich
user interaction. For such purposes, better control of prosody is
a priority. Basic research on prosody has found that voice qual-
ity features, notably creakiness and breathiness, and also prob-
ably nasality, play central roles in conveying various pragmatic
functions. This paper investigates the extent to which proper
control of these three feature can improve the perceived suit-
ability of synthesized speech. Participants used the voice con-
version tool VoiceQualityVC to make fine-grained adjustments
to parameters affecting perceived voice quality and nasality.
Working with utterances taken from a corpus of collaborative
gameplay, they were able to modify synthesized speech to bet-
ter match how they thought it should sound. A subsequent per-
ception experiment showed that these adjusted utterances were
rated as more suitable than the baseline. These findings demon-
strate both the potential value and the feasibility of exploiting
more prosody-related parameters in speech synthesis. Samples
can be found at www.cs.utep.edu/nigel/lameris.
Index Terms: voice quality, pragmatics, voice conversion, hu-
man in the loop, text-to-speech, speech editing

1. Introduction
Increasingly, AI systems and robots are being viewed as po-
tential partners or teammates to interact with, rather than mere
appliances to control. While speech that is merely intelligible
and natural is adequate for many current applications, collab-
orative and embodied interactions require more [1, 2]. Future
systems will increasingly need to signal complex intents, guide
users in real time, show awareness of the environment and situa-
tion, mark how the information in an utterance connects to other
information and to the action plan, coordinate joint actions and
turn-taking, express assessments, attitudes, and stances, and so
on. Until they can do such things, AI systems will never be fully
trusted or acceptable [3, 4, 5, 6].

Prosody is known to have an important role in conveying
many such pragmatic functions [7], and there is a growing body
of work relevant to the creation of text-to-speech systems with
controllable or modifiable prosody. We here briefly survey re-
lated research on two themes.

The first theme is that of methods for prosodic control in
TTS systems [8, 9, 10]. Two of the main approaches are “style”-
based modifications and feature-based modification. Style-
based control, as in [11, 12] involves conditioning TTS on style
embeddings, often referred to as style tokens, either learned
from a large multi-speaker corpus or from an acted corpus.
These style tokens can then be used at inference to control the
synthesis output either globally as in [11] or locally as in [12].

However, style tokens are intransparent and lack a clear link
between style and prosodic realization. In contrast, feature-
based control targets perceptually meaningful features, gener-
ally pitch, speech rate, and energy [10, 13, 14]. Recently it has
been common to use such features in conditioning the signal,
either at the phoneme level [10] or the utterance level [13, 14].

While such work has shown that it is possible to control
prosody at a low level, in practice attention has been limited to
only to pitch and duration, and occasionally also energy. Other
prosodic features remain underexplored. These include voice
quality features. Voice quality (in the narrow sense, i.e. voice
properties arising from laryngeal activity [15]), is known to play
an important part in conveying emotions, attitudes, and social
cues [16]. More recent work is discovering how voice quality
can also be used to signal pragmatic information, such as stance,
emphasis and certainty, which are key elements of the pragmatic
repertoire required for teammate-style tasks [7].

A second major theme in related research concerns the role
of voice properties in speech synthesis. Prior to the advent of
neural speech synthesis, several studies focussed on the syn-
thesis of voice quality [17, 18]. More recent work focused on
synthesizing different voice qualities exists, but has several lim-
itations [19, 20, 21]. In [19], only the communicative functions
of creaky voice were analyzed, which was perceived as less pos-
itive, less certain, and more turn-final than modal voice. In [20],
breathy and creaky voice were investigated, with breathy voice
being rated as more intimate and more invested, while creaky
voice was rated as less intimate and less positive. These voice
qualities were investigated in isolation, however, despite often
co-occurring [22]. In [21], speech is synthesized with different
degrees of roughness, breathiness, resonance etc., but the evalu-
ation was limited to expert ratings of the accuracy of conveying
the desired voice quality.

Thus there is an unmet need to directly examine how these
speech properties affect perceptions. Specifically, we ask: can
control of voice quality properties and nasality improve the
quality of speech synthesizer output? In line with our interest in
conveying more pragmatic functions, we address this question
in the context of a collaborative video game player’s utterances.

We address this question through three stages: first, devel-
opment of a method for controlling these properties; second,
a human-in-the-loop style experiment where five participants
(“adjusters”) modified the presence of creakiness, breathiness,
and nasality; and third, a perception experiment evaluating the
quality of these modified utterances. Later sections discuss
each in turn. The contributions reported in this paper are: 1)
a toolchain and workflow tool that enables human modification
to the degrees of voice quality and nasality across utterances,
and 2) a demonstration that such modifications can improve the
suitability of synthesized speech.
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Figure 1: The architecture of the system during finetuning (a) and inference (b)

2. Models, Data, and Training
In order to answer our question, we needed to first develop a
workflow to support the creation of samples with and without
appropriate use of creakiness, breathiness, and nasality. The so-
lution we developed is far from ideal, but allowed us to leverage
existing systems and resources.

In short, we first synthesized basic versions of the utter-
ances in US English using XTTS, exploiting its voice cloning
feature to make them close to its target voice. We then did voice
conversion, using the newly developed VoiceQualityVC tool, to
slightly change these utterances to make them even closer: the
result was our baseline utterances. Finally, participants used
VoiceQualityVC again to adjust the properties of interest.

2.1. VoiceQualityVC and its Extension

While VoiceQualityVC is described elsewhere [20], it is new
enough to merit a brief description here. Its architecture is based
on a modification of FreeVC [23], a voice conversion system
that is capable of modifying voice quality features. The main
part of the architecture consists of a Conditional Variational Au-
toencoder (CVAE) with adversarial training that is conditioned
on WavLM embeddings, and an RNN-based speaker encoder.
It uses a prior encoder, in which the waveform is embedded us-
ing WavLM features, representations from an audio language
model. These embeddings are passed through an information
bottleneck, which is in turn passed through a normalizing flow
to learn a more complex distribution. During training, it addi-
tionally uses a posterior encoder to extract speaker information
from RNN-based speaker encodings and a linear spectrogram.
These speaker representations are used to condition the normal-
izing flow. During inference, however, this information is in-
ferred from the inverse normalizing flow, as detailed in [23].

The architecture of VoiceQualityVC during finetuning and
at inference can be seen in Figures 1a and 1b, respectively.

To support the present experiments, we added separate en-
coders to this architecture for six features: two perceptually-
meaningful features, namely pitch and pitch variation (st.d.),
and four lower-level features, namely creakiness, Cepstral Peak
Prominence Smoothed (CPPS), H1–H2, H1–A3. These six fea-
tures are each handled by a voice quality encoder consisting
of an affine layer in Figure 1 that projects the frame-level fea-
tures into a 1024-dimensional space for the conditioning of the
WavLM features, and a 192-dimensional space for condition-

ing the decoder inputs. The four lower-level features were not
exposed to the adjusters directly. Rather, these properties were
determined by the values they chose for creak, breathiness, and
nasality, according to the mappings shown in Table 1, which
we arrived at after some trial-and-error exploration. An infor-
mal evaluation of the distinctiveness of these voice types was
performed, and while creaky voice was always accurately iden-
tified, perceptions of the outputs intended as breathy and nasal
voice aligned with the intentions only about 80% of the time, as
one would expect given the perceptual ambiguity between these
properties for certain phonetic content [24].

Table 1: The feature settings for each property.

Creak CPPS H1-H2 H1-A3
Creakiness 3 -1 -2 -2
Breathiness -2 -1 3 3
Nasal 0 1 -3 3

2.2. Data Selection and Use

To generate the baseline samples and to create the manipulation
functionality required the use of three corpora.

Given our interest in synthesis to support diverse pragmatic
functions, we chose to use a corpus of Fireboy and Watergirl
gameplay [25]. In this game, participants navigate a 2D land-
scape with various obstacles, widgets, and puzzles, some of
which require cooperation to solve. Communication in this
game is typically diverse, including self-talk while puzzle solv-
ing, various explanations, suggestions or instructions regarding
what actions to take next, joint planning, narration of action,
side comments, words to manage the interpersonal relation, and
smalltalk. In this corpus, one person, EC, played with a dozen
novice partners across a dozen 10-minute games. EC was cho-
sen for his skill in making the game a fun experience; he used
his voice very expressively. Our long-term aim is to build an
AI player (NPC) that exhibits the same level of skill. For this
experiment, we selected 17 of EC’s utterances as he guided one
novice through the first level of the game. These we term the
“original” utterances. They are seen in the appendix.

In our experiment, the task for the adjusters was to modify
baseline utterances to be more appropriate, taking inspiration
from the original utterances. To make this easier for them, we



wanted the baseline utterances to be similar to what EC might
have produced had he spoken the same words in a perfectly neu-
tral style. This turned out to be difficult, as XTTS could not
acceptably reproduce EC’s speech patterns, perhaps because of
his distinctive voice (very low and generally creaky and nasal),
or because of his dialect, which exhibited some Spanish influ-
ences. We therefore used another American English speaker for
the voice cloning. This was the mediator in the AptSpeech cor-
pus [26]. Four utterances of between 8-12 seconds from this
speaker were chosen for zero-shot voice cloning with XTTS
[27]. We selected these from a segment where the mediator
gave instructions to the participants, as this was a reasonable
style match for at least some of EC’s utterances.

Training the voice conversion model, VoiceQualityVC, re-
quires a corpus annotated with voice quality features. For
this, we automatically annotated LibriSpeech-R [28], a restored
version of LibriSpeech for creakiness, Cepstral Peak Promi-
nence Smoothed (CPPS), H1–H2, and H1–A3, in addition to
pitch, following the procedure in [20]. To this feature set, we
added the feature of pitch variation. Pitch was extracted us-
ing the Wavelet Prosody Toolkit [29], which employs contin-
uous wavelet transforms for pitch detection. Pitch variation
was measured by taking the per-utterance standard deviation
of F0 in Hertz. The pitch and pitch variation features were z-
standardized, and this was done over the entire corpus to allow
for more variation at inference. The voice quality features were
standardized per speaker. We used this annotated LibriTTS-R
data to finetune the weights of the pre-trained FreeVC model.
The pre-existing train-test split was used. We zero-initialized
the voice quality encoders and finetuned the model for 118k it-
erations on 2 24 GB NVIDIA GeForce RTX 3090 GPUs using a
batch size of 8. We did not use the spectrogram distortion-based
data augmentation. The model has a total of 39,354,304 param-
eters, an increase of 14,592 parameters compared to FreeVC
[23].

We used the resulting version of VoiceQualityVC to create
the baseline utterances. As noted above, this took the XTTS
outputs and modified them to better match the average voice and
style of EC. Specifically, conversion was done to attain the mean
values for the voice quality for this speaker, which in practice
were close to modal, and to attain -1.5 std. dev. from the mean
for the average pitch and mean pitch variation, to roughly match
EC’s range. These modifications brought the baselines closer to
the voice of the exemplary speaker, enabling the adjusters to
focus on the task of interest, namely customizing the levels of
creakiness, breathiness, and nasality.

3. Modification Process
In overview, five participants, the adjusters, modified the breath-
iness, creakiness, and nasality of synthesized speech using
VoiceQualityVC.

3.1. Approach

In line with suggestions from [30], we investigate the appro-
priateness of the speech in the context of an actual use case:
serving as the voice for a game player agent.

Our method is rather indirect, reflecting both the limited
research goals of this paper (which do not include explicitly
modelling the pragmatics-prosody mapping) and the inspiration
we take from previous work. Specifically, we here rely upon
human-in-the-loop modification of synthesizer output. Other
work taking this approach includes [31], in which a grid display

is used to enable the user to systematically listen to modified ut-
terances within a specified modification range in order to select
utterances that match the intended purpose. Our most direct in-
spiration is from a human-in-the-loop prosody-editing study for
a cross-text prosody transfer task [32]. Findings from that work
included: a majority of evaluators preferred the edited samples
over the baseline, the samples suffered from decreased natural-
ness, especially as more edits were made, and participants did
not modify each feature to an equal extent, with F0 being mod-
ified to a greater degree than energy and duration.

3.2. Procedure

In the modification experiment, five adjusters, all with at least
basic training in identifying prosodic properties, were tasked
with modifying the 17 baseline utterances from the Fireboy
and Watergirl corpus that were synthesized using XTTS [27].
These synthesized utterances were first converted to match the
speaker identity of the experienced player in the Fireboy and
Watergirl corpus. The adjusters were asked to modify the utter-
ances to improve the in-context suitability. All were aware of
our ultimate goal of building a highly supportive and trustable
AI game-playing partner, and all had additionally watched and
discussed recordings of the original human-human gameplay.
While their goal was deliberately left somewhat vague, they
were given access to the original human audio as a reference
and used that as inspiration as they worked to improve the suit-
ability for the context.

The adjusters were given the ability to add creak, breath-
iness and nasality to arbitrary regions of the utterance, and to
do so to arbitrary degrees, between 0 and 1 or, rarely, higher.
As the baseline utterances were always in modal voice, they
never needed to reduce the values for these properties. In ad-
dition they were able to change the average pitch and pitch
range, although this was not a focus of this study and they did
this only rarely. The adjusters used a simple custom tool en-
abling them to specify regions of the audio and for each specify
the intended voice quality or nasality degree. To make region
selection easier, they were shown a timeline of the word and
word boundaries derived from WhisperX [33] transcriptions.
The tool was built in Jupyter Notebook, and adjusters were en-
couraged to check how their manipulated output sounded, and
to make adjustments until it sounded acceptable. Multiple re-
gions could overlap, thus, for example, adjusters could create
a breathy nasal region. The adjusters performed the modifica-
tions unsupervised and at their own pace, with most deciding
to split the work across multiple sessions. Adjusters were also
asked about the ease of use and their confidence as to whether
the modified utterances were improvements over the TTS base-
line.

3.3. Observations

The five adjusters spent an average of 10 minutes on each ut-
terance, with earlier utterances taking approximately 15 min-
utes and later utterances taking approximately 5 minutes. There
was a similar learning curve for the perceived difficulty of the
task, with most participants mentioning that they initially found
the modifications challenging but became more confident and
efficient as they progressed. Participants often combined sev-
eral voice qualities in the same utterance. Out of the 85 total
audio samples, 83 had added creak, 75 had added breathiness,
and 69 had added nasality. Several tactics were used by the
participants, with some participants annotating the use of voice
quality in the original audio before implementing these voice



qualities with VoiceQualityVC, while others utilized an iterative
approach, adjusting small segments, then listening to the result
before making more adjustments. The adjusters expressed var-
ied confidence in having improved the pragmatic suitability of
the speech, but all were confident that they improved some, al-
though not all, of the utterances.

We wondered which of the properties were easiest to mod-
ify and which were most often modified. There seemed to be a
hierarchy, for which the quantitative evidence is seen in Table
2. Participants reported finding creak the easiest to identify in
the original utterances and being most confident in their mod-
ifications for creak. Modifications to creak were also the most
common, and tended to have higher intensity than for the other
properties. Breathiness was towards the middle on all these di-
mensions, and nasality was the most difficult and least used.
We also found that the modified regions for nasality tended to
be longer than for the other properties. We think that this latter
finding reflects a tendency in the originals for nasality to more
often span entire utterances or large fractions of them, while the
other voice quality properties may have been more often word-
or phrase-bound.

We had several concerns going in, but in the event these
did not seem to be problematic. We feared that some settings
for the properties would lead to impairments in naturalness, and
this was sometimes the case, but causing glitches that didn’t
sound like speech at all seemed to occur only rarely—for exam-
ple, when setting both creak and nasality to high values—and
the adjusters could easily fix this by backing off to less extreme
values. We feared that locally modifying only these three prop-
erties would lead to unintended pragmatic functions, since often
these properties probably work together with, or at least corre-
late with, other prosodic properties. However, this did not seem
to be the case, likely in part because our voice conversion model
tends to “drag along” other properties as it finds something that
approximately meets the specification but remains within the
distribution of seen data. Conversely, we feared that the ad-
justers would feel that the output was not really matching up
with their specification, but in fact they seemed to be satisfied
with whatever they got, even if it remained quite different from
the original. We also feared that the adjusters would treat the
properties as binary, but in fact they used a wide range of val-
ues for each property. There was little agreement among the
adjusters on the specific modifications. To assess this, we ex-
amined inter-annotator agreement on the per-frame presence of
modification for each voice quality feature, regardless of the
magnitude of the change. As shown in Table 3, there was at
best marginal agreement for creakiness, and no agreement for
breathiness and nasality.

Table 2: The average number of modifications, the mean inten-
sity of the modifications, and the mean duration of the modifi-
cations for each modification type.

# of mods. mean intensity mean duration
Creaky 1.71 0.80 0.51
Breathy 1.62 0.69 0.46
Nasal 1.20 0.69 0.57

Table 3: Fleiss’ Kappa for each modification type.

Creaky Breathy Nasal
Fleiss’ Kappa 0.06 0.00 -0.05

4. Evaluation
We hypothesized that these modifications — for creakiness,
breathiness and nasality — would be beneficial: specifically,
that the customized utterances would be rated higher than the
baseline utterances.

Our measure was a Comparative Mean Opinion Score
(CMOS) evaluation comparing the customized utterances to the
corresponding baseline utterances. Crowdworkers were asked:
“rate the suitability of the voice for an in-game supportive co-
player for playing a collaborative video game.” The ratings
were performed on a scale from “1 – Much less suitable than
the reference” to “7 – Much more suitable than the reference”
with the additional anchor of “4 – Equally suitable as the ref-
erence”. At the end of the experiment, the participants had the
opportunity to comment on the experiment and they factors af-
fecting their judgments.

In all we had 100 participants perform these judgments.
Each evaluated the 17 creations of one of the adjusters; thus
there were a total of 1700 judgments. These participants were
recruited through Prolific1 and were required to be native speak-
ers of English residing in the United States of America. They
made their judgments online, and were each paid £2 for their
participation, with the average completion time being 7 minutes
and 45 seconds.

Table 4: Average preference for the modified samples. * indi-
cates significance (p < 0.005).

Adjuster Average CMOS
#1 +0.35*
#2 +0.32*
#3 +0.26*
#4 +0.61*
#5 +0.19*

all +0.35*

The hypothesis was supported across all the utterances, and
indeed, also for each of the adjusters. That is, each adjuster’s
modified utterances were generally rated better, as seen in Ta-
ble 4, and this was significant, using a single-sample t-test. The
average improvement varied by adjuster, ranging from 0.19 to
0.61. Further, for each of the 17 pairs, the modified versions
were on average rated more suitable than the baseline versions.
We probed further with some post hoc and qualitative work.
First, in an attempt to examine the individual contribution of
each of the prosodic properties, we tested the hypothesis that
utterances for which property i had been modified would have
relatively higher ratings than those for which property i was
unchanged. Using a Generalized Linear Mixed Model regres-
sion grouped by adjuster with the voice types and pitch and
pitch variation as fixed effects, with random slopes for the voice
types, we found positive trends for creakiness and breathiness,
but these were not significant. There were no significant trends
for pitch, which had a slight negative effect on the CMOS rat-
ings, or pitch variation, which had a slight positive effect. Sec-
ond, we examined the participants’ comments on what helped
them make their decisions. They variously noted improved
prosody and sounding less robotic. Additionally, some partic-
ipants mentioned preferring the emotion of the modified sam-
ples or imagining the suitability specifically for a video game
that they frequently play.

1http://app.prolific.com/



5. Discussion
Every set of utterances modified by any of the adjusters was sig-
nificantly better than the baseline audio according to the subjec-
tive CMOS evaluation. This suggests the importance of voice
quality and nasality in conveying pragmatic functions.

However, so far, a true quantitative understanding is lack-
ing. Not only are the individual contributions of each voice
property unclear, we also do not know the magnitude of the con-
tribution of these three properties relative to other prosodic fea-
tures. Although most participants had positive comments about
the modified utterances, and, to a lesser extent, about the base-
line synthesis quality, some expressed the opinion that even the
best were far from truly suitable. Seeking further insight, we
compared the modified utterances of the highest-rated adjuster
to the original utterances, to judge which of the functions listed
in the Appendix she had been successful in conveying. Over-
all our impression was that maybe a quarter were managed ade-
quately, although never unambiguously, and maybe for a quarter
more the counterindications present in the baselines had been
alleviated. Thinking about why this should be true, one possible
confounding factor could be that the transcripts fed to the syn-
thesizer were sometimes distant from the actual original speech,
which included spontaneous speech behaviours such as repeti-
tion and pauses which were not replicated by XTTS. However
the likely major factor is that, as some participants noted, the
controls provided were inadequate to produce fully satisfactory
utterances: the adjusters variously expressed the desires to have
more precise control of speaking rate, pitch contours, and level
of reduction, and the ability to more easily modify the intensity
of voice quality per syllable. In general, quantifying the relative
importance of the various prosodic features for various purposes
is an important unsolved problem [34].

The low agreement scores for the specific modifications
were somewhat surprising. We see various possible reasons.
While the adjusters worked after listening to the original record-
ings, they did not necessarily attempt to mimic them. Their
task was to modify the baseline to increase the in-context prag-
matic suitability. They may have chosen different modifications
that still serve the same pragmatic functions, or idiolectally dif-
fered in their ideas of the prosody-pragmatic mappings, or they
may have had different ideas of which pragmatic functions were
present in the original or were most important to include. They
probably also perceived the presence of the prosodic properties
differently, both in the original speech and the post-modification
speech. In particular, it is likely that the original speaker selec-
tively deployed different types of creakiness [35], that the ad-
justers perceived these differently, and/or that they differently
perceived the specific kind of creakiness added in the modifi-
cations. Another possible cause for the lack of agreement for
breathiness and nasality is the fact that the speech of the orig-
inal speaker could generally be characterized as breathy and
slightly nasal, therefore leading to the lower number of breathy
and nasal modifications and less agreement for those ratings.
Higher agreement existed for sentences where the voice quality
of the original speaker was very salient. For example, in the ut-
terance right, next level, the original speaker uttered right with
pronounced creak, which was copied to some extent by all of
the adjusters.

While prompt-based TTS systems powered by large lan-
guage models are burgeoning (e.g., [36, 37]), they offer lim-
ited insight into the underlying mechanisms of prosody. Voice
quality is a prime example: despite its importance, our under-
standing of how it contributes to pragmatic meaning remains

limited. Although certain associations, such as creakiness sig-
nalling turn-finality are relatively well-documented [38], other
relationships are speculative or entirely unknown. As noted
above, the low agreement scores may suggest that there is not a
single correct way to achieve a given pragmatic effect. Instead,
different combinations of voice quality features might serve the
same function, allowing for multiple valid modifications that
enhance pragmatic suitability in different ways. Another im-
portant question is whether certain pragmatic functions can be
reliably conveyed through voice quality modifications alone, or
whether they require co-occurring prosodic and other cues, as
has been seen for breathy voice [22].

These findings have potential downstream applications: a
clearer understanding of how voice quality contributes to prag-
matic meaning could inform the design of loss functions by in-
corporating measures of pragmatic appropriateness or listener
preference into model training, rather than relying solely on
acoustic similarity or naturalness scores. For instance, if certain
combinations of voice quality reliably signal specific pragmatic
functions (e.g., creakiness for turn-finality), models could be
trained to produce these patterns in appropriate contexts by min-
imizing a loss that penalizes mismatches between target prag-
matic functions and prosodic realizations. Additionally, it could
guide the selection of training data, as current training datasets
rarely possess the pragmatic diversity needed to convey prag-
matic meaning appropriately. Our results can also shape an-
notation practices for future TTS systems. Rather than rely-
ing on high-level labels like “emotion: happy” or “style: for-
mal”, annotations could include fine-grained prosodic and prag-
matic cues—such as voice quality, syllable-level emphasis, or
discourse function (e.g., “acknowledgment”, “contrastive state-
ment”). This kind of labelling would make it easier to train
models to generalize from voice quality to intended commu-
nicative function.

Future work could also develop ways for automating voice
quality modifications, leading to a more scalable approach for
implementing and evaluating voice quality in speech, perhaps
avoiding the need for such post-processing by including control
of such features in the speech synthesis model itself.

6. Implications
We may have taken a first step towards creating a new gener-
ation of synthesizers that can control these properties. In this
section we briefly consider three likely types of benefits and
how we may proceed.

First, including control of voicing properties and nasality
may broaden the range of styles that can be effectively achieved.
In particular, this may help lift synthetic voices beyond the
competent-but-cold style that is so common today. While pitch-
only prosody control may be acceptable, and even desirable, for
intelligibility-prioritizing applications, we may need these ad-
ditional properties to achieve styles that are perceived as more
individual, sincere or trustworthy. To the extent that this is
an important component of natural speech in many genres, we
would advocate for selecting suitable data and adding terms to
the prosody loss function to favour fidelity for these properties.

Second, extending synthesizers to handle these properties
may enable them to learn a more comprehensive context-to-
prosody mapping from training data. To some extent these
properties seem to reflect aspects of the interlocutor’s speech
and local context, for example whether information is new or
already likely part of common ground. The mappings between
such context properties and the uses of these properties could



likely be learned by end-to-end methods.
Third, extending synthesizers to convey more aspects of

agent intention and feeling — expressing confidence or uncer-
tainty, a strong suggestion versus a mild one, dominance or
submissiveness, engagement or lack of involvement, and so on
— will likely require explicit representation of how inputs with
such pragmatic functions map to appropriate prosody, including
the features that we have focused on.

Building support for the last use case will likely require us
to elucidate exactly how these properties serve each such func-
tion. For this, basic empirical research will be required. To date,
systematic study of the functions of nasality and voicing prop-
erties has been hampered by the lack of a way to test hypotheses
by creating stimuli with these properties controlled. Now, how-
ever, this is possible using the techniques described here.

7. Summary
In this paper, we examined the effect of voice quality and nasal-
ity on the perceived suitability of utterances for the role of a
supportive co-player for a collaborative video game. In a modi-
fication experiment, five participants modified 17 baseline syn-
thesized utterances using VoiceQualityVC. The participants had
precise control over the creakiness, breathiness, and nasality, as
well as some control over the average pitch and pitch range of
the utterances. In line with our hypothesis, the modifications
were rated as more suitable for the envisaged AI co-player.

Acknowledgement: This research was supported in part by
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Appendix
This appendix provides a transcript of the original utter-

ances presented to the adjusters as they appeared in the original
gameplay, with annotations to illustrate the rich variety of prag-
matic functions in this data. The original audio is available at
[redacted for anonymous review].

A few notes: These annotations had no part in the experi-
ments. These functions were apparent to us from the words said,
from the actions seen in the video, from the context, and from
the prosody. For almost all the annotated functions it seems that
prosody is important in conveying that intent or feeling. We do
not know which of these functions the adjusters were sensitive
to, or whether there were others they noticed, as we never asked
them to explicitly identify the pragmatic functions.

Generalizing over what we see here we note that pragmat-
ics here is much more varied than one of a few dozen dialog
acts commonly seen in commercial dialogues [39]. We also see
that, although much recent work in synthesis aims to improve
emotional expressivity or to improve style diversity, those two
factors account relatively little of what is actually happening
here, in an effective, cooperative, real-time situated dialog.

EC: [some self-talk as he synchronizes the recording, etc.]

EC1: alright, have you played this game before? (A new
topic, shifting from self-directed to other-directed, announcing
that he’s ready to begin the game, an implicit invitation to get
ready to start, friendly, positive tone, grounding.)

Novice: nope

EC2: alright, so you’re going to be the lava boy, down there.
(Acknowledges response, slowing down his speaking rate to

speak more clearly now that he knows his partner will need
some proper explanation, gives instructions, establishes com-
mon ground regarding an on-screen referent.)
EC3: you’re going to move with the arrow keys. (Continua-
tion of instructions, grounding, request for confirmation.)
Novice: okay
EC4: basically you can’t touch what’s opposite of you. (Con-
tinuation of instructions, giving a warning.)
EC5: So, if, you’re fire, so you can go into the fire, but
you can’t go into the water. (continuing after a slight pause, a
small false start but recovering, paraphrasing and elaborating,
asking for confirmation.)
Novice: ah, okay
EC6: right there, you can walk down. (A digression from
explaining the rules of the game to comment on what’s happen-
ing now, suggesting an action, politely assuming the other sees
what to do.)
EC7: and then this green mud, neither of us can touch it,
because if either of us touch it, we both die. (Resumption of
previous topic, calling attention to something salient, explain-
ing a non-obvious rule, marking the word “die” as metaphori-
cal.)
Novice: okay
EC8: so jump. (Direct instruction, urgent but polite, as the
novice has already started to move.)
EC9: there you go. (Praise, authoritatively judging the
novice’s performance.)
EC10: yeah, these are the introductory levels. (A non-
important aside, presumably intended to fill an awkward si-
lence, in effect, apologizing for the simplicity of this game, mak-
ing a contrast with the implied challenge in the later levels, im-
plying that it will get more interesting.)
EC11: alright, I need you to push the button so the ledge
goes out, yeah. (Recognizes hesitation, explains non-obvious
action, requests cooperation, cues immediate action, offers
praise upon completion.)
Novice: ah, okay, got it (steps on the button but then moves
forward)
EC12: stay on it, and then let it go. (Flags incorrect action,
gives a more explicit paraphrase, and then clearly instructs the
next step, indicates no urgency.)
EC13: then I’ll touch it, so you can get up. (Indicates suc-
cessful preparation for the key move, announces specific intent,
instructs the novice to wait, highlights reciprocity, cause-effect
relationship.)
EC14: come on down. (Cues next subgoal, implies it’s self-
evident, delivered in a jokey, narrative tone, perhaps to back off
from the face-threatening overly directive nature of 12.)
EC15: there you go; you’ve got the hang of it. (General
praise, highlighting obvious progress rather than authoritative
assessment.)
EC: [laughs], no, it’s not Mario
Novice: ah, okay, I did like go up (apologetically)
EC16: yeah, I know, like in Mario you normally go up. (Ac-
cepts apology, minimizes error, empathizes, contrasts with an-
other game’s logic.)
EC17: right, next level. (Marks completion, gives praise,
foreshadows greater complexity, indicates the intent to continue
playing the game in full expectation that the novice also wants
to continue.)
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