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Abstract
Identifying location mentions in speech is important for many
information retrieval and information extraction tasks; here we
explore the use of prosody for location spotting. While previ-
ous work has explored the use of prosody for spotting named
entities, including locations, the specific value of prosody for
finding locations in spontaneous speech has not been measured.
Using the Switchboard corpus and LSTM modeling we ob-
tain above baseline performance. Further, we identify specific
prosodic features that tend to mark locations in American En-
glish.
Index Terms: named entities, information retrieval, sponta-
neous speech, prosodic patterns, LSTM, semantics

1. Introduction
Words of different classes and with different functions may
have different typical prosodic forms. Previous work has ex-
amined such tendencies, but generally regarding either spe-
cific words, or regarding broad syntactic or functional cate-
gories, such as content words, fillers, and backchannels. In this
work we instead investigate the prosodic aspects of a seman-
tic category: locations. Locations are convenient for a study of
semantic-class prosody for three reasons. First, locations are a
well-defined semantic category, and thus suitable for a big-data
study. Second, location mentions can occur in any language,
so it is a suitable topic for cross-language investigation. Third
location spotting is of practical importance for many tasks, in-
cluding information retrieval, information extraction, question
answering, summarization and translation. For example, there
is a practical motivation in finding mentions of disasters and the
locations of those disasters in radio broadcasts [1].

For speech, location spotting by the usual methods, namely
with speech recognition and a gazetteer (list of locations) is not
always applicable and effective. First, for many low-resource
languages there are no good recognizers, or no recognizers at
all [2]. Second, even when good speech recognizers exist, many
locations will be out-of-vocabulary, making the recognizer un-
able to find the location. Even without speech recognition, it
can be useful to identify likely location mentions, either to send
them to a human for transcription and lookup, or for special
processing. For example, since location names tend to be pro-
nounced similarly across languages — for example Texas in En-
glish and Tekisasu in Japanese — cross-language ASR using
acoustic models trained on other languages [3], and gazetteers
in other languages may be effective.

For these reasons we are interested in ways to find loca-
tions without use of speech recognition. We hypothesize that
prosody can be useful for this. Casual observation suggests that,
across languages, introductory mentions of new entities, includ-
ing locations, may share common prosodic features, such as late
pitch peak. To the extent that locations are mentioned in certain
specific contexts and associated with certain specific pragmatic

functions, for example, introducing new topics or grounding,
it makes sense that certain specific prosodic patterns may co-
occur. Thus it may be possible to identify such general patterns,
and then leverage this information across languages

2. Related Work
There have been numerous computational studies of the
prosodic properties of words and word classes. For exam-
ple, Lai and others have shown the utility of prosody for spot-
ting important words to include in summaries [4, 5]. Word-
characteristic prosodic patterns and contextual prosodic tenden-
cies have also been exploited in language models [6, 7, 8].
More specifically relevant to locations are studies of the value of
prosodic information for named entity recognition. We briefly
overview the three most relevant previous studies.

Hakkani-Tur and colleagues did the first study of this [9],
motivated by the idea that name mentions would generally have
“prominent” prosody. For broadcast news, comparing with an
entity tagger that used lexical information alone, they reported
only a modest performance benefit from prosody, and found that
the benefit came largely from distinguishing content words from
function words, rather than from distinguishing entity mentions
from other content words.

Rangarajan and Narayanan [11] obtained good results using
prosody for detecting person names, although their task was rel-
atively easy because the inputs were read speech, word bound-
aries were given, all input sentences contained exactly one per-
son mention, and all person names were from a non-English
language, but embedded in an English sentence.

Work by Katerenchuk and Rosenberg [10], on the Wall
Street Journal corpus, also found that acoustic (prosodic) cues
can help detect named entities, when used in combination with
recognizer output, in cases where the recognition error rate was
high.

Thus previous work has not shown whether prosody is use-
ful for discriminating location mentions rather than just named
entities in general, or even whether prosody is doing more
than just enabling a general discrimination between content and
function words. Previous work has also been limited to read
speech; here we also examine the prosody of locations in spon-
taneous speech.

3. Task
Our hypothesis is that prosody is informative for spotting lo-
cation mentions. We formalize the task as one of identifying
places in speech where locations are likely being said. Classical
formulations of the task of named entity recognition assume that
transcripts are available and exact word boundaries are given
[12], which is not realistic in general. Instead, we formulate
the task as one of identifying speech frames that have location
mentions. Specifically, we aim to classify each 50 millisecond
frame of audio as including part of a location mention (1) or not



(0). In real-world applications, such labels would probably be
smoothed or otherwise post-processed, however this task for-
mulation is adequate for our aim here, namely to evaluate the
pure ability of prosody to discriminate location mentions from
all other speech regions.

4. Data
We used the Switchboard corpus of American English tele-
phone conversations, as this is large and fully transcribed with
exact word boundaries [13, 14].

Location mentions are however not labeled in the tran-
scripts. To find locations from the transcripts, we used
spaCy[15], a natural language processing library. SpaCy has
multiple downloadable neural network models that identify
named entity types. We applied spaCy to the transcripts and
noted which words it classified as geopolitical entity (GPE) or
location (LOC). These locations as output by the spaCy model
were not exact. For example, the word Dallas in the Dallas
Cowboys was tagged as a location mention, although this word
here is not a location but part of the team name. (However, de-
pending on the intended purpose [16], spotting the word Dallas
in this context as a location could still be useful.)

To judge whether the spaCy-generated tags would be ade-
quate to support our experiments, we did a small evaluation, in
two parts. First, we hand-labeled the first 100 location mentions
in 16 Switchboard conversations. Of these, 86 were tagged as
locations by spaCy; thus the recall was 86%. Seconds, in a sam-
ple of 98 words tagged as locations by spaCy, we found 12 false
positives, and thus the precision was 88%. Thus only slightly
noisy, so we chose to use them uncorrected, both for purposes
of training and evaluation.

Models were trained with 1290 conversations, each about 5
to 10 minutes long, in total about 124 hours of data, and tested
with about 26 hours of data. Across all the data spaCy found
9673 location mentions.

5. Prosodic Features
We experimented with two models: linear regression, because it
is easy to analyze what it learns, and a Long Short Term Mem-
ory (LSTM) model, because it can learn temporal patterns and
has demonstrated good performance in numerous speech pro-
cessing tasks. For the two models, described below, different
featuresets were used.

For the linear regression model, we use a wide set of
prosodic and associated features, including not only track-
normalized pitch, intensity, and duration, but also energy
flux and measures of the degree of creaky voice, lengthen-
ing, disalignment between intensity and pitch peaks, and the
voiced/unvoiced intensity ratio. These were designed to be ro-
bust, as is necessary for spontaneous speech in general, and es-
pecially for Switchboard, given its varied audio quality [17].
Like other feature sets [18], this feature set has been shown in
previous work to be informative regarding many semantic and
pragmatic functions [17, 19, 20, 21]. Thinking that indications
of location mention may be found not only on the word itself
or its immediate neighbors, we used prosodic features spanning
a wide context, extending 3200 milliseconds before and after
the frame to be classified. Thinking that the behavior of the in-
terlocutor may also be informative, we used prosodic features
for both speakers. We computed features over fixed-length win-
dows, without concern for alignment to word, utterance, or syl-
lable boundaries, as we cannot in general assume that these will

Linear Regression LSTM

Threshold 0.329 0.033
Precision 0.532 0.532

Recall 0.950 0.945
F1-measure 0.682 0.681

Table 1: Model comparison on balanced datasets

be available.
For the LSTM models we used a reduced feature set, since

LSTMs are in general able to learn temporal patterns, such
as the dynamics of and relations among pitch and intensity.
LSTMs have been shown to require only a few frame-level
prosodic features to achieve good results [22]. For the LSTM,
we accordingly used only 5 features per speaker, each com-
puted frame-by-frame, namely absolute pitch, z-normalized
pitch, voicing, energy, and cepstral flux (as an indicator for both
speaking rate and phonetic reduction). Each frame in the audio
thus had 10 (5 + 5) prosodic features.

The code for computing these prosodic features is available
open-source in the Mid-Level Prosodic Feature Toolkit [23].

6. Training and Testing
For both models, 15% of the data was used for testing, 15% for
dev, and the rest was used as training data. Since the predictions
given by the models are continuous-valued, they were converted
to binary by using a threshold. The threshold was set to the
value that gave the highest performance on the dev dataset by
the F1-measure. This threshold was then used for the test set for
evaluation.

6.1. Linear Regression Model

Location mentions are not that common: only 1 in 256 frames
have locations in this data. To enable learning in linear regres-
sion, we accordingly downsampled to have equal numbers of
positive and negative examples. Specifically, all frames that had
a location mention are used, and the negative frames were se-
lected randomly from places where there is speech but with no
location mention.

Linear regression is trained with the computed prosodic fea-
tures and the binary labels as targets. For evaluation, the predic-
tions are converted to binary by thresholding.

6.2. LSTM Model

Because LSTM models require sequence data, we prepared the
training data differently. Still wanting to reduce the preponder-
ance of negative frames, we selected for training only sequences
with at least one location mention. To minimize the imbalance,
these should be short, but to give the LSTM adequate context,
they should be long. We chose as a compromise a sequence
length of 10 seconds. These training sequences were selected
to be non-overlapping. Sequences of 10 seconds without any
location mentions were excluded from training. This gave a
positive:negative ratio of 1:14, which we felt was acceptable for
training.

In training, the sequences of prosodic features were fed to
the model together with the label sequences, of 0 or 1 for ev-
ery frame. The neural network was bidirectional, so the output
could depend on both the left context (past), and right context
(future) information. Based on informal experimentation on the



Random Speaking Content-Word LSTM Single-Track
Baseline Baseline Baseline Model LSTM Model

Precision 7.2% 10.9% 16.5% 18.9% 20.1%
Recall 43.2% 49.1% 49.9% 43.2% 38.6%
F1-measure 12.5% 17.8% 24.8% 26.3% 26.5%

Table 2: LSTM models compared with baselines

training and dev sets, we chose an network architecture with 4
hidden layers of 16, 8, 8, and 4 units respectively, each a bidi-
rectional LSTM layer. After the LSTM layers, there was a sim-
ple dense feedfoward layer. The input layer was the prosodic
features and the output was the location likelihood estimate.
Cross-entropy was used as the loss function. L2 regularization
of 0.0001 was used. The code to train and evaluate the model is
available on GitHub 1.

7. Results
7.1. Comparison of Models

Table 1 compares the performance of the linear regression and
LSTM models. Both were evaluated on evenly balanced data,
and non-speech frames were excluded. However the data was
not exactly the same: the non-speech frames were different as
they were randomly selected with a different random seed, and
in different ways, as follows. For the linear regression model,
we downsampled the negative frames, as described above. The
LSTM model had to be tested on 10-second segments, for which
it made a prediction for each frame, but before computing pre-
cision and recall we downsampled the negative-class frames so
that the data was balanced in this case also.

We see that both models have higher precision than baseline
(0.50) and that the linear regression model performs just slightly
better than the LSTM model.

7.2. Comparison to Baselines

To understand the level of performance for the LSTM, Table
2 shows results for three baselines: a) Random baseline: we
wanted see if the model was doing better than random. b)
Speaking baseline: we were interested in finding if the model
was doing better than a baseline that has perfect knowledge of
whether there is speech or not. This baseline predicts randomly
but only when there is speech, as given by the transcripts. c)
Content-Word baseline: we were interested in a smarter base-
line that has knowledge of whether there is speech, and also
whether the word being said was a function word or a content
word. Function words are used to express grammatical relation-
ships and can not be locations mentions. We defined function
words to be those on the NLTK stoplist. Thus this baseline only
predicted randomly when there were content words, according
to the transcript, and predicted false otherwise.

Further, to evaluate whether the interlocutor-track features
were informative, we built another LSTM model using only
one track, excluding features computed from the audio track
of the other speaker. We expected better performance for the
two-track model because it might enable the LSTM to learn to
correct for the cross-track bleeding present in some conversa-
tions, and because the interlocutor’s listening behavior and re-
sponses could be informative. However as seen in the rightmost

1https://github.com/gcervantes8/location-spotting-using-prosody

column of Table 2, the performance of this single-track model
was slightly higher, thus, contrary to expectation, considering
interlocutor-track features gave no added benefit.

7.3. Locations and Other Entities

Previous work had not specifically shown the value of prosody
for identifying location frames, rather than identifying frames
with entities in general. We therefore decided to test the hy-
pothesis that the prediction values for frames that were loca-
tions would tend to be higher than the prediction values for
other named entities. We wrote a script to gather all capitalized
words; these were in general names of people and organizations,
and we used this set, uncorrected, as our list of entities. (This
worked because in the annotations capitalization was only for
proper names and titles; sentence-initial words were not capi-
talized.) We then compared the prediction values at the location
frames to those at the all other (non-location) entity frames. The
means were 0.146 and 0.127, respectively, which were signifi-
cantly different by a t-test (p < 0.0001).

7.4. Generality Across Languages and Genres

As a preliminary investigation of whether the model was spe-
cific to this language and this data set, we did some small-
scale experimentation with other data sets. Since we did not
have timestamped transcripts for any of these, our evaluation
was done in a post hoc fashion, based on examination of time-
points for which our model had high location estimates. We
started from the highest likelihood frame and worked down the
list. However, as high-estimate frames tended to be clustered in
time, to get a more diverse sampling, we excluded frames within
one second of those already examined. For each language, we
examined the top 100 timepoints the LSTM model predicted in
this way and computed the precision.

For comparison, we annotated randomly selected points in
the audio until we found 100 random timepoints that had non-
function words. For the speech-only baseline, laughter, music
and silence timepoints were excluded. In each case, the preci-
sion was computed by dividing the number of locations found
by the number of timepoints examined. To enable comparison,
we also examined 100 predictions for Switchboard in the same
way. The first comparison dataset was an English news broad-
cast dataset: 6 hours of local news broadcasts data from differ-
ent stations [21]. As these had only a single audio track, we used
the single track model as seen in Table 2. As seen in columns 1
and 2 of Table 3, there appear to be many more locations in this
data, and the model appears useful for identifying them.

The other two datasets were Spanish and Japanese Call-
home telephone conversation corpora, approximately 10 and 49
hours respectively. As seen in Table 3, the model performed
above baseline for Spanish, but below for Japanese. Though
very small-scale, the results suggest that prosody of locations in
English could have similarities with Spanish.



Figure 1: Prosodic features best correlating with location mentions. Width indicates strength of correlation.

News Conversation
English English Spanish Japanese

Speaking Baseline 2.5% 0.8% 0.9% 2.0%
Content-Word B. 3.0% – 1.0% 4.0%
Model 9.0% 3.0% 3.0% 0.0%

Table 3: Precision of trained English conversation model eval-
uated over different datasets

8. Failure Analysis
Seeking to learn more about how our model works and when
it fails, we looked at its performance in specific cases. First we
examined false alarms. We took 20 timepoints in the data subset
described in Section 7.2 from those to which our model ascribed
the highest likelihoods of being locations, but which in fact were
not. Of these 20, 7 were, although not precisely within a loca-
tion mention, very close, for example, within the underlined
words of: in Texas, and Dallas uh. 2 of them were mentions of
sports teams, Bears and Buccaneers, which for Americans are
often metonymic for cities and regions. 2 of them had a loca-
tion mention but in the other track, with the name spoken by the
interlocutor.

Second, we examined 20 misses (false negatives): time-
points where there was a location, but our model ascribed very
low likelihood there. There was no evident pattern in these
misses.

Third, we examined 20 of the strongest hits, timepoints to
which our model ascribed very high likelihood of being a lo-
cation, and which were in fact locations. 7 of these occurred
in questions, and in five of these the location was the last
word in the question, for example live in Richardson? and in
California?. 3 of the 20 were found in answers to questions,
for example uh Clareen County and from Indiana. 7 of the lo-
cations were found in truly grounded location mentions, where
the speakers were stating or confirming where they were living,
rather than, for example, discussing cities or states heard about
in the news. Success across these various dialog acts suggests
that the model had successfully learned the common properties
of location prosody, regardless of superimposed prosodic pat-
terns conveying other pragmatic functions.

9. Feature Analysis
To get a rough idea of how prosody was enabling detection of
locations, we inspected the correlations with the presence or
absence of a location frame (1/0). The first finding was that the

correlations were time-dependent. For example, intensity corre-
lated positively with upcoming frames being locations, but neg-
atively with recent past frames being locations. Figure 1 shows
all features whose correlation’s absolute value was greater than
0.02, ordered by time: the times are the window starts and ends
relative to the frame being classified. All correlations shown
were significant (p < 10−12).

All features were of the speaker and not of the interlocutor,
no interlocutor features had such high correlations. In location
mentions there is usually a wide pitch at the location being said,
so we were not surprised that there was a tendency to wider
range of pitch at the frame being predicted. Before the frame
being predicted we saw that there was narrow pitch around 400
millisecond before the predicted frame. We also saw there was
a faster speaking rate before the frame being said. We found
higher intensity correlation before the frame being predicted
and intensity lowers after the frame.

10. Conclusions and Future Work
We have shown that prosodic information is useful for spotting
location mentions, and that this ability is somewhat location-
specific, beyond any generic benefit of being able to distin-
guish content words from function words, and even beyond any
generic ability to spot entity mentions.

The precision, while not high, is significantly better than
baseline, and likely to be useful in larger workflows.

Based on a very small sample, the performance of an
English-trained model appears respectable also for Spanish, and
within English appears to generalize to the news genre.

Future work might explore the possible value of partly
shared network training and the presence of possible universals.
Future work should also quantify the extent to which the infor-
mation provided by prosody is a useful (non-redundant) com-
plement to that provided by speech recognition, for languages
for which that technology is available.
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