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ABSTRACT
Going beyond turn-taking models built to solve specific tasks,
such as predicting if a user will hold his/her turn after a pause,
there is growing interest in more general models for turn tak-
ing that subsume many such tasks, and very good results have
recently been obtained [1]. Here we present an improved re-
current network model that outperforms [1] and does so with-
out requiring lexical annotation. Further, we show that this
model can be trained for different languages with no modi-
fications, providing good results in turn-taking prediction for
English, Spanish, Japanese, Mandarin and French. We also
show that our model performs well across genres, including
task-oriented dialog and general conversation.

Index Terms— Turn-taking models, Spoken dialog sys-
tems, LSTM

1. INTRODUCTION

Participants in a conversation generally take turns speaking.
For spoken dialog systems, good turn-taking is similarly nec-
essary for efficient and natural-feeling interactions [2]. This
involves, for example, avoiding or at least minimizing inter-
ruptions, unnecessary pauses, and overlaps. To accomplish
this, every spoken dialog system employs some kind of turn-
taking model, although in most deployed systems these are
very basic.

Research on turn-taking has demonstrated that it is pos-
sible to do much better [3]. Indeed, specific turn-taking de-
cisions — such as when to start a turn and when to produce
a backchannel — can, with sufficient training data, be made
with accuracies and at speeds that match or exceed human
performance [4, 5, 6]. However, each of these demonstrations
has been costly to build, requiring a major engineering ef-
fort, starting with collection and preparation of extensive data.
Moreover, each of the resulting systems has, in the end, been
demonstrated successfully only for one specific decision, al-
though ultimately we want systems to that perform well in
response to a variety of user behaviors.
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One specific limitation is that models of turn-taking have
traditionally been trained to make decisions at discrete time-
points — for example, times after detecting speaker pauses
of some fixed duration — to decide whether he/she intends to
continue or to yield the turn. Over the past two years, how-
ever, several research groups have applied Long Short-Term
Memory (LSTM) networks [10] to turn-taking [1, 11, 12, 13,
14, 15, 16]. LSTM networks seem well-suited to turn-taking
since they can track the situation continuously as it evolves
over time while representing long-distance context effects.
Skantze’s work [1] in particular showed good performance as
a general model and also, without further training, performed
well on specific traditional tasks. Remarkably, it achieved
better-than-human performance on the classic turn hold/take
discrimination task.

In this paper, taking Skantze’s work as a starting point, we
present a better model, and use this model to explore the pre-
dictability of turn taking in five languages and three genres.

2. MODEL

A general model of turn taking should be able not just to make
one kind of turn-taking decision, but instead to predict the
probability that a given participant will speak over a future
time window [1, 17]. In particular, a model should continu-
ously predict future behavior at every time step, not just when
certain events occur.

We accordingly operationalize the task, following Skantze,
as one of predicting, at each moment, for each speaker,
whether he or she will be speaking in the immediate future.
The most relevant scope of prediction (prediction horizon)
depends on the application and technology. For many dialog
systems this is on the order of one second, that being the time
it can take from making a decision, to speak or stop speaking,
to the time when that decision is realized. However this can
be much shorter with more incremental systems [6, 18, 19].
Here we do experiments for five prediction windows: from 0
to 250ms, 0 to 500ms, 0 to 1s, 0 to 2s, and 0 to 3s.



2.1. Features

For prediction we use a number of prosodic features and re-
lated measures, 6 for each speaker, as follows: 1) Absolute
Pitch, in log Hz, computed using Voicebox [20] 2) Relative
Pitch (z normalized per track). Both pitch features have val-
ues of 0 for frames where no pitch was detected. 3) Voicing,
based on the pitch-detector output, is a binary feature indi-
cating whether the frame was voiced or not. 4) Energy, not
normalized. 5) Voice activity is a binary feature indicating
whether the participant was speaking at the moment. This
feature was not computed, but obtained from the human gen-
erated labels. 6) Cepstral flux is the proxy measure for length-
ening. The value of this feature is low when a phoneme is
lengthened, that is, when the sound changes little from one
frame to the next, and high when the speaking rate is high.
The code for these features is freely available [21].

These 6 features are very similar to those of Skantze.
However our cepstral flux measure is approximately the in-
verse of Skantze’s spectral stability metric. We decided to use
cepstral coefficients, rather than frequency band power values
since they may better approximate perceptions of the spectral
envelope. While Skantze’s best results were obtained using
in addition human-generated part of speech tags, in many
practical uses such information is unavailable or unreliable,
and so the model we build does not use such features.

2.2. Architecture

In overview, our model takes as input 12 low-level features
extracted from the speech activity of both speakers, 6 per
speaker, all computed every 50ms. These features are fed to
the network in a stream as they become available. The heart of
the network is a LSTM layer. Its output is an n-dimensional
vector, where n is the number of 50-millisecond frames in the
prediction window. This is then passed through a final layer
to produce the network’s output. Each of the values in this
final n-dimensional vector represents a prediction of whether
the speaker will speak (1) or not (0) during that future frame.
In these respects our model is the same as that of Skantze.
The rest of the section describes the improvements we made.

Figure 1 gives an overview of our architecture. The input
is first processed by a dense layer of Parametric Rectified Lin-
ear Units (PReLU) [22], with 12 hidden units. In this layer, to
improve robustness and reduce overfitting, we added dropout
[23] with a keep probability of 0.75. This process is repeated a
second time by another pair of dense and dropout layers with
the same parameters and properties. The output of the sec-
ond dropout layer is then fed to a LSTM layer with 30 hidden
units. The output layer is a dense layer, where the PReLU op-
eration is applied to each of the n prediction values produced
by the LSTM layer. Since the values produced by the PReLU
operation are not necessarily in the range of [0,1], their out-
puts are clipped to force them to be in that range. Thus the
key differences from Skantze’s model include the use of more

Fig. 1. Proposed Network Architecture

hidden LSTM units, PReLU at various layers, including at the
output layer instead of a sigmoid, and the use of more layers,
especially dropout layers. In preliminary small-scale experi-
ments we found all of these to be beneficial.

The code for this model is freely available [24].

2.3. Training

We used Tensorflow for model construction and evaluation.
The training data was partitioned into mini-batches of size
128, each with a sequence length of 1200 frames (60 sec-
onds). We used a learning rate of 0.001 and to train the net-
works for 1,200 epochs using the RMSProp optimizer. We
chose as our loss function the mean-squared error (MSE) be-
tween the ground truth, from the labels, and our predictions
before clipping. We used an L2 regularization factor of 0.001.
We trained a different network for each time window size (0
to 250ms, 0 to 500ms, and so on). In each case we used the
mean absolute error (MAE) metric as the measure of the per-
formance of the network on the test set after every epoch.
For each window, the MAE between the prediction and the
ground truth is computed as the average of the mean abso-
lute error across all points in our prediction window, that is,
from the current time frame (the point of prediction) to the
last frame in the window (at the prediction horizon). This re-



sembles Skantze’s training procedure, except for the use of
larger mini-batches, a smaller learning rate, and backpropa-
gation without truncation through time. Although all these
changes increased the computation required, it still takes only
1 to 2 hours to train a network in most cases, depending on
the data size, on a desktop with two GPUs.

3. EVALUATION

This section describes a direct comparison of our model with
that of Skantze. To do this, as Skantze’s code is not pub-
licly available, we first reimplemented his model. Apart from
using our own feature extractors, we did this faithfully. We
then did a head-to-head comparison using the same dataset
Skantze used, namely the original Maptask data [25]. We
used an 80:20 training-testing split. Table 1 shows Skantze’s
reported results and our own results, but for our reimplemen-
tation of his model and for our own model. In addition, Figure
2 compares the MAE of our reimplementation and our own
model as a function of training time.

Prediction Skantze’s Model Our
Window Original Reimplemented Model

0 to 250ms 0.15 0.14 0.11
0 to 500ms 0.22 0.23 0.19
0 to 1s 0.28 0.32 0.27
0 to 2s 0.33 0.37 0.34
0 to 3s 0.35 0.39 0.36

Table 1. Mean Absolute Error (MAE) — English Maptask

Fig. 2. 500ms Model Training Results — Maptask

We observe several things. 1) The results of our reim-
plemntation were close to those of Skantze, but generally

somewhat inferior, most likely due to the omission of a part-
of-speech feature. 2) Our architecture did substantially better
than that of Skantze, showing the advantages of our improve-
ments. 3) In the prediction horizons of greatest practical
interest, 0–500 ms and 0–1 s, our model performs better
than Skantze’s, even without the part-of-speech feature. 4)
Prediction is much easier for closer time windows.

An important advantage for general models is the abil-
ity to perform well on more specific problems, without being
specifically trained for them. To demonstrate this, we test the
ability of our model to predict whether, after a brief pause,
a speaker will hold his/her turn or whether the turn will shift
to the other speaker. Following Skantze, we found all the
points where there was a pause (250ms/500ms) after someone
stopped speaking. At these points, to convert our framewise
predictions into a single hard decision, we took the predic-
tions for the next second, and then we averaged these for each
side. The speaker with the highest prediction average was
then the one we predicted would take the turn. In this pro-
cedure we exactly followed Skantze, again to enable a direct
comparison to his reported results. These are seen in Table 2.
The results are mixed, and in part reflect different operating
points, but for the 500ms case our model is doing roughly as
well as Skantze’s, again without using part of speech tags.

4. THE PREDICTABILITY OF TURN TAKING
ACROSS LANGUAGES

While the patterns of turn-taking are known to have some
commonalities across languages, a model trained on one lan-
guage cannot in general be expected to perform well on an-
other [26, 27]. That is, to build a good turn-taking model for
any new language we can expect to need to train it on data
from that language. In this section we estimate the ability of
our model to learn and represent the patterns of turn taking in
different languages.

Our first comparison is between the English and Japanese
Maptask corpora [28]. In this section our metric is the percent
reduction in mean absolute error from a baseline model that
always predicts silence; this baseline of course varies from
corpus to corpus. Table 3 shows the performance of the model
on these two data sets. We see that our model also performs
well for Japanese, although the benefit is much less.

This relates to a larger question, of how languages dif-
fer in the predictability of turn-taking, and in particular how
much value is provided by prosodic information. Only one
previous study seems to have addressed this question, that
by Brusco and colleagues, who found slightly better perfor-
mance for hold versus shift predictions in American English
than in Argentine Spanish, using the same model [27]. Sim-
ilarly, the difference we found can be taken to suggests that
turn-taking in Japanese involves prosody less than it does in
English. This is somewhat surprising, given evidence that
backchanneling in Japanese is more prosodically-controlled



after a 250ms pause after a 500ms pause

Instances 3,405 7,546 2,079 4,608
% Hold 59.8% 58.8% 57.6% 57.6%

Model Skantze Replica Ours Skantze Replica Ours

Shift: Precision 0.726 0.776 0.784 0.711 0.780 0.800
Shift: Recall 0.703 0.528 0.601 0.738 0.549 0.660
Shift: F-measure 0.714 0.628 0.680 0.724 0.644 0.720

Hold: Precision 0.805 0.730 0.759 0.802 0.727 0.778
Hold: Recall 0.822 0.893 0.884 0.780 0.886 0.879
Hold: F -measure 0.813 0.803 0.817 0.791 0.799 0.825

Table 2. Hold/Shift Prediction Results — MapTask

than in English [29], but perhaps this can be understood as
reflecting a difference in how languages allocate the available
prosodic bandwidth to different functions.

Prediction English Japanese
Window MAE % reduction MAE % reduction

0 to 250ms 0.11 67% 0.21 38%
0 to 500ms 0.19 42% 0.30 12%
0 to 1s 0.27 18% 0.36 -6%
0 to 2s 0.34 -3% 0.40 -18%
0 to 3s 0.36 -9% 0.41 -21%

baseline 0.33 0.34

Table 3. Mean Absolute Error — English and Japanese Map-
task

Our second comparison is across five languages using cor-
pora of telephone speech from the Callhome/Callfriend col-
lection, for which we used the provided training/testing splits.
Although American English Callhome is far larger, the results
do not change appreciably when only a comparable amount of
data is used. The results are shown in Table 4. Again we see
that the model performs well across languages, but again less
well for Japanese, suggesting that its turn taking is harder to
predict from prosody alone.

5. THE PREDICTABILITY OF TURN TAKING
ACROSS GENRES

For Japanese we experimented with one additional data set.
This was collected in a companion robot scenario, in which
the robot was controlled by a remote hidden operator, Wiz-
ard of Oz style (WoZ). This was different from the other data
collections in that it included long response delays and many
misunderstandings rather than smoothly flowing interactions,
and in that the human participants were senior citizens rather
than college students. Tables 5 and 6 summarize our results

on this data set. We observe that the predictions of shifts were
quite poor. We suspect that this is due to two factors: first the
unbalanced nature of this data set, and second the fact the gen-
erally isolated comment-response pairs in this data set were a
poor match for the LSTM models’ implicit assumption that
the dialog state is flowing continuously.

From Tables 3, 4 and 5, we observe large differences in
performance for the three Japanese corpora. One possible fac-
tor may be the level of familiarity and resulting differences
in the formality of turn-taking: in the telephone corpus the
interactants are friends or family members, in the Maptask
they were fellow students, and in the WoZ data they were
strangers.

Incidentally, for all languages and all window sizes, our
architecture generally outperformed Skantze’s. There was
one exception — the Japanese WoZ data on the 0–500ms
window when evaluated on the hold/shift task — but other-
wise for all languages and genres and all window sizes, our
architecture performed better.

6. DISCUSSION

The classic architecture for spoken dialog systems delegates
turn taking decisions to a specific module, often the Dialog
Manager, which is generally assumed to make these decisions
autonomously. This architecture has roots in the traditional
view that turn taking follows its own set of rules [30], which
govern the flow of dialog, largely involve prosodic signal-
ing, and are largely orthogonal to considerations of semantic
content. Although the limitations of this view and this ar-
chitecture are well-known [31], they are still appealing and
have motivated many investigations of turn-taking as a self-
contained problem.

If, however, our aim is to build highly responsive dialog
systems, it may be time to reconsider this strategy. Recent
findings, including our findings above, suggest that, even with
models that perform on a par with humans, prediction of the
turn status a second in the future is only modestly better than



% reduction
Prediction American Canadian
Window English Japanese Mandarin Spanish French

0 to 250ms 46% 44% 53% 51% 51%
0 to 500ms 28% 23% 36% 34% 35%
0 to 1s 14% 3% 22% 20% 19%
0 to 2s 4% -5% 9% 7% 7%
0 to 3s 0% -8% 7% 2% 5%

baseline 0.39 0.34 0.45 0.41 0.43

Table 4. Mean Absolute Error — Telephone Corpora

chance, at best. This suggests that the best strategy for im-
proving the turn taking of dialog systems is no longer to pur-
sue further improvements in turn-taking models, but rather to
reduce system latency to make the turn-taking problem eas-
ier. That is, the most effective way to improve perceived turn-
taking quality is very likely to make dialog systems more in-
cremental. For example, if there is only 250 ms delay between
the time that speech input is heard and appropriate action is
taken, turn-taking prediction can be very accurate: as seen
above, when very recent information is available, turn-taking
is much easier.

Prediction
Window MAE % reduction

0 to 250ms 0.07 76%
0 to 500ms 0.13 55%
0 to 1s 0.19 34%
0 to 2s 0.24 17%
0 to 3s 0.27 9%

baseline 0.29

Table 5. Results (MAE) — Japanese WoZ

This is not to say, however, that there is no need for fur-
ther research in turn taking. In multimodal scenarios there
are additional sources of information available, such as gaze,
gesture, and breathing patterns [32, 33, 34, 14], which are
not yet fully exploited. More generally, although many re-
cent models achieve human-level performance in turn-taking,
there is no reason why they could not do even better. For ex-
ample, techniques for rapid adaptation, or joint adaptation, to
the turn-taking styles of specific individuals [35, 36], when
integrated into LSTM models, may enable us to far exceed
human performance. Abandoning the classic assumption of
the autonomy of turn taking, to include not only prosodic and
discourse marker factors but also higher-level semantic and
pragmatic considerations in the decisions [6, 31, 37], also has
great promise. Another important need is for techniques for
adaptation. Turn-taking patterns and practices in the wild are

highly diverse [8] and many types of decisions are involved
[9], so we need methods that enable existing turn-taking mod-
els to be adapted to a new domain or style of interaction, with-
out requiring the usual costly collection of a new multi-hour
corpus to train a brand new model [7, 16].

7. SUMMARY

We have presented a model of turn taking that matches and
sometimes exceeds the state of the art. We have made the
code for this model freely available for general use. Further,
using this model to investigate turn-taking across languages
and dialog genres, we find large differences in predictability.
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