The prosodic expressions of negative
micro-sentiment vary across corpora

Dimitri E. Lyon and Nigel G. Ward

Abstract Dialog systems could benefit from the ability to detect instantaneous user
dissatisfaction and other negative micro-sentiments. While this ability has been de-
veloped for some specific corpora, the question of generality has not previously
been broadly examined. In this paper we investigate whether the prosodic expres-
sion of negative microsentiment is similar across three diverse corpora: of cooper-
ative gameplay, commercial dialogs, and casual conversations. We find very weak
cross-domain performance and major differences in the patterns found, suggesting
that no simple model can handle negative microsentiment in general.

1 Motivation

Microsentiments, by which we mean sentiments that appear over short periods of
time, such as over an utterance or sub-utterance, are very important in real-time spo-
ken dialog. For dialog systems, the ability to detect the user’s negative microsenti-
ments would support monitoring dialog quality and the appropriate adjustment of
behavior and policies, either in real time or offline training. Ideally we would like
a general-purpose model of negative microsentiment, even if not optimal for any
specific corpus, one generally valid across domains.

However, while microsentiment modeling and continuous speech emotion recog-
nition have recently received significant attention [13, 17, 27, 18, 22], and despite
much work on cross-domain emotion recognition (e.g. [7]), it is not known whether
microsentiment is expressed similarly across domains. In this paper we report a first
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examination of this question, limiting attention to negative microsentiment and to
its prosodic aspects. We focus on prosody because, while lexical information is of-
ten informative, vocabularies can be large, and domain adaptation is a challenge
[32, 12]. In contrast, the number of prosodic patterns involved in conveying nega-
tive sentiment is probably on the order of a dozen, meaning that the prospects for
domain-general detection may be greater. Further, there is evidence that people “ex-
press positivity more in their word choices, whereas negativity is expressed more
through tone of voice” [?].

We approach this research question by building models of the prosodic correlates
of negative sentiment in three corpora. We then compare within-domain and cross-
domain performance and examine what the models learned.

2 Related Work

In this section we relate our question to some major research areas and some relevant
recent studies.

An important line of work has considered the potential value of inferring mi-
crosentiment for purposes of training dialog systems [21, 16, 22]. Most work on
this topic, even when addressing spoken dialog, has focused on text-based features
[14, 9], although microsentiment is often conveyed with prosodic, non-lexical be-
haviors. The most directly relevant work is the tradition overviewed in [22], de-
veloping fine-grained models of user satisfaction with dialog systems. The focus
has, however, generally been on predicting these from dialog-manager behaviors
and speech recognition output and associated measures, rather than exploiting in-
formation in the user’s behavior. [22] also explored cross-domain generality, but
only indirectly, by measuring the value of dialog policies learned from user sat-
isfaction modeling in one information-giving domain when applied to a different
information-giving domain.

Another important general line of work has explored the expression of sentiment,
including various subtle multimodal indications. However the focus of most of this
work has been on feelings regarding non-present people, brands, happenings and
so on, rather than here-and-now microsentiments. For many purposes, microsenti-
ment detection may be more useful, as microsentiments are commonly directed to
some specific thing that the interlocutor or speaker has just done, said, or mentioned.
Moreover, the time scale is of most work on sentiment is tens of seconds or minutes,
as for product-review videos [31], where the feeling is constant, rather than vary-
ing at the utterance- or frame-level. Furthermore, most of this work has examined
monologue data, not dialog.

Looking specifically at modeling microsentiment in spoken dialog, there are two
very relevant studies. [17] used pretrained models to predict utterance-by-utterance
sentiment in the Switchboard Corpus. The results were fairly good, but generality
of the model was not examined. [27] investigated user dissatisfaction at the utter-
ance level in a corpus of simulated commercial dialogs. Their model classified both
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utterances and individual 10 ms frames, based on prosodic features of the local con-
text. The frame-level classification performance was modestly above baseline, but
supported reasonably good utterance-level discriminations. Again, the generality of
the model was not examined.

Linguistic studies have shown that many complaints and contrasts (which often
contrast a disappointing reality to some ideal situation) involve one or two specific
prosodic patterns spanning a phrase or clause [19, 24]. Early attempts to build ex-
plainable or concise models of the prosody of sentiment in-the-large [4, 8] have
largely been abandoned, in favor of black box modeling. However, by shifting the
focus to microsentiment, we hope that the prosodic indications become simpler and
easier to model.

3 Data

We investigated three corpora, chosen for their realism, their relevance to dialog-
systems applications, and their diversity, representing three genres: cooperative
gameplay, task-oriented dialog, and casual conversation.

3.1 Watergirl Corpus

The Watergirl corpus consists of dialogs between people playing the online cooper-
ative two-player game Fireboy and Watergirl [25]. This was collected to investigate
the possibility of creating a robot player, ideally as interactive and fun as a human
partner. As a first step to building such a player, we wish to explore the possibility
of instantaneously tracking the players’ near-continuous subtle indications of their
level of satisfaction or dissatisfaction. (Eventually we also wish to support construc-
tion of a robot player able to effectively and convincingly convey its own current
state, dissatisfied or otherwise.) In this game the causes of dissatisfaction were di-
verse, but included falling in a hazard and having to restart a level, noticing that the
other player had made a bad choice, failing to execute a move properly, or realizing
that a challenge was harder than it first appeared.

Microsentiment in this corpus has not been previously studied. As a preliminary,
we hired a student to provide annotations. Following a simple annotation guide [26],
he marked all clear instances of dissatisfaction, even if not particularly strong, bas-
ing his decisions on tone, word choice, timing, and context. Labels were generally
applied to turns, but if the speaker’s tone shifted within a turn, the turn was split
into smaller regions. Each turn was given one of seven labels, or left unlabeled, as
described in Table 1.
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Table 1 Watergirl Corpus Annotation Categories and Counts

Label Count Description

ds 555 Dissatisfied with self

do 403  Dissatisfied with other person

dg 95 Dissatisfied with game or game progress

dr 147  Repair/Correction; When someone either indicates that
they don’t understand, or the other person points it out.

d 78 Miscellaneous Dissatisfaction

p 798  Pleased; Used for very pleased utterances

o 67 Outside speaker/Out of character

No Label Neutral/Normal

3.2 UTEP Dissatisfaction Corpus

The UTEP Dissatisfaction Corpus (UTEP Calls, for short) is a set of mock commer-
cial telephone calls [3, 2, 27]. It was collected to support research on the automatic
detection of conversers with nefarious aims, by examining the ways interlocutors
responded to the offers they made. Labeling was done to mark utterances, or oc-
casionally sub-utterances, that indicated dissatisfaction; this variously surfaced as
incredulity, annoyance, anger, and in other ways. Negative microsentiment in this
corpus has previously been modeled [27], however here we used the final full cor-
pus, using the partitions detailed in “train-dev-test-sets.txt” in [2].

3.3 Switchboard Corpus

Switchboard is a collection of informal telephone conversations between strangers
[10]. Negative sentiment is not uncommon and is in part indicated prosodically [28].
We use the SWBD-sentiment annotations of [5], where crowdworkers annotated
each utterance as negative, neutral, or positive in sentiment. Annotators were also
required to provide justifications for their positive and negative labels. We only used
utterances which were annotated by three people, the default, and which were unan-
imously given the same label. Sentiment in this corpus has previously been modeled
by [17].

4 Methods

As noted above, our method centered around training per-corpus models of negative
microsentiment, each with the task of categorizing each frame as being within a
region labeled negative or non-negative. Each model used only prosodic features of
the local context.
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4.1 Data Preparation

We split each corpus into training, dev, and test sets, such that each test set contained
only unseen dialogs, giving the frame counts seen in Table 2.

Table 2 Number of frames of each time for each corpus and subset

Corpus Class Train Dev  Test Total

. .. Neu 51950 19302 20127 91379
Watergirl, explicit labels only Neg 51950 45289 51371 148610
Neu 120222 285583 274147 679952
Neg 120222 45389 51371 216882
Neu 7899 14084 54543 76526
Neg 7899 7581 20893 36373
Neu 19224 31454 32411 83089
Neg 19371 6689 6081 32141

Watergirl, with augmented labels
UTEP Calls

Switchboard

il

For the UTEP Calls and Watergirl corpora, if the annotation label is “n”, “nn”,
or “p”, the frame is considered neutral and assigned a y value of 0. If the annotation
label is “d”, “dd”, “ds”, “do”, “dg”, or “dr”, the frame is considered dissatisfied, and
assigned a y value of 1. If the annotation label is “0”, the frame is excluded. For the
Switchboard data, both neutral and positive frames were mapped to 0 and negative
to 1. By combining classes we lost information, but enabled the three corpora to be
treated similarly.

We also did an alternate data preparation for the Watergirl corpus. Since its an-
notation focused on the negative labels, with explicit positive labels given only if
the speaker was judged very pleased, there was an imbalance in the training data.
Accordingly we tried expanding the amount of training data by exploiting the fact
that unlabeled utterances were implicitly neutral in sentiment. Thus the augmented
data included all (implicitly or explicitly) neutral speech frames together with the
positive frames in the non-negative category. This alternate corrected for the scarcity
of positive labels, but at the cost of an imbalance in the opposite direction.

4.2 Features

In order to characterize the local prosodic context of each frame to be classified,
we used features from approximately 3 seconds on either side of that frame. These
features measure or proxy for intensity, pitch height, pitch range, speaking range,
creakiness and Cepstral Peak Prominence (CPPS) [23, 27, 1]. (CPPS has been found
to effectively measure breathiness in clinical applications [11], and reasonably well
also for dialog [29].) These features are well-normalized and designed to be robust.
We used a total of 125 features, including 124 for these prosodic features, computed
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over various windows and offsets, and 1 for the time into dialog. These are extracted
for each frame to classify, that is to say, computed with a stride of 10 milliseconds.

4.3 Metrics

Our primary metric for prediction performance is F,5. We chose this because, for
any practical application, precision will probably be more important than recall: it
would be more important for a model to have a higher certainty for the frames that
it determines to be negative than for it to find every instance of negativity. We also
report precision, and recall. Our baseline for comparison is a trivial model that just
guesses that every frame is dissatisfied.

4.4 Models

Since our aim here was to explore rather than to optimize performance, since two
of the data sets were quite small, and because we wanted interpretable models, we
used mostly simple linear regression. We built models separately for each of the
three corpora. In each case, the threshold was chosen to maximize the F-score on
the devset data (in this respect differing from our previous study on the UTEP Calls
Corpus [27]).

For the Switchboard corpus, we also tried another model: k£ Nearest Neighbors.
This was because we noted a greater diversity in the types of negative micro-
sentiment in this corpus. Since the corpus is so large, to reduce the time for each
experiment, we randomly culled it to 1 in 100 frames. We used Euclidean distance
across the 125 features for determining the nearest neighbor. We used k = 1, as
increasing k did not appear to significantly increase performance.

5 Results

Before approaching our main question, regarding the generality of negative senti-
ment models across corpora, we explored how well these modeling methods worked
for each individual corpus.

First, for the Watergirl corpus, As seen in the first two lines of Table 3, this model
comfortably outperforms the baseline. Further, with the alternate data preparation,
with the augmented labels, the result was much better, as seen in Table 4. (Because
the data sets are different, the baseline here is different from that in Table 3.)

Second, for the UTEP Calls corpus, as seen in the first two lines of Table 5, the
model outperformed the baseline. While direct comparison to previous work [27] is
not possible, the performance is in the same ballpark.
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Table 3 Detection quality for the Watergirl corpus (for explicit labels only).

Classifier F,s5 Precision Recall MSE

baseline 0.73 072 1.00 0.28
same-corpus training  0.84 090  0.42 045
training on UTEP Calls 0.76  0.82  0.34 0.52

Table 4 Detection quality for the Watergirl corpus, with label augmentation.

Classifier F,5 Precision Recall MSE

baseline 0.17 0.16 1.00 0.84
same-corpus training 0.39 039 046 0.20

Table 5 Detection quality for the UTEP Call corpus.

Classifier F,5 Precision Recall MSE

baseline 0.29 0.28 1.00 0.72
same-corpus training 0.30 030  0.33 0.40
training on Watergirl 0.27  0.27 0.34 044

Table 6 Detection quality for the Switchboard corpus.

Classifier F,s Precision Recall MSE
Baseline 0.17 0.16 1.00 0.84
same-corpus training, linear regression 0.18 0.17  0.50 0.46
same-corpus training, KNN 0.17 0.16 054 0.51

trained on Watergirl, linear regression  0.16 0.16  0.34 0.39
trained on UTEP Calls, linear regression 0.18  0.17 035 0.37

Third, for the Switchboard corpus, as seen in Table 6, performance of the linear
regression model was only slightly better than baseline. The k-nearest neighbors
model was slightly below baseline. The performance was much lower than that ob-
tained by [17], doubtless due to the simplicity of our models and our use of only
prosodic features.

Additionally, we did testing on each individual label in the Watergirl corpus.
We trained each model on data that was labeled either with that label, or with a
neutral or positive label. The results are shown in Table 7. The regressor outper-
formed the baseline at p< 0.05 when trained on the labels “ds”, “do”, “dg”, and
“dr”. The regressor had the highest error reduction when trained and tested on re-
pairs/corrections in speech, which had the annotation “dr” 1. The regressor had the
highest F-score when trained and tested on dissatisfaction expressed at the other
person, which had the label, “do” 1.

As a way to gauge the reliability of these results, we used chi-square tests to judge
the performance of each model, in terms of correct versus incorrect frame identifi-
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Table 7 Performance metrics of Watergirl Linear Regression on each individual label

Label Model F,s5 Precision Recall MSE

Baseline 0.12 0.12  1.00 0.88

d Regressor 0.12 0.12 0.19 0.25
ds Baseline 0.50 0.49 1.00 0.51
Regressor 0.69 0.75 0.31 0.39
do Baseline 0.50 0.49 1.00 0.51
Regressor 0.84 0.87 0.53 0.27
de Baseline 0.14 0.14 1.00 0.86
Regressor 0.21 020 0.49 0.34
dr Baseline 0.27 0.26 1.00 0.74

Regressor 0.68 0.68 0.66 0.17

cations, compared to the best prosody/content-ignorant baseline we could imagine:
predicting at random according to the actual frequencies of positive and negative
frames in the test set for each corpus. At p < 0.05, we found statistically signifi-
cantly better performance for all same-corpus Watergirl models, the UTEP Calls-
trained Watergirl model, the same-corpus linear regression Switchboard model, and
the UTEP Calls trained Switchboard model. However, we did not find statistical
significance in the difference for same-corpus UTEP Calls model.

We turn now to our main research question, that of cross-domain performance.
First, for the UTEP Calls corpus, performance of a Watergirl-trained model was be-
low baseline, as seen in the last line of Table 5. Second, for Watergirl, the model
trained on Calls was modestly above baseline, as seen in the last line of Table 3, al-
though, unsurprisingly, not as good as the model trained on the same corpus. Third,
for Switchboard, as seen in the last two lines of Table 6, while performance was poor
for the Watergirl model, the Calls-trained model did relatively well, both in F »5 and
in MSE. Given the weak performance of the Switchboard model, we did not even
try applying it to the other corpora. Overall, we see that cross-domain performance
was weak at best.

6 Analysis and Discussion

Figures 1 — 4 show the coefficients of the various linear regression models for the
prosodic features. There are possibly two weak tendencies towards commonalities:
three out of the four models had a positive correlation between dissatisfaction and
intensity 400ms after the frame being predicted, as seen in Figures 1, 2, and 3, and
two of the four models had a negative correlation between dissatisfaction and pitch
narrowness in the -1600ms to -800ms window, as seen in Figures 2 and 3. However,
overall from the figures it is clear that the negative micro-sentiment patterns learned
differ across the corpora. This also matches the impression given by post-hoc casual
observation of examples of negative sentiment in the various corpora.
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Fig. 1 Visualization of the linear regression model coefficients for with the Watergirl corpus using
only the explicitly labeled frames.
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Fig. 2 Visualization of the linear regression model coefficients for the Watergirl corpus using the
augmented labels.
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Fig. 3 Visualization of the linear regression model coefficients for the UTEP Dissatisfaction Call
corpus
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Fig. 4 Visualization of the linear regression model coefficients for the Switchboard corpus.

For the Watergirl corpus, the good performance suggests that a prosody-based
model would be useful for real-time monitoring of the user’s satisfaction with the
partner’s gameplay and other factors. The most salient and consistent correlation is
with regions rich in high pitch; this is easy to understand as connecting with the
fact that in this game disasters happen mostly near times of high excitement and
engagement, and that affect bursts at the moment of disaster are often in high pitch
[25, 20].
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For the Calls corpus, the performance was only modest at the frame level, but
would be able to support better performance for utterance-level classifications, as
seen in previous work [27]

The Switchboard model had only has two coefficients with an absolute value
above the display threshold, .02, as seen in Figure 4. One possible interpretation is
that negative micro-sentiment in Switchboard is not consistently well expressed by
any single prosodic pattern. However there is also another explanation, suggested
by examining a few of the annotations in SWBD-sentiment: these annotations do
not seem to be consistently about sentiment. For example, a discussion of the fact
that hunting dogs should not be kept in the house, to avoid spoiling them, was an-
notated as negative in sentiment by all three annotators, with the evidence being the
presence of the word spoil, although when we read or listened to this utterance we
detected no negativity at all. In general, it may be that the SWBD-sentiment anno-
tations relate more to lexical valence than to sentiment in the normal sense of the
word. Thus it seems that the question of the utility of prosody for detecting negative
microsentiment in casual conversation remains open.

7 Summary, Implications, and Future Work

We found that simple prosodic models were effective for identifying moments of
negative microsentiment in a corpus of cooperative gameplay, but only marginally
useful for free conversation.

We also found, contrary to expectation, that our prosody-based models for detect-
ing negative micro-sentiment did not generalize well across corpora. This suggests
that, at least over the short term, models will need to be trained for each corpus
or corpus type. More generally, despite the tendency to sometimes consider “sen-
timent” as if it were a unitary construct, this suggests the existence of significant
diversity within negative sentiment.

While better performance is very likely obtainable using better methods — such
as the inclusion of features representing more aspects of prosody, wider contexts,
and additional types of information (lexical, visual, turn timing, etc.) [6], and the
use of pretrained models instead of hand-crafted features [30, 15] — we think that
our conclusion about the diversity of the expressions of negative microsentiment
will still hold.

While there still may be, over the long term, the potential to create a unifying
model of negative micro-sentiment, we think that would need to take into account
at least differences in genre, domain, and interaction style [28], and also variation
in the intensity, in the triggers of the sentiment, and in the discourse goals served by
expressing the negative sentiment. The result could have general value but would be
far from simple.
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