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Abstract

In human-human interaction, speaking styles variation is perva-
sive. Modeling such variation has seen increasing interest, but
there has been relatively little work on how best to discriminate
among styles, and apparently none on how to exploit pretrained
models for this. Moreover, little computational work has ad-
dressed questions of how styles are perceived, although this is
often the most important aspect in terms of social and interper-
sonal relevance. Here we develop models of whether an utter-
ance is likely to be perceived as off-putting. We explore differ-
ent ways to leverage state-of-the-art pretrained representations,
namely those for TRILL, COLA, and TRILLsson. We obtain
reasonably good performance in detecting off-putting styles,
and find that architectures and learned representations designed
to capture multi-second temporal information perform better.
Index Terms: pretrained models, prosody, autistic speech, tem-
poral information

1. Introduction

Speaking style variation is important, for example in conversa-
tion, where participants may adjust their style to accommodate
to the interlocutor, to produce speech suitable for the context,
and to serve communicative goals [1, 2, 3, 4]. Style is compli-
cated, not least because it relates to emotion, stance, personality,
social identity and other factors. In the computational modeling
space, much work on styles has been inspired by the potential
to support the creation of virtual assistants and dialog systems
that better serve the needs of diverse users, by adjusting to suit
each individual [5, 6, 7]. Models of style may in addition ul-
timately help individual human speakers learn how to deploy
styles more effectively for better social outcomes. Significant
recent advances in in modeling speaking styles have been ob-
tained in the context of speech synthesis [8, 9], but the focus of
this paper is discriminative modeling.

Style detection has many applications, including for exam-
ple better modeling of user and agent behavior for better call
center analytics. In this paper we explore a new approach to
style detection: exploiting pretrained models. In this we are in-
spired by recent work on related tasks — such as identifying
disordered speech [10], synthetic speech [11], distorted speech
[12], dysarthria [13], and emotion recognition — all of which
have seen significant progress from the use of self-supervised
approaches. These approaches commonly involve training an
encoder on a large, unlabeled dataset to produce a general-
purpose embedding representation of speech [14, 15]. These
representations are used (and optionally fine-tuned) to build a
final model for the target downstream task. Encoders based on
different architectures (e.g., LSTM, CNN, Conformers) and dif-
ferent self-supervised learning strategies have been proposed,
compared, and evaluated on a diverse set of downstream tasks.

However, to the best of our knowledge, the effectiveness of
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pretrained models for style detection has not previously been
explored. In this work, we compare and evaluate components
of these approaches on a socially-important aspect of speaking
styles — predicting whether an utterance may be perceived as
off-putting. Specifically, we train and evaluate these models on
a corpus of dialogues manually labeled for off-puttingness at
the utterance level. Our contributions include:

1. The presentation and public release of an initial model
for detecting off-puttingness [16].

2. A demonstration of the value for this task of representa-
tions and models designed to capture multi-second tem-
poral information.

2. Task and Data

Our task is that of detecting whether a given utterance is likely
to be perceived as off-putting. We choose this for two reasons.

First, we believe this task is in some ways representative
of other dimensions of style. We also suspected that it would
have characteristics not commonly seen in other non-semantic
speech tasks. Such tasks, for example those included in the
Non-Semantic Speech Benchmark (NOSS) [17], primarily in-
volve detecting speech patterns that are present in many short
segments of the input signal. For example, speaker, emotion,
language, dementia, and disordered speech detection are tasks
where averaging embeddings extracted from 960ms segments is
sufficient to build high-performing linear models [17, 18, 19].
We suspected that many of the speech patterns characteristic of
styles occur at longer timeframes, and thus will need more than
just features computed independently over only short segments
of the input.

Second, we believe this task is very socially relevant. Peo-
ple who frequently produce utterances in a style that is per-
ceived as off-putting are unlikely to have much social success.
This may be the case for many people with autism. While many
aspects of autistic speech have been intensively studied, most
work has focused on low-level features, not patterns, and on
simply computable properties, not how the speech is perceived
by others [20, 21, 22, 23, 24, 25, 26]. We believe that a more
complete understanding of the patterns of autistic speech and
how it is perceived is needed to support the development of truly
effective interventions [27].

Our dataset is derived from a corpus of dialogues in Amer-
ican English, each between an autistic child and a neurotypical
confederate. We use the 12 described in [28] plus two more.
These dialogues include a good number and good variety of ut-
terances which could be perceived as off-putting. Each conver-
sation is 7-10 minutes long, resulting in a total corpus duration
of about 2 hours.

The judgments of whether each utterance was or was not
off-putting were done independently by each of the first three
authors, listening to all the autistic children’s utterances, one-



Table 1: Distribution of Utterance Annotations

Utterances
Duration (secs) | Total Off-putting

All 788 338
(0-1] 317 105
(1-2] 162 79
(2-3] 90 38
(3-4] 48 24

(4-5] 48 21
(5-6] 29 16
>6 94 55

by-one, in isolation, in random order. (While inter-speaker ef-
fects and other context are important for fully modeling autistic
behavior [29], this task is more tractable.) The Fleiss’ Kappa
agreement score among the three annotators was 0.324, com-
monly interpreted as fair agreement. To combine annotations,
we chose to consider an utterance as off-putting if it was so
classified by at least one annotator. The final dataset consists of
338 (43%) off-putting utterances and 450 (57%) not off-putting
ones. Table 1 presents the number of utterances classified as
off-putting grouped by utterance duration.

As a side effort, we followed up with two categorizations
of factors that may make utterances off-putting, both using a
combination of unstructured observation and inductive analysis.
First, we considered how these utterances may be perceived.
They may give the impression that the speaker is angry, an-
noyed, aggressive or condescending; or being pedantic, force-
ful, unforgiving, demanding or complaining; or feeling bored,
tired, uninterested, disengaged, or disconnected. Subsequent
listening also suggested that off-putting impressions could arise
if the speaker’s utterances were poorly timed, either interrupting
or coming too late, or if utterances were inappropriately short or
long, or if the speaker’s style choices were inappropriate for the
context, in particular for the interlocutor’s previous utterance.
Other cases involved lack of clarity in turn-taking, turn-holding,
or turn-yielding intentions.

Second, we considered acoustic and prosodic features that
likely contribute to these perceptions. Off-putting utterances are
sometimes over-articulated with frequent or strongly stressed
syllables, or with high intensity or sharp initial intensity rise, or
in breathy voice, or with unusually lengthened words, or un-
intelligible. Other issues included echoing the interlocutor’s
words and difficulties in starting or continuing utterances. Many
of these properties have previously been noted in the literature.
Clearly there is a wide diversity in both the acoustic properties
of off-putting utterances and in the ways they are perceived.

3. Models

Our aim is to produce a useful model able to, given an utterance,
determine if the style may be perceived as off-putting, but our
primary objectives in this study were to address two research
questions:

1. What speech representations and model architectures are
most effective for building an off-putting style detector?

2. How important is temporal information across multi-
second time frames when determining if an utterance is
likely to be perceived as off-putting?

Accordingly, we train and evaluate a selection of models
chosen to represent the state of the art and to support determi-
nation of which modeling methods are most effective.

To address the first research question, we try representa-
tions of four kinds: raw features (energy, Fo, and mel-frequency
cepstral coefficients), representations produced by the CNN-
based encoders used in TRILL [17] and COLA [18], and rep-
resentations produced by TRILLsson [30]. COLA and TRILL
were chosen since their representations perform well on a wide
set of non-semantic speech tasks, such as those in NOSS (Non-
Semantic Speech Benchmark) [17], and TRILLsson because the
representations of its parent model, the Conformer-based model
CAPI12 [19], consistently outperform competing approaches,
such as Wav2Vec2.0, on many paralinguistic tasks.

To address the second question, for each representation we
train both a simple independent-slice model, where the features
from each slice are aggregated by average pooling, and a time-
sensitive model, using a recurrent network.

3.1. Low-Level Feature Representations

Our first approach consists of training classifiers in a fully su-
pervised manner using low-level feature representations. Our
intention was for these to be models simple enough to properly
train on small data, and reasonable as a baseline. For each ut-
terance in our dataset, base features are computed every 10ms,
namely energy, Fo, and 13 mel-frequency cepstral coefficients,
using the Midlevel Prosodic Features Toolkit [31]. Energy and
Fo are speaker-normalized to compensate for inter-speaker dif-
ferences while keeping key prosodic information. From these
representations we train two models. The first computes the
mean and standard deviation of each base feature across all
frames in the utterance, giving a fixed-size representation. This
is then fed to a fully-connected network composed of two dense
layers of 8 ReLU units each, followed by a sigmoid unit. The
second model is designed to capture long-term dependencies.
Each utterance is represented as a sequence of the low-level
feature vectors and these are fed to a recurrent network com-
posed of two GRU layers (32 units each), one dense layer (16
ReLU units), and one sigmoid unit. We use GRU units rather
than LSTM units because they performed better in preliminary
experiments. Otherwise we did not optimize the architecture.

3.2. CNN-based Representations (TRILL and COLA)

Our second set of models are built on the representations
learned by TRILL [17] and COLA [18]. Both of these train
CNN-based encoders that map 960ms audio segments to an em-
bedding space. The self-supervised approach used by TRILL
is based on a triplet-loss objective that steers the encoder,
ResNetish [32], to produce similar representations for audio
segments that are close in time. This is done by first creating
a set of audio triplets where two audio segments (x;, and x;),
sampled from the same audio clip, serve as positive examples
and a third one (x%), sampled from a different audio clip, serves
as a negative example. The encoder g is then trained to produce
representations where ||g(z;) — g(z;)|| < |lg(x:) — g(zw)]|-
TRILL was trained on the subset of clips in AudioSet [33] that
contain speech and it was shown to outperform competing ap-
proaches at the time it was released. Like TRILL, COLA trains
an encoder (EfficientNet-BO [34]) to output similar represen-
tations for pairs of audio segments extracted from the same
clip. What differentiates COLA is that it uses all segments
in the training mini-batch that come from other audio clips to
build a large number of negative examples for each positive one.
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COLA was trained on the complete AudioSet corpus and it was
shown to perform almost as well as TRILL when compared on
the non-semantic tasks in NOSS.

For our TRILL-based models, we use the embeddings pro-
duced by the 19th layer of the ResNetish encoder (commonly
referred to as TRILL-19) as they generally perform best. We
used the pretrained models that were released through Tensor-
flow Hub. We extract embeddings from each non-overlapping
960ms segment in a given utterance, zero padding when neces-
sary, to represent it as a sequence of 12288-d embeddings. Sim-
ilarly, for our COLA-based models, we use the embeddings pro-
duced by the last global max-pooling layer of the EfficientNet-
BO encoder as done in [18]. Similar to our TRILL-based
representations, we extract embeddings from non-overlapping
960ms segments in an utterance to represent it as a sequence of
1280-d embeddings.

For COLA, we did not find an available pretrained model,
so we trained one using the publicly-released code. For this, we
used the CREMA-D dataset [35], which consists of 7,442 sen-
tences spoken by 91 actors across some basic emotional states
(happy, sad, anger, fear, disgust, and neutral).

For both the TRILL- and COLA-based representations, we
train both a linear and a recurrent model. For the former, as
seen in Figure 1, we aggregate embeddings over time using av-
erage pooling and use the resulting fixed-size utterance repre-
sentations to train a logistic regression classifier. Our recurrent
model, presented in Figure 2, uses 2 stacked GRU layers (32
units each), one dense layer (16 ReLU units), and one sigmoid
unit.

3.3. Conformer-based Representations (TRILLsson)

Our last set of models are built on the representations learned
by the best performing TRILLsson [30] encoder. In [19],
Shor et al. introduce a Conformer-based speech representation
learning approach that outperformed competing approaches
in many paralinguistic tasks. The model applies a convolu-
tional feature encoder to the input signal and feeds the out-
put to a speech encoder composed of blocks of Conformers
(convolution-augmented Transformers) to generate embedding
representations. Conformers, like CNNs, effectively extract
useful local features from the input while also capturing global
feature interactions, like Transformers. The model is trained
using a modified Wav2Vec2.0 self-supervised strategy based on
contrastive learning. The best performing representations are
produced by the 12th layer of the 600M parameter variation
of the model, referred to as CAP12, trained on 900k hours of
unlabeled, YouTube audio data. CAP12 produces 1024-d em-
beddings for audio files of any length and it outperformed or
matched competing approaches, including TRILL, in all NOSS
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Figure 2: Recurrent Model Architecture

tasks. This model, however, is very large and not publicly avail-
able. To address this, Shor er al. distill CAP12 into a series
of smaller models, referred to as TRILLsson, using only pub-
lic data [30]. The largest distilled model, TRILLssonS5, based
on the Audio Spectrogram Transformer architecture, achieves
over 96% the accuracy of CAP12 on most NOSS tasks, and is
publicly available. We used this pretrained version, as released
through Tensorflow Hub.

We use TRILLssonS to train a linear model and a recur-
rent model, using the same embedding extraction and modeling
strategy as for TRILL- and COLA-based models. In addition,
we train a full-utterance model by feeding utterances (without
segmenting them) to TRILLsson5 and using the resulting 1024-
d embedding representations to train a logistic regression clas-
sifier.

4. Experiments and Results

We evaluate all models using 20-fold cross-validation, splitting
the dataset into training (85%), validation (10%), and test (5%)
sets in every fold. All models were built and evaluated using
the same splits. We used a mini-batch size of 64 utterances, the
Adam optimizer with a learning rate of 1e-3, and 500 epochs.
After every training epoch, we evaluate the performance of the
model on the validation set and keep track of the best perform-
ing model. After training, we choose the model that performed
best on the validation set and evaluate its performance on the
test set. To mitigate overfitting, we augmented our dataset by
applying Gaussian noise to the input representations. For the
recurrent models, we used dropout with a drop rate of 0.25 after
the two GRU layers. We also applied L2 regularization with a
0.01 factor to the parameters of the sigmoid output of all mod-
els.

Table 2 shows the accuracy and Fl-score of each model.
These results indicate:

1. The embedding representations produced by TRILL-
ssonS generally outperform all other approaches. This is consis-
tent with the performance gains observed in other non-semantic
speech tasks.

2. For most learned representations, classification using re-
current models outperforms the linear model counterparts, sug-
gesting that the speech patterns that emerge at time frames
larger than 960ms are indeed important for detecting off-putting
speaking styles. The advantage was however much less for



Table 2: Performance results of models and representations on utterances of different durations

Decision  # of Features/Pretrained Utterance Duration (secs)
Model Params Representation All o-1 @-21 @2-31 (3-4] @-51 (5-6] >6
\ MLP 0.3K Low-Level \ 0.623 0.647 0562 0.644 0.625 0.646 0.690 0.596
\ RNN 11.6K Low-Level \ 0.610 0.634 0636 0467 0625 0583 0586 0.638
\ LR 12.3K TRILL19 \ 0.681 0.700 0.611 0.722 0.667 0.771 0.621 0.681
\ RNN 1.2M TRILL19 \ 0.720 0.757 0.673 0.778 0.729 0.625 0552 0.713
Acc \ LR 1.3K COLA \ 0.600 0.634 0.611 0589 0500 0521 0552 0.585
\ RNN 133K COLA \ 0.631 0.653 0.617 0.633 0.604 0.667 0483 0.617
\ LR 1K TRILLssonS (0.96s) \ 0.726 0.760 0.642 0.756 0.708 0.750 0.690 0.734
\ RNN 108.5K  TRILLssonS5 (0.96s) \ 0.744 0.770  0.679 0.744 0.729 0812 0.759 0.734
\ LR 1K TRILLSsson5 (full) \ 0.712 0.748 0.667 0.700 0.688 0.688 0.793  0.681
\ MLP 0.3K Low-Level \ 0.494 0423 0458 0543 0500 0.564 0.667 0.578
\ RNN 11.6K Low-Level \ 0.507 0.326 0.614 0400 0.609 0.524 0571 0.667
\ LR 12.3K TRILL19 \ 0.636 0.541 0613 0684 0692 0.776 0.621  0.727
\ RNN 1.2M TRILL19 \ 0.654 0.560 0.679 0.762 0.711 0591 0581 0.716
F1 \ LR 1.3K COLA \ 0.521 0496 0577 0507 0478 0410 0.480 0.581
\ RNN 133K COLA \ 0.503 0.389 0508 0507 0578 0.600 0.516 0.625
\ LR 1K TRILLsson5 (0.96s) \ 0.676 0.624 0.623 0.725 0.696 0.750 0.727  0.757
\ RNN 108.5K  TRILLsson5 (0.96s) \ 0.673 0.568 0.658 0.701 0.745 0.791 0.759 0.742
\ LR IK TRILLsson5 (full) \ 0.652 0.565 0.654 0.649 0717 0.681 0.812 0.712

TRILLsson5, suggesting that it already captures some aspects
of temporal configurations.

3. Models trained on low-level representations performed
poorly regardless of the model architecture. However they
did outperform random guessing. This was true even for the
independent-slice (MLP) model. This likely reflects the fact
that averaged representations using low-level features extracted
from very short frames (10ms) are enough to detect certain oft-
putting patterns, such as speech that is inappropriately loud or
quiet.

4. COLA performance was lower than expected, and not
generally better than using the low-level features directly, with
no use of pretraining. This may be because the pretraining here
was done on only a small dataset (CREMA-D).

We did not test statistical significance, but we note that
these tendencies generally held for both F1 and accuracy met-
rics, and for utterances of different lengths.

We also computed the Fleiss’ Kappa scores of the
best performing models with respect to the targets: these
included 0.462 for TRILLsson5-0.96s—RNN, 0.438 for
TRILLsson5-0.96s-LR, 0.418 for TRILL19-RNN, and 0.406
for TRILLssonS-Full-LR. Although the comparison is not
exact, it is encouraging that these are above the Fleiss” Kappa
scores for the human annotators, which averaged 0.324.

5. Conclusion and Future Work

In this work, we evaluated and compared different modeling ap-
proaches and speech representations on a socially-relevant task:
predicting if an utterance is likely to be perceived as off-putting.

The performance overall was modest, with the best accu-

racy only 0.744. We attribute this largely to the difficulty of
the task, due in part to the heterogeneity among off-putting ut-
terances, which is also reflected in the only “fair” agreement
among human annotators. Another factor may be the difference
in the speech used for pre-training (from non-autistic adults)
and for the downstream task (from autistic children).

We show that TRILLsson produces better-performing rep-
resentations than TRILL and COLA. We also show that models
trained on sequences of embeddings outperform linear models
trained on average-pooled embedding representations, suggest-
ing that capturing patterns that emerge at time frames larger
than 960ms is beneficial for speaking style modeling.

For future directions, we would like to perform similar ex-
periments on a larger set of speaking styles, to evaluate other
learned representations, such as [36], and to fine-tune encoders
on our dataset. We would ultimately like to improve and extend
this work to languages other than English and to younger chil-
dren. In general, we see it as a priority for the field to explore
the utility of models pretrained on adult data for tasks involving
children.
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