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Abstract
As a way to discover the elements of prosody, Principal Compo-
nent Analysis was applied to several dozen contextual prosodic
features, sampled at 600,000 timepoints in dialog data. The re-
sulting components are interpretable as prosodic patterns, in-
cluding some which involve behaviors of both interlocutors.
Examining contexts and co-occurring words, many of these
have clear interpretations. This suggests that English has at least
several dozen prosodic patterns, each with its own communica-
tive function.

Index Terms: principal components analysis, prosodic ele-
ments, prosodic patterns, factors, dimensions, contours, super-
position, intonation, modeling, dialog, interaction, pragmatics

1. Introduction
To understand a complex machine, one needs to identify the
pieces and how they work together. Classical approaches to
prosody have found many likely pieces, including targets, con-
tours, impulses, and events, and much has been written about
each. However the question of how these elements are com-
bined has received less attention; many models of prosody are
vague here. This is a problem because theories that rely on
unexplained mechanisms have little predictive power: they are
impossible to test rigorously and potentially falsify [1, 2].

Well-specified descriptions of how prosodic elements com-
bine do exist, for example [3, 4, 5, 6]. However so far these have
been worked out only for carefully circumscribed sets of phe-
nomena, in datasets where every other prosody-related factor is
controlled. The more general trend is, it seems, to give up on
modeling prosody in terms of composable elements, instead us-
ing machine learning techniques that operate directly over raw
features [7, 8]. While this can be of great practical value, the
resulting models are tailored to single applications, are diffi-
cult to interpret, and do not much advance our understanding of
prosody.

This paper presents a way to outflank the problem of com-
bination mechanisms. The novel idea is to start with a composi-
tion rule, and to then use it to infer the elements; the reverse of
the classical strategy. This guarantees that these elements will
compose simply, with no slack in the model. Originally devel-
oped for purely practical reasons [9, 10], this method is here
presented as it relates to other approaches, with new visualiza-
tions, and with more dicussion of the broader implications and
prospects.

2. Principal Component Analysis
for Prosody

The fundamental assumption of the method is that superposition
is the main combining principle for prosodic elements. Thus the

elements, whatever they are, are required to be summable, and,
when summed in various combinations and weightings, to fully
explain the observed reality. The discovery task is accordingly
to infer the underlying elements from data. This is an undercon-
strained problem; however, the desire for models that minimize
the number of elements and maximize their explanatory power
leads us to Principal Components Analysis (PCA).

PCA can be described in several ways, but it is helpful to
view it as an iterative analysis process. In each stage, PCA finds
the factor that explains as much as possible of the observed
variation, across many datapoints and many variables. It then
subtracts out what that factor explains, finds another factor to
explain much of the remaining variation, and iterates. For ex-
ample, if we are interested in statistics on people, including in-
come, wealth, family size, number of cars, age, education level,
food budget, and so on, the first underlying factor may be some-
thing like socioeconomic status, the second may be related to
age, the third may be gender, and so on. The observed variable
values for any datapoint (person) are modeled as linear combi-
nations of the factors, and conversely, one can go from the ob-
served values for any datapoint to the values of the underlying
factors trivially, with a simple matrix multiplication.

PCA is good for dealing with variables which are highly
correlated and thus mutually partially redundant. This is com-
monly the situation in prosody, and PCA has indeed been used
here, for identifying the prosodic and other vocal parameters
relevant to emotional dimensions [11] and to levels of vocal
effort [12], for categorizing glottal-flow waveforms [13], for
finding the factors involved in boundaries and accents [14], for
characterizing ambiance [15], and for purely practical purposes
[16, 17, 18, 19]. A related method, Functional Data Analysis
(FDA), has also been applied to prosody, including for iden-
tification of the key dimensions of variation in pitch contours
[20, 21, 22, 23]. Despite all these precursors, our strategy, of
using PCA as a way to discover prosodic elements, is some-
thing new.

3. Base Features
In our approach, the datapoints input to the PCA are points in
time, and the variables are various prosodic features. PCA is
then applied to discover the underlying factors, and these are
the elements of prosody.

Because a prosodic value at a point in time is meaningless
without context, for each datapoint we use several dozen base
features to broadly represent the local prosodic context. For
example, in addition to the average pitch over the past 50 mil-
liseconds, we also use the average pitch over a 50 millisecond
window centered 75 ms in the past, and over a 100 ms window
centered 150 ms in the past, and so on, for both past and future
windows, spanning about 6 seconds centered around the point
of interest. Including such features enables the use of PCA for



time-series analysis [24, 20, 21]. Unusually, our features are
not uniformly spaced, but are denser closer to the point whose
context is being considered, as detailed elsewhere [9, 25].

Given that the features are from the local prosodic context,
each PCA-derived factor will represent a patterning of prosodic
features over that context: a ‘phonological entity with a distinct
time course’ [1]. For example, one factor has a region of speech
with a slowly dropping pitch, followed by a region that is quiet
and slow in rate, followed by a second region of speech that
has an early fast region, but then turns slower and lower. The
bottom half of Figure 1 shows a visualization of this.

Mathematically a factor can be present either with a posi-
tive weight or a negative weight. However it can be difficult to
intuitively understand the contributions of a factor when it has
a negative weight for a given datapoint. Accordingly the dis-
cussion below will focus on one or the other of the two poles of
each factor (dimension), discussing either the pattern character-
izing points that are high on the dimension or the one for low
points. For example the pattern in Figure 1 is the high side of
dimension 6.

For PCA to work, the base features should be continuous-
valued, on scales for which summation is meaningful. The fea-
tures we have used approach this ideal but imperfectly. For
loudness we use log energy normalized per track to correct for
different recording conditions and different speakers. For pitch
height we use percentile in the distribution of pitch seen for
that track, thus again normalizing for speaker. For pitch range,
we similarly use the number of percentiles between the high-
est pitch point in the window and the lowest. For windows
without voiced frames, the mean pitch values and ranges are
used instead. For rate, we use a simple frame-by-frame energy-
shimmer measure. These features are from our standard inven-
tory, chosen for utility for modeling turn-taking prosody and for
language modeling. Better choices could certainly be made, but
fortunately PCA is robust to imperfect and noisy features. Fi-
nally, following standard practice, we z-normalize all features
before applying PCA.

In contrast to previous uses, here we apply PCA to dia-
log data, with featuresets accordingly including features of both
speakers’ prosodic behavior. As a result, the top factors dis-
coved by PCA tend to be those which explain variance not only
in the speaker’s behavior but also in the interlocutor’s behav-
ior. That is, this predisposes the method to find patterns that
have interactional significance, with ones that relate purely to
one speaker’s behavior destined to rank lower.

Further, again in contrast to previous work, we applied PCA
to a heterogeneous and large data set. This is because our aim
is to see what we can find, rather than to refine some model
or answer some question. In particular, most of our work has
been with the Switchboard corpus of American English tele-
phone conversations. In each case we built the models using
about 600,000 data points, the maximum our computer’s mem-
ory could handle for PCA. These were obtained by sampling
every 10 milliseconds during 16 dialogs, without regard to any
notion of sentence, utterance, or turn. Thus each model is built
from about 100 minutes of dialog, across multiple speakers,
multiple dialog activities, and multiple topics.

Finally, PCA involves an (optional) interpretation step.
While some researchers are happy with fully automatic meth-
ods, we think that human judgments are a necessary part of sci-
entific inquiry, and in this respect our method is aligned with
classical approaches. We differ in choosing to apply the human
interpretation after the data-reduction step, rather than up front.

Figure 1: The pattern exemplifying the high side of factor 6
(dimension 6). Time is in milliseconds. First-speaker features
are on top and second-speaker features below. Line width shows
volume, with the median volume seen at the far left and right of
the figure. Height shows pitch, with the median indicated by
the dashed line. Darkness shows rate. While what is shown is
the strengths of factor loadings — not directly the pitch height,
volume or rate — it is not seriously misleading to interpret the
figures as indicating typical values for the features across time.

4. Findings
4.1. Interpretable Elements

While PCA is guaranteed to find elements, there is no guaran-
tee that they will be interpretable. While uninterpretable models
of prosody can still be useful, interpretable ones are preferable.
Luckily, most of the factors that PCA outputs have indeed been
interpretable, with each pole corresponding to a simple pattern
or ‘construction’ [26, 27] with an identfiable meaning or func-
tion. These generally relate to meanings and functions familiar
from the prosody literature. (Although not so far to meanings at
the degree of specificity claimed for some sentence-level con-
tours [28, 29, 30].) Space allows just two examples:

4.1.1. The Upgraded-Assessment Pattern

Switchboard dimension 6 is positive to the extent that: the inter-
locutor was speaking loudly but trails off and this occurs with a
low pitch, during which while the speaker was quiet; followed
by a loud region by the speaker with a slightly expanded pitch
range and increased speaking rate (the upgraded assessment);
followed after a short pause by a long and loud continuation by
the interlocutor. This is seen in Figure 1.

An example very high on this dimension occurred 309 sec-
onds into dialog sw2402, where A has spoken favorably about
warm places:

A: a lot of people go to Arizona or Florida for the
winter and they’re able to play all year round but
B: yeah, oh, Arizona’s beautiful!

Words frequent in this context include neat, ooh, abso-
lutely, and ‘laughter-right’ (laughed tokens of the word right).

Thus three kinds of evidence — the feature loadings, im-
pressions of the pragmatics, and statistics of the co-occurring
words — provide convergent evidence for a coherent interpre-
tation of the pattern: that it involves one person seeking and
the other displaying empathy, in extreme cases in the form of
an upgraded assessment. This matches well with a previously-
described prosodic construction [31]: a pattern in which a lis-
tener expresses agreement with an assessment by producing an



upgraded version, for example when one speaker tentatively
observes it’s pretty and the other follows with absolutely gor-
geous with increased volume, pitch height and pitch range, and
‘tighter’ articulation. This is exactly what happens when dimen-
sion 6 is high.

Figure 2: Dimension 26, high side, as above.

4.1.2. The Interestingness-Signalling Pattern

Figure 2 shows dimension 26 of the Switchboard corpus. The
loadings on this factor do not distinguish between the tracks,
but this is just an artifact of the prevalent cross-track bleed-
ing in this corpus, which affects many of the lower dimensions.
Examining places in the corpus where this factor was strongly
present, we found that these frequently aligned with backchan-
nels. Quantitatively, of all uh-huhs in the data, 79% occurred
in contexts where factor 26 was present with a positive weight,
significantly more than a 50% baseline. Looking at the behavior
in the other track, places where factor 26 was high were often
places where one speaker was finishing up the delivery of one
piece of information and preparing to continue on with some
elaboration or new aspect. In general, this pattern of joint be-
haviors [32] signals that the recent content was interesting and
will be interesting again soon.

Looking at the feature loadings, there is a very salient re-
gion of low pitch just before the point of interest, for about 150
milliseconds. This is the pattern that previous work has identi-
fied as a cue for an interlocutor backchannel [33]. Despite var-
ious work aiming to refine and elaborate this cue [34, 35], not
much more had been found. However from the figure we can
easily read off more information: that this pattern involves a
slightly increased pitch for about a second, followed by a short,
somewhat louder region (often a content word), followed by a
short low-pitch region with reduced volume, and then, about
a second after the backchannel, a short region with faster rate
(as the speaker resumes the turn with a fresh start). Here PCA
serves to reveal the larger pattern encompassing the salient fea-
ture.

Just to complete the story, in the opposite pattern, character-
izing points where this factor was strongly negative, the speaker
was typically involved in a narrative and speaking with low vol-
ume, and appeared to be downplaying the importance of what
he’s saying, for example when it was just background to a main
point to come later.

4.2. Numerous Elements

In the quest to reduce prosody to the minimum number of ele-
ments, it would be helpful to have estimates of how many ele-
ments are really needed. PCA is useful for questions like this:
often it reveals that superficially complex phenomena can be
explained by just a handful of underlying factors. However that
was not the case here; on the contrary, the top 25 factors in Ta-
ble 1 account for no more than 86% of the variance, despite this
featureset being one with many strong correlations. Moreover,
at least 30 of the factors (and thus 60 patterns) have clear and
distinct functions, as summarized in Table 1. These observa-
tions suggest that the research program of reductively explain-
ing prosody [36, 37] may not work for the prosody of dialog.

4.3. Continuous-Valued Elements

A recurring debate in prosody involves the extent to which
prosodic elements are categorical or continuous. For these ele-
ments we can address this by examining the distributions of val-
ues on each dimension. All looked normally distributed, with
only two exceptions (on the first dimension, which is bimodal,
and on the second, which is skew), which suggests that they are
not categorical. This interpretation is compatible with the func-
tions they bear, all of which seem likely to be experienced in a
graded rather than categorical manner.

4.4. General Elements

While the elements of prosody are likely to vary somewhat with
domain and speaker and so on, it would be disappointing if
those found by one application of PCA were entirely limited
to one specific genre. To see whether this was the case, we tried
it on a different corpus, Maptask, and using a different set of
base features (computed using the same feature extractors, but
with different densities at different temporal offsets). Again we
found meaningful patterns, and of those analyzed so far, most
are similar to those found in the Switchboard data, as seen in
Table 2.

5. Prospects
Ultimately the aims of prosody research must surely include
the identification of the inventory of prosodic elements, for any
given language (despite the difficulties [29]). This paper has
presented a way to use PCA to advance us towards that goal.
Next steps include: 1. using better and finer-grained features,
to infer the exact shapes and timings of the patterns. 2. using
features that are phrase-, word-or syllable-aligned, rather than
fixed in width and offset, 3. analyzing different types of data, to
replicate findings obtained with other methods, and 4. examin-
ing individual differences, as it is unlikely that all speakers of a
language have identical prosodic elements, even if the functions
are shared.

In addition to superposition, a complete model will cer-
tainly require other combining mechanisms: most obviously
concatenation, but also probably stretching, warping, align-
ment, synchronization, assimilation, undershoot, and others, es-
pecially for prosodic phenomena at finer time scales. It impor-
tant to elucidate how superposition works together with these
other mechanisms [1, 40].

Beyond acoustical compositionality, the compositionality
of the meanings of these patterns is an open question [41]. The
heterogeneity of the functions (Table 1) suggests that they could
be composed without mutual interference, but this needs to be



1 this speaker talking vs. other speaker talking 32%
2 neither speaking vs. both speaking 9%
3 topic closing vs. topic continuation 8%
4 grounding vs. grounded 6%
5 turn grab vs. turn yield 3%
6 seeking empathy vs. upgraded assessment 3%
7 floor conflict vs. floor sharing 3%
8 dragging out a turn 3%

vs. ending confidently and crisply
9 topic exhaustion vs. topic interest 2%

10 lexical access or memory retrieval 2%
vs. disengaging

11 low content and low confidence 1%
vs. quickness

12 claiming the floor vs. releasing the floor 1%
13 starting a contrasting statement 1%

vs. starting a restatement
14 rambling vs. placing emphasis 1%
15 speaking before ready 1%

vs. presenting held-back information
16 humorous vs. regrettable 1%
17 new perspective 1%

vs. elaborating current feeling
18 seeking sympathy 1%

vs. expressing sympathy
19 solicitous vs. controlling 1%
20 calm emphasis vs. provocativeness 1%
21 mitigating a potential face threat < 1%

vs. agreeing, with humor
22 personal stories/opinions < 1%

vs. impersonal explanatory talk
23 closing out a topic < 1%

vs. starting or renewing a topic
24 agreeing and preparing to move on < 1%

vs. jointly focusing
25 personal experience < 1%

vs. second-hand opinion
26 signaling interestingness < 1%

vs. downplaying the current information

29 no emphasis vs. lexical stress < 1%
30 saying something predictable < 1%

vs. pre-starting a new tack
37 mid-utterance words < 1%

vs. sing-song adjacency-pair start [38, 39]
62 explaining/excusing oneself < 1%

vs. blaming someone/something
72 speaking awkwardly < 1%

vs. speaking with a nicely cadenced delivery

Table 1: Brief descriptions of the interpretations of some of the
top dimensions found in the Switchboard corpus, with the vari-
ance explained by each. Visualizations of all dimensions are at
http://www.cs.utep.edu/nigel/dimensions/ .

investigated.
As noted in the introduction, some recent applications of

prosody use raw features directly, without models, or at least
without interpretable models. It would be nice to reverse this,
to help reunify the scientific study of prosody and practical
uses. PCA-derived elements, being computationally convenient
yet also interpretable, may help. We already have found them
useful for language modeling for speech recognition [10], for

1 this speaker talking vs. other speaker talking ∼s1
2 low activity, low rapport vs. highly engaged new
3 neither speaking vs. both speaking ∼s2
4 grounding vs. grounded ∼s4
5 turn grab vs. turn yield ∼s5
6 topic continuation vs. topic change ∼s3
7 slowly describing a difficult configuration new

vs. describing an easy path
8 meta-level vs. on-task new
9 comfortable vs. awkward new

Table 2: Interpretations of the top dimensions in the Maptask
corpus. The last column notes correspondences to Switchboard-
corpus dimensions.

information retrieval [42, 25], for finding important informa-
tion in dialog [43], and for characterizing the pragmatics of
a non-lexical discourse particle [44]. Other potential applica-
tions include dialog-act inference, simultaneous interpretation,
detecting emotion, detecting social roles, language identifica-
tion, speaker recognition, realtime behavior prediction, dialog
outcomes prediction, computer-assisted language learning, lan-
guage proficiency evaluation, diagnosis of communication dis-
orders, and speech synthesis.

6. Conclusions

Xu and Prom-on envisage models where “a full repertoire of
communicative functions can be simultaneously realized in
prosody, with all the details of the surface prosody still linked to
their proper sources” [6]. PCA-derived prosodic elements can
be part of such models, as they meet several important desider-
ata: 1. a fully explicit composition mechanism for combining
elements, here simple addition, 2. groundedness of elements,
whose presence at any point in any dataset can unambiguously
determined, here by a simple linear combination of easily com-
putable acoustic features, and 3. meaningfulness of elements,
here with each bearing a specific communicative meaning or
function.

This technique also has other advantages. It works not just
for careful, professional speech and the phenomena therein, but
for ‘messy’ unconstrained dialog. It covers elements at multiple
‘levels’ with a single mechanism. It’s single mechanism covers
not only pitch but also duration and volume (and potentially
also voicing modes, gaze, gestures, etc.). Finally, it has been
truly useful for discovery, and in this respect the results it gives,
and the visualizations they support, are far clearer than those
obtained by previous approaches [45, 46, 47, 35]; in essence this
is because PCA is good at stripping out the variation involved
in dimensions other than the single one being focused on.

Given the simplicity of the method, these results are sur-
prisingly promising and the potential value seems great.
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[12] M. Charfuelan and M. Schröeder, “Investigating the prosody and
voice quality of social signals in scenario meetings,” in Proc. Af-
fective Computing and Intelligent Interaction, 2011.

[13] H. R. Pfitzinger, “Segmental effects on the prosody of voice qual-
ity,” in Acoustics’08, 2008, pp. 3159–3164.

[14] A. Batliner, J. Buckow, R. Huber, V. Warnke, E. Nöth, and H. Nie-
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