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Abstract

Dialog markers, such as yeah and okay generally seem to fit
smoothly in the flow of dialog, with prosody that is natural and
appropriate for the local context. We here examine this effect,
specifically looking at the predictability of the prosody of di-
alog markers from the prosody of the local context. Using 72
prosodic features representing the local context, we built simple
models able to predict the average pitch, log energy, cepstral
flux, and harmonic ratio for the 12 most common dialog mark-
ers of American English. The model’s predictions accounted for
over a third of the variance in the observed prosody, showing a
modest but meaningful context dependence.
Index Terms: prosody, computational modelling, discourse
markers, fillers, backchannels, pitch, energy

1. Introduction
Dialogs often seem to have some degree of momentum, in the
sense that the properties of a speaker’s next utterance can be
partly determined by what is appropriate for the local context,
regardless of any specific communicative intention. To the ex-
tent that such momentum exists, we should study dialog as a
thing in itself, not just as an accidental product of independent
individual choices. Accordingly, exploration of the nature and
strength of such momentum can inform how to best build mod-
els of dialog phenomena.

Our work also has a practical motivation. Dialog systems
often exhibit awkward prosody. One cause is intrinsic unnat-
uralness, but this is being alleviated by recent advances lead-
ing to models that can produce prosodically-natural utterances
[1, 2, 3], at least when judged in isolation. A second cause
is prosody inappropriate for the intended meaning or function,
and this topic has also been addressed by much work, leading to
a good understanding of many prosody-meaning mappings. A
third cause is prosody that is simply inappropriate for the con-
text. This has received much less attention, but remains a major
challenge for speech synthesis [4].

In this research we examine discourse markers occurring
in spoken dialog, or “dialog markers” for short, and in partic-
ular, the predictability of their prosody from the local context.
These are convenient for an initial exploration for several rea-
sons: They are very common. They serve many important func-
tions, including managing turn-taking, marking topic structure,
and expressing stance [5, 6]. They typically are semantically
semi-independent, standing outside the propositional content,
or in other words, have a core procedural and not conceptual
meaning [6]. And finally, their prosody is usually their own, be-
ing less often affected by the larger prosodic patterns that gov-
ern many word sequences.

Our hypothesis is that local prosodic context is informative
for predicting the prosodic form of dialog makers.

token count
huh 1417
now 5910
oh 14053
okay 3915
really 11009
right 12448
uh 52230
uh-huh 12155
um 16392
well 16701
yeah 33768
yes 3393

Table 1: Dialog markers considered

2. Related Work

Various aspects of the prosody of dialog markers have received
significant attention. Much work has described the prosodic
correlates of various different uses, for example, discourse vs
sentential uses of now [7], direction vs acknowledgment uses
of right [8], questioning vs reacting uses of really [9], different
polarities and intensities of yeah [10], backchannel, topic shift,
agreement marker and other uses of okay [11, 12, 13], and so on
[14, 15, 16, 17, 18, 19, 20]. An extensive study on prosodically
marked and unmarked okays [21] revealed that okays are more
prosodically marked — with more extreme pitch, loudness, du-
ration, timing, and overall vocal quality — when they used in
the display of various orientations (such as disagreeing, display-
ing aggravation, treating others’ actions as odd or bizarre, exud-
ing happiness, and excitement) than when they are used simply
to convey acknowledgment, acceptance, or assessment of the
other speakers’ actions. Other work has noted general prosody-
function mappings present across many dialog markers [22].
Some prosody-pragmatic relationships have been shown to be
present across many languages [23]. The study of how prosodic
context directly affects dialog marker prosody has been very
limited; we know of only two small-corpus studies leading to a
set of handcrafted rules [24, 25], and investigations of the extent
of entrainment [26, 27].

Considering more generally work aimed at implementing
simple, direct responsiveness, based on local prosodic context,
a large body of work on aligning to the prosody of the inter-
locutor’s previous utterance [28], another large body of work
showing success for turn-taking predictions [29], and work on
choosing the emotional coloring of responses [30] and the form
of backchannels [31, 32] and other words and turns [33, 34].
This paper extends this line of inquiry to explore the prospects
for prosodic tailoring of dialog makers.



mean
over the token

max
over the token

log energy log energy
cepstral flux cepstral flux
pitch pitch
harmonic ratio harmonic ratio

Table 2: Predicted Features

3. Data
We used the Switchboard corpus of American English tele-
phone conversations [35]. After excluding recordings with poor
audio quality or artifacts that bothered our pitch tracker, we
considered 1900+ conversations involving 400+ speakers. We
considered all audio spans bearing labels from the list in Ta-
ble 1, according to the Picone transcriptions [36]. We did not
use functional labels [37] or do any additional checks, so cases
where the word was not actually being used as dialog marker
were not excluded.

4. Prosodic Features Predicted
Ultimately, we would like to predict every detail of the prosody
of each dialog marker token: the value for every feature at ev-
ery frame of the token. However, for this study we predict only
four features namely: i) loudness, as measured by its acoustic
correlate log energy, ii) pitch, as measured by its acoustic corre-
late fundamental frequency or f0, estimated by the pitch tracker
fxrapt [38] in the VoiceBox toolkit for MATLAB, iii) cepstral
flux, as a measure of lengthening and reduction, and iv) the har-
monic ratio [39] which is a proxy for harmonicity and, indi-
rectly, other properties of voicing, including creakiness, breath-
iness, and devoicing, The relevance of pitch, energy, and timing
is well known; we also included harmonicity since it appears
to help differentiate among roles for some dialog markers [13].
For each of these four features, we did two experiments, one to
predict the average over the entire token, and another to predict
the maximum value, as both contribute to what is perceived. Ta-
ble 2 summarizes. For pitch, frames with undefined values were
excluded from the feature computations.

5. Context Features
As our aim is to explore, we sought neither a maximal set of fea-
tures nor a minimal one. Rather we chose a set of 72 features
that were diverse, convenient, reliable, and broadly covered the
local context. We used contextual features for both speakers:
the one who produced the dialog marker and the interlocutor.
Together these features cover the time from 3.2 to 0 seconds be-
fore the start of the dialog marker and the time from 0 to 3.2
seconds after its end. We chose to consider also future informa-
tion because we observed [13] that often the observed prosody
of a dialog marker is suitable not only for what came before,
but also for what is upcoming, either by the same speaker, or
by the interlocutor, because the prosody of a dialog marker can
guide or otherwise relate to the interlocutor’s future behavior.
However we also did experiments using only the past context,
since that is more relevant for most use cases.

Specifically, for each speaker, we computed the 36 features
shown in Table 3: 9 base features, each computed over 4 time
spans. All were computed using the Midlevel Prosodic Features

Past Windows,
from the

start (s) of the token

Future Windows,
from the

end (e) of the token

log energy s-3200 to s-800,
and

s-800 to s

e to e+800,
and

e+800 to e+3200
lengthening
peak disalignment

creakiness

s-1600 to s-200,
and

s-200 to s

e to e+200,
and

e+200 to e+1600

pitch lowness
pitch highness
narrow pitch
wide pitch
speaking rate

Table 3: Features used for prediction (context features). Times
are in milliseconds relative to start (s) and end (e) of the dialog
marker whose prosody is being predicted

Toolkit [40]. The four pitch configuration features are used to
enable everywhere-meaningful computation of pitch informa-
tion, even over windows with few pitch points [41]. The “peak
disalignment” feature is a measure of the displacement between
energy peaks and pitch peaks [42]; for this data, this generally
measures late peak (delayed peak) occurring in stressed sylla-
bles. The specific time windows were chosen based on some
initial intuitions about the rate of local prosodic change relative
to broader movements, and were not subsequently optimized or
revisited. Together these features capture much about the local
prosody and the local turn-taking state. Both the token features
and the context features were z-normalized per track, to reduce
the effects of intrinsic speaker differences.

6. Prediction Model
Our goal being insight rather than optimization, we used a very
simple model: multivariate linear regression. This allowed us
to trivially examine how the context features were affecting the
dialog markers’ prosody. We developed separate models for
each dialog marker type, as we did not expect the same rules to
work well for all, for example, for both huh and okay, though
we did also experiment with an overall model.

7. Experiment Design and Results
We followed an intra-corpus evaluation approach. Each model,
one for each of the 12 dialog markers, was evaluated with a
disjoint train-test split of 70:30, chosen such that the test set
contained no dialogs seen in the training set. The root mean
squared error (RMSE) was used to evaluate the performance
of each model. The utility of local context information was
measured by the percent reduction in RMSE values for model
predictions compared to the baseline of simply predicting the
average over all instances of that type, for example, predicting
the global average yeah.

Table 4 shows the quality for the baseline predictions and
the model’s predictions. The errors are lower with the model,
with reductions ranging from 22% to 37%, showing that the lo-
cal context is informative. The benefit is statistically significant,
for all 4 predicted features in each case (matched pairs t-tests,
p < 0.001).

This contextual dependency of prosody is demonstrated



predicting mean features predicting maximum features
le cf p hr le cf p hr

Baseline RMSE 0.61 0.82 0.67 0.66 0.74 1.38 1.95 1.18
Model RMSE 0.44 0.64 0.52 0.46 0.49 0.92 1.34 0.74
Reduction, % 28.7 22.4 23.6 29.6 33.4 31.9 31.1 37.2

Table 4: Prediction errors with the baseline and with the the model (using Linear Regression), and percent reduction for predicting
mean (respectively maximum) features. Errors are the unweighted average of the RMSE values for each of the 12 dialog marker types.
le is log energy, cf is cepstral flux, p is pitch, and hr is harmonic ratio.

predicting mean features predicting maximum features
le cf p hr le cf p hr

Baseline RMSE 0.61 0.82 0.67 0.66 0.74 1.38 1.95 1.18
Model RMSE 0.58 0.80 0.60 0.61 0.64 1.34 1.91 1.15
Reduction, % 6.0 2.9 10.2 7.7 12.6 2.6 2.5 2.8

Table 5: Results for predictions using only past context.

even more prominently if we compute the variance of predic-
tion errors. It is seen that the overall average variance of the
predicted prosody, 0.27 for mean features and 0.55 for max fea-
tures were reduced by around 44% and 56%, respectively from
their corresponding baseline averages.

We incidentally note that the reductions were greater for
the maximum features than for the mean features, although this
difference may be be largely due to outliers.

If momentum partly determines speaker behavior, then the
prosody should be largely predictable from features represent-
ing the past context only. A model using only such features
gave some benefit, as seen in Table 5, with RMSE reductions of
3% to 13%, but much less than those obtained when using also
future context. This was a surprise to us, given that we had ear-
lier observed many dependencies on past context [13], albeit for
task-oriented dialogs. Perhaps the functions of dialog markers
are relatively more forward-looking in casual conversation than
in task-oriented dialogs.

To see whether individual models for each marker type
were really necessary, we trained a general model, using lin-
ear regression, on the data from all 12 dialog marker types to-
gether. This generic model generally did not perform as well:
for mean value prediction it gave less error reduction for log
energy, 24.3%, cepstral flux, 19.2%, and harmonic ratio, 24.6%
(c.f. Table 4), although for predicting mean pitch the generic
model performed better, giving a 27.4% error reduction. This
indicates that effects of context on dialog marker prosody are
somewhat type-dependent, but not enormously so.

8. Analysis of the Models
This section illustrates the regularities that our models learned,
and discusses the strengths and limitations of prediction from
context alone.

For most dialog markers, the most predictive features were
the pitch disalignment features. These features often had cor-
relations of 0.20 or higher with high pitch, high volume, and
high harmonicity. This is likely because peak disalignment of-
ten marks times of shared laughter, questions, and other high-
engagement dialog acts [42], and these generally call for en-
thusiastic dialog markers. There was also a tendency to match-

ing: more specifically, when the immediate past context exhibits
higher volume or pitch, the prosody of the dialog marker often
does too, for example when acknowledging new information.

Some specific dialog markers had additional unique tenden-
cies. For example, for the word now, high pitch correlated with
high pitch by the same speaker over the next few sections, likely
due to its forward-looking role, as in introducing new subtopics.
While most of the strong correlations were with contextual be-
havior by the person who produced the dialog marker, there
were also interlocutor effects. For example, the word okay
tended to be lower in pitch when in the context the interlocu-
tor’s cepstral flux was low, likely due to the use of lengthening
and reduction marking a low density of new information and/or
seeking only weak feedback.

For insight on why the model sometimes performed well
and sometimes poorly, we start by considering Table 6. We
note relatively high predictability for uh, and huh, likely be-
cause they usually have no independent prosody or meaning be-
yond their roles in the local context. We see low predictability
for mean features of really and for both mean and max features
of right, which are sometimes dialog markers, but sometimes
just adverbs and adjectives, in which roles they likely have dif-
ferent prosodic tendencies. The prosody of okay was also hard
to predict, perhaps because it often is deployed to convey a spe-
cific meaning or function, rather than just fitting passively in the
context.

To further understand where our model succeeded and
failed, we examined its performance on specific tokens: for
each dialog marker type, the 5 for which the predictions were
least accurate, and the 5 for which they were most accurate.
This was done subjectively, relying on our perceptions and qual-
itative inductive methods.

Factors that were common when the model failed included:
i) background noise in the audio segment. (Our feature compu-
tations were not robust to noise.) ii) long monologues (a dialog
activity type uncommon in Switchboard, and likely rare in the
training data). iii) one speaker with an unusual accent or per-
haps a speech impediment, iv) incorrect annotations, for exam-
ple, where the label was um, but the sound was more like hmm.
(Our model for um, of course, had not been trained to predict
the prosody of hmm tokens.) v) sequences of dialog markers,



predicting mean features predicting maximum features
le cf p hr Avg. le cf p hr Avg.

huh 29 43 26 34 33 22 46 27 15 28
now 19 21 30 25 24 23 21 44 39 32
oh 17 27 15 24 21 35 37 25 37 34
okay 18 30 7 6 15 19 31 18 40 27
really 46 16 -1 15 19 37 39 35 48 40
right 37 2 7 25 18 31 14 19 39 26
uh 43 21 56 30 38 52 48 33 32 41
uh-huh 12 20 34 50 29 18 11 31 39 25
um 31 22 29 32 28 56 50 36 27 42
well 25 24 23 33 26 32 24 40 33 32
yeah 38 25 20 44 32 49 38 40 54 45
yes 30 19 37 37 31 28 22 26 45 30

Average 29 22 24 30 26 33 32 31 37 33

Table 6: Results per Dialog Marker: Percent reduction in root mean squared error for predicting mean (respectively maximum) feature
values using linear regression.

such as well, yeah and oh, okay. (The prosody of markers in se-
quence is apparently different from those in isolation, the more
common case in the training data.) vi) okay at the end of con-
versation, where it was short and breathy as part of the closing,
and vii) huh when produced as a repair question or strong ex-
clamation.

Cases where the model’s predictions were most accurate in-
cluded i) typical backchannel uses of yeah, ii) times the speaker
and interlocutor shared happy or excited agreement, for exam-
ple, You’re pretty Texan, yes . . . [interlocutor laughter], and iii)
sympathetic productions of really in the context of talk about
troubles or problems, as in that can really be a problem.

Overall, it seems that the model tends to perform well when
the local dialog context is one that is common in the Switch-
board genre.

9. Discussion and Future Work
We have found evidence that dialog markers’ prosody can in-
deed be predicted directly from the prosody of the context, to
some extent. This is true even with this very limited feature set
and very simple model.

However the strength of “momentum” or flow as a factor
in the choice of dialog marker prosody is fairly modest; instead
their prosody depends more on what the speaker intends to say
next.

Better performance should be obtainable using better mod-
els and more context features, including not only more prosodic
features, but ideally also lexical information. Future work
should also attempt more detailed predictions: not just of a to-
ken’s averages, but also of contour parameters or even frame-
by-frame values.

An important open question is the extent to which the
prosody adjustments recommended by a context-sensitive
model have actual value in dialog. Previous research suggests
that improved responsiveness can increase perceived natural-
ness and responsiveness, and ultimately rapport, engagement,
and user satisfaction [30, 43, 44, 45, 46, 27]. Prosodic entrain-
ment has even been shown to lead to greater success in student
learning in an intelligent dialog tutoring system [47]. Human
subjects experiments are needed to establish whether such ma-
nipulations also have value for dialog markers.

This will pave the way to more responsive dialog systems,
for example spoken language chatbots. Optimal exploitation of
context-based prosody predictions will, however, likely require
advances in speech synthesis, to support generation of tokens
that exhibit fully appropriate prosody. Moreover, while simple
context-based control of dialog marker prosody may be ade-
quate for chatbots, where the aim is to keep the dialog flowing,
use in task-oriented systems will bring further challenges. We
would likely need an additional module trained to judge the sim-
ilarity of the local dialog context to the context in the training
data. We would also need methods to combine these context-
based predictions with other factors that affect the prosody, such
as the current dialog state and the communicative intent of the
system [48].

More generally, future work should explore the possibility
of predicting other aspects such as the prosody of full utterances
in dialog based on local context. Such models could help not
only improve dialog systems, but also provide knowledge that
could be used very widely, for example to to help autistic people
and language learners master the typical patterns of responsive-
ness in dialog, thereby helping improve their communication
skills.
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